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Abstract: In this paper, the equivalences of several different definitions of two types of

Banach-Mazur distance between convex bodies are shown respectively, the conditions under which

these two types of Banach-Mazur distance coincide are discussed, and the Banach-Mazur distances

between polar bodies of special convex bodies are studied as well. The results obtained here will

play some role in estimating the best upper bound of Banach-Mazur distances.
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1 Introduction

Denote by Kn the family of all convex bodies (i.e. the convex sets with nonempty
interior) in the Euclidean space Rn. Other notation are referred to [15].

Denote by Aff(Rn)(GL(Rn)) the family of all affine (linear) maps from Rn to Rn and
by aff(Rn) the family of all affine functionals on Rn. As a rule, elements of Rn are denoted
by lower-case letters, subsets by capitals and real numbers by small Greek letters. Given
C ∈ Kn, then by λC we mean the homothetic copy of C of ratio λ with the center at the
origin o, and we write λxC := λ(C − x) + x.

In the well-known paper [9], John proved that for every centrally symmetric convex
body C ∈ Kn with the origin as its center, there is a unique ellipsoid E (i.e. an affine
image of the unit ball in Rn) such that E ⊂ C ⊂ √

nE, which in some sense describes the
similarity between C and E. Later on, it was realized that the John’s approach provided
actually a way describing the differences between convex bodies, therefore, as a consequence,
several (similarly, translation or affine invariant) distances between convex bodies, such as
the so-called Banach-Mazur distance etc, were introduced and studied (see [1–3, 5, 8, 10–
14]). It turns out that these distances defined for convex bodies play some roles in convex
geometrical analysis and other related mathematics areas (cf. [4, 6, 7]).
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In this article, we discuss some well-known (affine invariant) distances which appear
different. Precisely, following distances will be discussed.

Definition 1 For K, L ∈ Kn, four (affine invariant) distances of different forms are
defined as follows (see [4–6, 9]).

i) d1(K,L) := inf{αβ | α > 0, β > 0, (1/β)Lx ⊂ uKz ⊂ αLx} where Lx denotes L − x

and the infimum is taken over all applicable z, x ∈ Rn, u ∈ GL(Rn);
ii) d2(K, L) := inf{λ ≥ 1 | L ⊂ TK ⊂ λxL};
iii) d3(K, L) := inf{λ ≥ 1 | TL ⊂ K ⊂ λxTL};
iv) d4(K,L) := inf{λ ≥ 1 | T1L ⊂ T2K ⊂ λxT1L},

where the infimum is taken over all applicable x ∈ Rn,T,T1,T2 ∈ Aff(Rn).
The following are some weaker version of the above distances
Definition 2 For K, L ∈ Kn, we define (see [4–6, 9]).
i) d̃1(K, L) := inf{|αβ| > 0 | (1/β)Lx ⊂ uKz ⊂ αLx}, where the infimum is taken over

all applicable z, x ∈ Rn, u ∈ GL(Rn);
ii) d̃2(K, L) := inf{|λ| ≥ 1 | L ⊂ TK ⊂ λxL};
iii) d̃3(K, L) := inf{|λ| ≥ 1 | TL ⊂ K ⊂ λxTL};
iv) d̃4(K,L) := inf{|λ| ≥ 1 | T1L ⊂ T2K ⊂ λxT1L},

where the infimum is taken over all applicable x ∈ Rn,T,T1,T2 ∈ Aff(Rn).
Remark All di

′s (resp. d̃’s) are called (resp. absolute) Banach-Mazur distance (B-M
distance for short) between K, L by different authors respectively, however, as far as we
know, there seems no proofs available to show that they are indeed the same.

In next section, we will show that all d′is (resp. d̃′is) are indeed the same. Furthermore,
we provide a sufficient condition for K and L under which di(K, L) = d̃i(K, L).

