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Abstract: In this paper, the equivalences of several different definitions of two types of
Banach-Mazur distance between convex bodies are shown respectively, the conditions under which
these two types of Banach-Mazur distance coincide are discussed, and the Banach-Mazur distances
between polar bodies of special convex bodies are studied as well. The results obtained here will
play some role in estimating the best upper bound of Banach-Mazur distances.
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1 Introduction

Denote by K" the family of all convex bodies (i.e. the convex sets with nonempty
interior) in the Euclidean space R™. Other notation are referred to [15].

Denote by Af f(R™)(GL(R™)) the family of all affine (linear) maps from R™ to R™ and
by af f(R™) the family of all affine functionals on R"™. As a rule, elements of R" are denoted
by lower-case letters, subsets by capitals and real numbers by small Greek letters. Given
C € K™, then by A\C' we mean the homothetic copy of C of ratio A with the center at the
origin o, and we write \,C := \(C' — ) + x.

In the well-known paper [9], John proved that for every centrally symmetric convex
body C' € K™ with the origin as its center, there is a unique ellipsoid E (i.e. an affine
image of the unit ball in R™) such that £ C C' C \/nE, which in some sense describes the
similarity between C' and E. Later on, it was realized that the John’s approach provided
actually a way describing the differences between convex bodies, therefore, as a consequence,
several (similarly, translation or affine invariant) distances between convex bodies, such as
the so-called Banach-Mazur distance etc, were introduced and studied (see [1-3, 5, 8, 10—
14]). It turns out that these distances defined for convex bodies play some roles in convex
geometrical analysis and other related mathematics areas (cf. [4, 6, 7]).
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In this article, we discuss some well-known (affine invariant) distances which appear
different. Precisely, following distances will be discussed.

Definition 1  For K,L € K", four (affine invariant) distances of different forms are
defined as follows (see [4-6, 9]).

i) di(K,L) :=inf{af |a>0,6>0,(1/8)L, C uK, C aL,} where L, denotes L — x
and the infimum is taken over all applicable z,x € R", u € GL(R");

ii) do(K,L) :=inf{A\>1|LCTK C A\, L};

iii) d3(K,L):=inf{\>1|TLC K C\,TL};

iv) dy(K,L):=inf{\ > 1| T;L C ToK C \,T1L},
where the infimum is taken over all applicable x € R™, T, Ty, Ty € Af f(R"™).

The following are some weaker version of the above distances

Definition 2 For K, L € K", we define (see [4-6, 9]).

i) c?l(K, L):=inf{|ap] > 0| (1/8)L, C uK, C aL,}, where the infimum is taken over
all applicable z,z € R", u € GL(R");

ii) dy(K,L):=inf{|]\| >1| L C TK C A\,L};

iii) ds(K,L):=inf{|{A\| >1|TLC K C A\,TL};

iv) dy(K,L) :=inf{|]\| > 1| T:L C ToK C \,T,L},
where the infimum is taken over all applicable z € R™, T, T, Ty € Af f(R"™).

Remark All d;’s (resp. c?’s) are called (resp. absolute) Banach-Mazur distance (B-M
distance for short) between K, L by different authors respectively, however, as far as we
know, there seems no proofs available to show that they are indeed the same.

In next section, we will show that all d/s (resp. ch) are indeed the same. Furthermore,
we provide a sufficient condition for K and L under which d;(K, L) = d;(K, L).

2 The Equivalence of Distances of Different Forms

The first result in this section concerns the equivalence of all d;’s (resp. cz-’s).

Theorem 1 For any convex bodies K, L € K", we have

i) di(K,L) = ds(K, L) = d3(K, L) = ds(K, L);

ii) di(K, L) = dy(K, L) = dy(K, L) = da(K, L).

Proof 1) First we prove d;(K,L) = d2(K,L). For any X\ and affine map T = u + z*
and z* € R" (where u € GL(R™)) with L C TK = uK + 2* C A\,L = A\(L — x) + =, we have

L—zCuK+z"—z=uK, C \(L—uz),

where z = u™!(z — z*). Thus d;(K,L) < dy(K, L) (taking 3 =1 and o = \!).
Conversely, if (1/8)L, C uK, C aL,, i.e. L, C puK, C 8L, or

LCpuK,+zCaf(lL—z)+z,

then writing T := fu — fu(z) + z and X := a3, we get L C TK C A\, L, which clearly leads
to do(K,L) < di(K,L). So di(K,L) = dy(K,L).
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Next, we prove da(K,L) = dy(K, L). It is obvious that ds(K, L) > d4y(K,L). On the
other hand, set d4(K, L) = d*, then by the definition of d4, for Ve > 0, there exist T3, T5 €
Aff(R™) and € R" such that

TILC T;K C (d* +¢), T/ L
from which we get
do(T;L, K) =inf{A\ > 1| T{L C TK C \,T;L} <d" +e.

