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Abstract: In this paper we discuss the Rosenthal type inequality of quasi-martingale. By
using good A inequality, we prove that Rosenthal type inequality of quasi-martingale and geometric
properties of Banach space are equivalent. As a consequence, we prove the law of large numbers.
These conclusions generalize some known results.
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1 Introduction

The inequalities of partial sums have been studied by a lot of authors. The moments
of random variables play an important role in limit theory of random variable sequence. By
this the Marcinkiewicz-Zygmund-Burkholder type inequality, Kolmogorov type inequality,
Rosenthal type inequality and Bernstein inequality are discussed.

In 1970, Rosenthal [1] proved that for real valued independent random variables, the

following inequality is true
B> X" < Bomax{) _EIXil", (O EIXk)7?}, (1.1)
k=1 k=1 k=1

where {Xj;1 < k < n} are independent random variables with zero mean, r > 2 and B, is
a positive constant only depending on r.

Martingale difference can be regarded as the generalization of independent random
variables and some classical inequalities can also be generalized such as Rosenthal type
inequality [2].

a{E [(Z E(X3|Ei_1))”1 + Z EIXi|"}

< Elfal” < o E [(Z E(X?IEH))”Q} +3 " BIX[}, (1.2)

i=1 i=1
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where (f;, 3;,1 <14 < n) is a real valued martingale, X; = f1, X; = fi — fi_1,1=2,3,- - ,n
2 <r < o0, ¢; and c; are all positive constants only depending on 7.

In 1981, De Acosta [3] proved the following inequality for Banach valued independent
random variables which can be regarded as the generalization of Rosenthal type inequality:

‘Ifnll i

< e ZEHX 12772 + ZEHX I}, (13)

where 7 > 2, (X;;1 < i < n) are all independent random variables in Banach space and

=1
2 Preliminaries and Notations

Let (2, X, P) be a probability space, (X, | - ||) be a Banach space and (3,,n > —1) be
a increasing o-sub-algebra sequence in 3, where ¥ = U,,>_1%,, ¥_; = {Q,0}.
Definition 1 [4] Let 1 < o < 00. f = (fn, Zn,n > 0) is called a a quasi-martingale if

S TIEfusa[B0) = falla < oo

When a =1, (f,,2,,n > 0) is called a quasi- martingale.
Definition 2 [4] Banach space X is called p smoothable, if there exists a constant
¢ > 0 such that px(7) < er?,7 > 0, where

r+y|+ir—y
up{II [+ [

5 L:lzl = 1, [|yll = 7}

px(T) =s

Definition 3 [4] Banach space X is called ¢ convexiable, if there exists a constant ¢ > 0
such that dx(g) > ce?, 0<e <2, where

[z + yll
2

dx(e) = inf{1 - el =yl =1, le = yll = }-

In this paper the following notations will be used.
Let 0 < p < oo and f = (f,,n > 0) be an adapted process,

fio= sw il S =suplfall
n>k>0 n>0
dfn, = fo—Jfo1, n2>20, foq=0;
SO = QNI P = O lafil) s

1=0
n

P (f) = (Zmndfinp}zi,l))”p, o®(f) = (Y B(ldfi|P|S-0)) s

i=0

R.(f) = Z||E<dfi|zi_1>||, R(f) = sup R, (f).

n>0
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In this paper, the constants ¢ may denote different constants in different contexts.

3 Main Results

Lemma 1[2] Let » > 1,3 > 1,4 > 0, £ and 7 be two non-negative random variables. If

for all § > 0 small enough, there exists constant 5 satisfying (lsirr(l) gs = 0, such that
P(€> BAn < 0) < &4P(€ > ), YA >0,

then there exists a constant ¢ such that E({") < cE(n").

Lemma 2 [5] Let X be a Banach space. Then the following statements are equivalent:

(1) X is p smoothable;

(2) There exists a constant ¢ > 0 such that for every X-valued quasi-martingale f =
(Fus Zsn 2 0), [1F*Mlp < c(le® (F)llp + 1RA)p)-

Lemma 3 [5] Let X be a Banach space. Then the following statements are equivalent:

(1) X is q convexifiable;

(2) There exists a constant ¢ > 0 such that for every X-valued quasi-martingale f =
(frs B 2 0), [SO(f)lg < c(If*llg < +IRE)q)-

Remark If | - ||, is replaced by any | - ||, 7 > ¢ in Lemma 3, the conclusion is also
true.

Theorem 1 Let X be a Banach space, 1 < p < 2, p <r < co. Then the following
statements are equivalent:

(1) X is p smoothable;

(2) There exists a constant ¢ > 0 only depending on p and r such that for every X-valued
quasi-martingale f = (f,, X,,n > 0),

107 < (o OI7 + IR (I + D ECdfll)), Vo= 1.