2 The Equivalence of Distances of Different Forms

The first result in this section concerns the equivalence of all di’s (resp. d̃i’s).
Theorem 1 For any convex bodies K, L ∈ Kn, we have
i) d1(K,L) = d2(K,L) = d3(K,L) = d4(K,L);
ii) d̃1(K, L) = d̃2(K, L) = d̃3(K, L) = d̃4(K, L).
Proof i) First we prove d1(K,L) = d2(K,L). For any λ and affine map T = u + x∗

and x∗ ∈ Rn (where u ∈ GL(Rn)) with L ⊂ TK = uK + x∗ ⊂ λxL = λ(L− x) + x, we have

L− x ⊂ uK + x∗ − x = uKz ⊂ λ(L− x),

where z = u−1(x− x∗). Thus d1(K,L) ≤ d2(K,L) (taking β = 1 and α = λ!).
Conversely, if (1/β)Lx ⊂ uKz ⊂ αLx, i.e. Lx ⊂ βuKz ⊂ αβLx or

L ⊂ βuKz + x ⊂ αβ(L− x) + x,

then writing T := βu− βu(z) + x and λ := αβ, we get L ⊂ TK ⊂ λxL, which clearly leads
to d2(K,L) ≤ d1(K,L). So d1(K, L) = d2(K, L).
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Next, we prove d2(K, L) = d4(K, L). It is obvious that d2(K, L) ≥ d4(K, L). On the
other hand, set d4(K, L) = d∗, then by the definition of d4, for ∀ε > 0, there exist T∗1,T

∗
2 ∈

Aff(Rn) and x ∈ Rn such that

T∗1L ⊂ T∗2K ⊂ (d∗ + ε)xT∗1L

from which we get

d2(T∗1L,K) = inf{λ ≥ 1 | T∗1L ⊂ TK ⊂ λxT∗1L} ≤ d∗ + ε.

Thus by the affine invariant of d2, we get d2(K, L) = d2(T∗1L,K) ≤ d∗ + ε which, by the
arbitrariness of ε, leads to d2(K, L) ≤ d∗ = d4(K, L). So d2(K, L) = d4(K, L).

The same argument works as well in showing d3(K, L) = d4(K, L).
ii) The proof is similar to that for i).
Remark i) Since all di ’s (resp. d̃i’s) are equal, we denote them uniformly by dBM

(resp. d̃BM ). It may happen that dBM (K, L) > d̃BM (K, L) as shown by the example: in R2,
suppose that K is a regular pentagon and L is a triangle, then it was shown by Lassak in
[10] that d2(K, L) = 1 +

√
5/2 ≈ 2.118 while it was confirmed in [4] that d̃2(K,L) ≤ 2 for

all K, L ∈ K2.

ii) supK,L∈Kn d̃BM (K, L) = n was confirmed in [4], however it is still a great challenge
to find supK,L∈Kn dBM (K, L). A lot of efforts has been put on such an estimate, among
which it is an applicable approach to find the relation between dBM and d̃BM . Next theorem
provides a sufficient condition for K and L under which dBM (K, L) = d̃BM (K, L) holds.

Theorem 2 Let K, L ∈ Kn. Then dBM (K, L) = d̃BM (K, L) if one of K, L is centrally
symmetric.

In order to prove Theorem 2, we need the following lemma.
Lemma 1 Let K, L ∈ Kn . Then there are α, β ∈ R \ {0}, x, z ∈ Rn and u ∈ GL(Rn)

such that (1/β)Lx ⊂ uKz ⊂ αLx iff there exist x1, z1 ∈ Rn such that

(1/β)Lx1 ⊂ uKz1 ⊂ αL.

Proof If (1/β)Lx ⊂ uKz ⊂ αLx, then (1/β)Lx + αx ⊂ uKz + αx ⊂ αL, i.e.,

(1/β)L(1−αβ)x ⊂ uKz−u−1(αx) ⊂ αL.

Now the proof is done by taking x1 = (1− αβ)x and z1 = z − u−1(αx).
Conversely, suppose (1/β)Lx1 ⊂ uKz1 ⊂ αL. If αβ = 1, then Lx1 ⊂ βuKz1 ⊂ αβL = L

which implies obviously x1 = o. Thus, we take x = o and z = z1. If αβ 6= 1, it is easy to check
that (1/β)Lx ⊂ uKz ⊂ αLx, where x = (1/(1− αβ))x1 and z = z1 + u−1((α/(1− αβ))x1).