Thus by the affine invariant of dy, we get do(K, L) = dao(TiL, K) < d* + ¢ which, by the
arbitrariness of ¢, leads to do(K, L) < d* = dy(K, L). So do( K, L) = dy(K, L).

The same argument works as well in showing ds(K, L) = d4(K, L).

ii) The proof is similar to that for i).

Remark i) Since all d;’s (resp. gz—’s) are equal, we denote them uniformly by dgs
(resp. JBM). It may happen that dgu (K, L) > JBM(K, L) as shown by the example: in R?,
suppose that K is a regular pentagon and L is a triangle, then it was shown by Lassak in
[10] that dy(K, L) = 1+ /5/2 ~ 2.118 while it was confirmed in [4] that dy(K, L) < 2 for
all K, L € K2.

ii) supg rexn dp v (K, L) = n was confirmed in [4], however it is still a great challenge
to find supg pexn dpa (K, L). A lot of efforts has been put on such an estimate, among
which it is an applicable approach to find the relation between dgjy; and dpar. Next theorem
provides a sufficient condition for K and L under which dpp (K, L) = d, pu (K, L) holds.

Theorem 2 Let K,L € K". Then dgy (K, L) = EZVBM(K,L) if one of K, L is centrally
symmetric.

In order to prove Theorem 2, we need the following lemma.

Lemma 1 Let K,L € K™ . Then there are o, 3 € R\ {0}, z,z € R" and u € GL(R")
such that (1/8)L, C uK, C aL, iff there exist x1, z; € R™ such that

(1/B)Ly, CuK,, C aL.
Proof 1If (1/8)L, C uK, C aL,, then (1/8)L, + ax C uK, + ax C oL, i.e.,
(l/ﬂ)L(l—aﬁ)z - UKz—u—l(az) C aL.

Now the proof is done by taking z; = (1 — af)z and 21 = z — u™ ! (ax).

Conversely, suppose (1/8)L,, C uK,, C aL.If af =1, then L,, C fuK,, C afL =1L
which implies obviously ; = 0. Thus, we take x = o and z = z;. If a8 # 1, it is easy to check
that (1/8)L, C uK, C aL,, where z = (1/(1 — af))z; and z = z; + v ((a/(1 — af))z1).

Remark By similar arguments to that for Lemma 1, we can show that

dgm(K, L) =inf{af |a>0,8>0,(1/8)L, CuK, C aL,},
dpur(K,L) = inf{|aB| > 0| (1/8)L, C ukK. C aL,},
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which are actually the original definitions.

Proof of Theorem 2 Clearly we need only to show the equality for d;. By definition,
it is obvious that d; (K, L) > di (K, L).

Now, without loss of generality, suppose that L is centrally symmetric with the origin as
its center. It is a routine by a compactness argument to show that there are o*, 3* € R\ {0},
x,z € R" and u € GL(R") such that

(1/8*)L, C uK, C a*L, and di(K, L) = |o*3*]. (*)
If «* > 0,8* > 0, then by definition we have clearly d;(K,L) < o*3* = (%(K, L). If
a* < 0,6* <0, then by (*) we have also

(1/(=F")) Lz C (—u)K. C (=) La,

which leads to di (K, L) < (—a*)(—3*) = dy(K, L) as well.
If * < 0 and 8* > 0, by Lemma 1, there exist z1, z; € R™ such that

(1/8*)L,, CuK,, Ca*L=a"(—L) = (—a")L.
Thus, by Lemma 1 again, we get dy(K,L) < (—a*)3* = dy(K,L). Hence dy(K,L) =
d, (K, L).
Remark A question related to Theorem 2 is : if dgy (K, L) = JBM(K, L) holds for
all L € K™, must K be centrally symmetric?

3 Banach-Mazur Distance Between Polar Bodies

As mentioned above, it is a long-standing open problem to get supy ;cxn dpan (K, L).
There are many different approaches to tackling with such a problem, among which, besides
relating dgys to EZVB M, another method is to relate the B-M distance between convex bodies
to that between their polar bodies (cf. [14]). In this section, we discuss the B-M distances
between polar bodies.

For K € K™ and z € intK, the interior of K, we write

K :={zeR"|(z,y—xz) <1lforalye K}

called the polar set of K based on x. In particular, if z = o € intK, we use K* in stead of
K°. It is obvious that if z € int K C L, then K* D L*. It is also easy to check that for any
z € intK, o € intK*; and K** = K. Furthermore, K is symmetric (with center at o) iff so
is K*.