Remark By similar arguments to that for Lemma 1, we can show that

dBM (K,L) = inf{αβ | α > 0, β > 0, (1/β)Lx ⊂ uKz ⊂ αLy},
d̃BM (K,L) = inf{|αβ| > 0 | (1/β)Lx ⊂ uKz ⊂ αLy},
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which are actually the original definitions.
Proof of Theorem 2 Clearly we need only to show the equality for d1. By definition,

it is obvious that d1(K, L) ≥ d̃1(K, L).
Now, without loss of generality, suppose that L is centrally symmetric with the origin as

its center. It is a routine by a compactness argument to show that there are α∗, β∗ ∈ R\{0},
x, z ∈ Rn and u ∈ GL(Rn) such that

(1/β∗)Lx ⊂ uKz ⊂ α∗Lx and d̃1(K, L) = |α∗β∗|. (*)

If α∗ > 0, β∗ > 0, then by definition we have clearly d1(K,L) ≤ α∗β∗ = d̃1(K, L). If
α∗ < 0, β∗ < 0, then by (*) we have also

(1/(−β∗))Lx ⊂ (−u)Kz ⊂ (−α∗)Lx,

which leads to d1(K, L) ≤ (−α∗)(−β∗) = d̃1(K,L) as well.
If α∗ < 0 and β∗ > 0, by Lemma 1, there exist x1, z1 ∈ Rn such that

(1/β∗)Lx1 ⊂ uKz1 ⊂ α∗L = α∗(−L) = (−α∗)L.

Thus, by Lemma 1 again, we get d1(K,L) ≤ (−α∗)β∗ = d̃1(K, L). Hence d1(K, L) =
d̃1(K,L).

Remark A question related to Theorem 2 is : if dBM (K, L) = d̃BM (K,L) holds for
all L ∈ Kn, must K be centrally symmetric?

3 Banach-Mazur Distance Between Polar Bodies

As mentioned above, it is a long-standing open problem to get supK,L∈Kn dBM (K,L).
There are many different approaches to tackling with such a problem, among which, besides
relating dBM to d̃BM , another method is to relate the B-M distance between convex bodies
to that between their polar bodies (cf. [14]). In this section, we discuss the B-M distances
between polar bodies.

For K ∈ Kn and x ∈ intK, the interior of K, we write

Kx := {z ∈ Rn | 〈z, y − x〉 ≤ 1 for all y ∈ K}

called the polar set of K based on x. In particular, if x = o ∈ intK, we use K∗ in stead of
Ko. It is obvious that if x ∈ intK ⊂ L, then Kx ⊃ Lx. It is also easy to check that for any
x ∈ intK, o ∈ intKx; and K∗∗ = K. Furthermore, K is symmetric (with center at o) iff so
is K∗.

Proposition 1 Let K ∈ Kn and o ∈ intK. Then (TK)∗ = T−>K∗ for all invertible
T ∈ GL(Rn), where T−> = (T>)−1 and T> denotes the transpose of T. In particular, for
λ 6= 0, (λK)∗ = 1

λ
K∗.
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Proof By the definition of polar body,

(TK)∗ = {x ∈ Rn | 〈x,Ty〉 ≤ 1 for all y ∈ K}
= {x ∈ Rn | 〈T>x, y〉 ≤ 1 for all y ∈ K}
= {T−>z ∈ Rn | 〈z, y〉 ≤ 1 for all y ∈ K} = T−>K∗.

The following theorem is natural.
Theorem 3 Let K,L ∈ Kn be symmetric with the origin o as their centers. Then

dBM (K,L) = dBM (K∗, L∗).
Proof Suppose dBM (K, L) = λ0. Then by the definition of dBM (·, ·), for any ε > 0,

there is T0 ∈ GL(Rn) such that K ⊆ T0L ⊆ (λ0 +ε)K. Thus, by the property of polar bodys
and Proposition 1, we have

[(λ0 + ε)K]∗ ⊆ (T0L)∗ ⊆ K∗

⇔ 1
λ0 + ε

K∗ ⊆ T−>0 L∗ ⊆ K∗

⇔ K∗ ⊆ (λ0 + ε)T−>0 L∗ ⊆ (λ0 + ε)K∗,

i.e., K∗ ⊆ T1L
∗ ⊆ (λ0 + ε)K∗, where T1 := (λ0 + ε)T−>0 ∈ GL(Rn), which implies

dBM (K∗, L∗) ≤ λ0 + ε. So dBM (K,L) ≥ dBM (K∗, L∗) by the arbitrariness of ε.
Conversely, simply by substituting K with K∗ in the above argument, we get

dBM (K∗, L∗) ≥ dBM (K,L)

(using the fact that K∗∗ = K). Thus dBM (K, L) = dBM (K∗, L∗).
For non-symmetric cases, the situation becomes more complicated and of course more

interesting. In general, given convex bodies K, L ∈ Kn, we don’t know if there exist x ∈
intK, y ∈ intL such that dBM (K, L) = dBM (Kx, Ly). In the following, we discuss in K2 a
special case only where one of K and L is a triangle and the other is a quadrangle (observe
that the polar sets of a triangle are still triangle).

Theorem 4 Let Q be a quadrangle. Then dBM (4, Q) = dBM (4, Qx0) for some x0 ∈
intQ.

To prove Theorem 4, we need the following lemmas.
Lemma 2 Let Q be a quadrangle, then there exists x̄ ∈ intQ such that Qx̄ is a

parallelogram.
Proof Let ei (i = 1, · · · , 4) be the vertices of Q (indexed anti-o’clockwise) and x̄ be

the intersect point of diagonals of Q. Then we have first

Qx̄ = {y | 〈y, ei − x̄〉 ≤ 1, i = 1, · · · , 4} =: Q1.

In fact, Qx̄ ⊆ Q1 obviously. Conversely, observing that for any z ∈ Q, z =
4∑

i=1

λiei for some
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λi ≥ 0 with
4∑

i=1

λi = 1, we have then, for any

y ∈ Q1, 〈y, z − x̄〉 = 〈y,

4∑
i=1

λiei − x̄〉 =
4∑

i=1

λi〈y, ei − x̄〉 ≤ 1,

that is, y ∈ Qx̄. Now, since (e1 − x̄) ‖ (e3 − x̄) and (e2 − x̄) ‖ (e4 − x̄), It is easy to see Q1 is
a parallelogram. The proof is completed.

Lemma 3 Let P be an n-polygon and P ′ an m-polygon, and ei, e
′
j the vertices of P

and P ′ respectively, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

δ(P, P ′) ≤ max{max
1≤i≤n

min
1≤j≤m

|ei − e′j |, max
1≤j≤m

min
1≤i≤n

|ei − e′j |},

where δ(·, ·) denotes the Hausdorff metric.
The proof is straightforward.
Lemma 4 Let xn, x ∈ intQ and xn → x, then Qxn → Qx with respect to the Hausdorff

metric.
Proof Write F ′

i := {y | 〈y, ei − xn〉 = 1}, F ′′
i := {y | 〈y, ei − x〉 = 1} and e′i =

F ′
i ∩ F ′

i+1, e
′′
i = F ′′

i ∩ F ′′
i+1, i = 1, · · · , 4 (if i = 4, then i + 1 := 1), then e′i, e

′′
i are the

vertices of Qxn and Qx respectively. It is easy to show that |e′i − e′′i | → 0 as xn → x. So,
δ(Qxn , Qx) ≤ max

1≤i≤4
|e′i − e′′i | → 0 as xn → x.

Remark With exactly the same argument, one can show that Lemma 4 holds for all
polygons, then further, by the density of polygons in K2, holds for all convex bodies in K2.

By Lemma 4 (and Remark after Lemma 4) and the continuity of the B-M distance with
respect to the Hausdorff metric, we have the following corollary.

Corollary 1 Given K, L ∈ K2, the function p(x) := dBM (K, Lx) is continuous in intL.
Proof of Theorem 4 Notice that, for any quadrangle Q, 1 < dBM (4, Q) ≤ 2 (assume

that [e1, e3] is a diagonal of Q, then one of e2, e4, say e2, is further from [e1, e3] than e4.
Thus, it is easy to see that ∆1 ⊂ Q ⊂ 2e2∆1, where ∆1 = cov{e1, e2, e3}). Hence p(intQ) =
(1, 2] by the fact (see [5]) that dBM (4, Qx̄) = 2 (where Qx̄ is as in Lemma 2) and that
dBM (4, Qx) → 1 as x → ∂Q, the boundary of Q.

Now by the continuity of dBM (4, Qx) as shown in Corollary 1, there is some x0 ∈ intQ
such that dBM (4, Q) = dBM (4, Qx0).
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凸体间几种仿射不变距离的等价性与估计

邵永冲,国 起

(苏州科技学院数学系, 江苏苏州 215009)

摘要: 本文研究了凸体间(绝对)Banach-Mazur距离各种不同的定义, 证明了它们的等价性; 给出

了Banach-Mazur距离与绝对Banach-Mazur距离相等的一个充分条件; 最后研究了凸体极体间的Banach-

Mazur距离, 并对特殊凸体对证明了其Banach-Mazur距离与其某一对极体间的Banach-Mazur距离相等. 文

中结果为Banach-Mazur距离最佳上界的估计提供了进一步研究的基础.
关键词: 仿射不变距离; 凸体; Banach-Mazur距离; 极体
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