Proposition 1 Let K € K" and o € intK. Then (TK)* = T~ K* for all invertible
T € GL(R"), where T-" = (TT)~! and T" denotes the transpose of T. In particular, for
A#0, (AK)* = K~
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Proof By the definition of polar body,

(TK)" ={zeR" | (z,Ty) <1lforallye K}
= {zeR"|(TTz,y) <1lforalyec K}
= (T "2eR"|(z,y) <lforallyc K} =T "K*.

The following theorem is natural.

Theorem 3 Let K,L € K™ be symmetric with the origin o as their centers. Then
dpy (K, L) = dgp (K*, L*).

Proof Suppose dpy (K, L) = Ag. Then by the definition of dg(-,-), for any € > 0,
there is Ty € GL(R™) such that K C ToL C (A\g+¢)K. Thus, by the property of polar bodys

and Proposition 1, we have

(Ao +e)K]" C (ToL)* C K~

& K*CT, 'L* CK*

)\0 +e
& K*C(M\+e)Ty 'L*C (N +e)K™,

ie, K* C T\L* C (Ao + ¢)K*, where Ty := (Ao + €)T; " € GL(R"), which implies
dpym(K*,L*) < Ao +e¢. Sodpy (K, L) > dppy(K*, L*) by the arbitrariness of €.
Conversely, simply by substituting K with K* in the above argument, we get

dpm (K™, L") > dpy (K, L)

(using the fact that K** = K). Thus dgp (K, L) = dpp (K™, L*).

For non-symmetric cases, the situation becomes more complicated and of course more
interesting. In general, given convex bodies K,L € K", we don’t know if there exist = €
intK,y € intL such that dpy (K, L) = dpy(K®, LY). In the following, we discuss in K? a
special case only where one of K and L is a triangle and the other is a quadrangle (observe
that the polar sets of a triangle are still triangle).

Theorem 4 Let Q be a quadrangle. Then dgy (A, Q) = dpy (D, Q*°) for some ¢ €
int@.

To prove Theorem 4, we need the following lemmas.

Lemma 2 Let Q be a quadrangle, then there exists £ € intQ such that Q% is a
parallelogram.

Proof Lete; (i =1,---,4) be the vertices of @ (indexed anti-o’clockwise) and Z be

the intersect point of diagonals of ). Then we have first

Qf:{y|<y,61—i’>S1,Z:1, )4}::Q1-

4
In fact, @ C @, obviously. Conversely, observing that for any z € Q, z = >_ \;e; for some
i=1
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4
Ai > 0 with Y~ \; =1, we have then, for any
i=1

4 4
yeQ,(y,z—I)= <y,Z)\iei —I) = Z)‘i@’ei —-z) <1,
i=1 i=1
that is, y € Q. Now, since (e; —Z) || (e3 — Z) and (e2 — Z) || (e4 — Z), It is easy to see @ is
a parallelogram. The proof is completed.

Lemma 3 Let P be an n-polygon and P’ an m-polygon, and e;, ¢; the vertices of P

and P’ respectively, 1 <i<n,1 < j <m. Then
§(P, P < max{lrg%ﬁlgignm le; — €5, max. 1I§nzlgnn le; — €5},
where (-, -) denotes the Hausdorff metric.

The proof is straightforward.

Lemma 4 Let x,,,x € int@ and z,, — x, then Q" — Q% with respect to the Hausdorff
metric.

Proof Write F! := {y | (y,e; —x,) = 1}, F/' == {y | (y,e; —z) = 1} and €], =
F/NF/ el =F'NF,,i=1,---,4(ifi =4, then i+ 1 := 1), then e}, e/ are the
vertices of Q" and Q" respectively. It is easy to show that | —e/| — 0 as =, — z. So,
I(Q™, Q") < max le} —e/| — 0 as z, — x.

Remark With exactly the same argument, one can show that Lemma 4 holds for all
polygons, then further, by the density of polygons in K2, holds for all convex bodies in k2.

By Lemma 4 (and Remark after Lemma 4) and the continuity of the B-M distance with
respect to the Hausdorff metric, we have the following corollary.

Corollary 1 Given K, L € K2, the function p(z) := dpgy (K, L”) is continuous in intL.

Proof of Theorem 4 Notice that, for any quadrangle @, 1 < dgy (A, Q) < 2 (assume
that [e;,es] is a diagonal of @, then one of es,e4, say eq, is further from [e;,e3] than ey.
Thus, it is easy to see that Ay C Q C 2.,A, where A; = cov{ey, ez, e3}). Hence p(intQ) =
(1,2] by the fact (see [5]) that dpa (A, Q%) = 2 (where Q7 is as in Lemma 2) and that
dpy (A, Q%) — 1 as x — 0Q), the boundary of Q.

Now by the continuity of dgy (A, Q%) as shown in Corollary 1, there is some zy € int@
such that dpy (A, Q) = dpam (D, Q™).
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