Proof (1) = (2) Suppose X is p smoothable. Let & = max;<,, || fi|,
1 = max{ol®) (1), Ra(f). max [ df}

and e = 6?/(B— 6 — 1)P, where > 1,0< 0 < — 1.
Let

A= {wh < max | fi(@)| B, max [ldfi(w)]| < 00, max{o? ()(w), Ri(f)(w)} < 0N}

and T; = > xa,dfe,1 < i < n. Then T = (T;,%;, 1 < i < n) is an X-valued quasi-
k=1
martingale. Now we let

B = inf{k; A < max [ ()], 1 < k < n},ng = sup{k; max [If:(w)] < AA).



98 Journal of Mathematics Vol. 35

Then 1 < kg <ng <n and ||feo—1]l > A, || faoll > BA.
On the set {6 > B\, 7 < 0N}, we have Ty = - dfs = frg — dfig + fr,—1 and

i=ko
I Toll = ([ froll = Ndfwoll = Il fro—1ll = (B =0 = )A. (3.1)
Moreover
P> AN <N < P(|Toll 2 (B=0—-1DA) < (B-0—1)"PAPE(T)". (3.2)

Since X is p smoothable, by Lemma 2 we have
E(T*)? < c(le®(D)]l, + IRT),)" < e(llo® (D)} + IRT)).
By calculation we have

le®(@)E = ED_ xa E(ldfe]?|Sk1)]
k=1

E[Z X{wa<maxi<i 1 [ £i(@)]), Uﬁlp)(f)(w)ﬁéx\}Ewdfk 71%5-1)]

<
k=1
< C(Sp)\pP(r_n<aX Ilfill > A) (3.3)
and
IRDIE = D IEETIS D= 1D xadl Bz
k=1 k=1
< B Xelremasicr s 15l B @<on [ E(dflZe) [P
k=1
< cép)\pP(m<ax WFill > A). (3.4)

By (3.2), (3.3) and (3.4) we have P(£ > A\, n < dA) < ¢(f—0 — 1)”’61’P(m<ax\|fi|| > ),

where %inés = %in})(ﬁ — 0 —1)7P¢? = 0. By Lemma 1, we have Vn > 1,

12l = EE7) < cEM) <C(E<Unp)(f)T)+E((r?§af”dfi“)r>+E(Rn(f)r))

IN

c(E@P(f)7) + Z E(||df:|") + E(Ra(f)"))

= c(leP Dy + IR (I} + Z E(|dfill")).- (3.5)
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(2) = (1) Suppose (2) is true. Let » = p. For all n > 1 we have

15200 < elo® (DI + IR (DI + D ECUafN)

< C(Ilaff)(f)||p+IIRn(f)||p+E(Z ldfil|”)/)
= C(HUT?’)(f)IIerIIRn(f)Hp+E(ZE(IIdfiII”IEi—1)1/p)
< c(loP(Hllp + 1R (Hlp)- (3.6)

By Lemma 2, X is p-smoothable.

Theorem 2 Let X be a Banach space, 2 < ¢ < 00,q < r < oo. Then the following
statements are equivalent:

(1) X is g convexifiable;

(2) There exists a constant ¢ > 0 only depending on p and r such that for every X-valued
quasi-martingale f = (f,, X,,n > 0),

oSNl + D Bl < el fally + IR ()7}, Vo= 1.
=1

Proof (1) = (2) Suppose X is g-convexifiable, by Remark there exists a constant
¢ > 0 such that for every X-valued quasi-martingale f = (f,,3,,n > 0)

IS )l < ellf [l + IR, 7> a. (3.7)

By the fact > E(|ldf:|") = E(3_ Idfi]|") < B((3 Idfi|9)7e = ISS(HIIF), > q we
i=1 i=1 i=1
have

lo (N7 + Y Edfill") cllS@ N7+ Y Edfll")

i=1 i=1

eSS (NI < cE(max|[fi]]") + [Ba (Il (3.8)

IN

IN

(2) = (1) Suppose (2) is true. Let » = ¢q. By the fact

n

1SSl = B lldfill") = llos (f)IIg,

i=0
we have

ISOANL = 172(0 (NG + D Eldf)) < eIl £212 + [1Ra(£)112}-
Thus

1SONlg < e(llF* 1l < +HIR))-
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By Lemma 3 X is g-convexifiable.
Corollary 1 Let X be a Banach space, 2 < r < oo, Then the following statements are

equivalent:
(1) X is a Hilbert space;
(2) There exists a constant ¢ such that

o@D+ S B(lnI)

i=1

< N7 A MR HNE < (o NI+ Y Eldfl™) + 1Ra(HI7), Vr > 1.

i=1

Theorem 3 Let X be a p-smoothable Banach space, 1 < p < 2,p<r < oo. If f =

(fn,2n,n > 0) is an X-valued quasi-martingale satisfying W)l/r < 00 a.s.,
n=1

then = f, = 1 Zldfi —0 as.
1=
Proof Since ) (W)l/r < oo a.s. for 0 < e < 1, there exists N, such that

n=1

oo E dn T Zn—
Z ( ([|df || 1))1/T <e<1l as.
TLT
n=N+1
(n)

m m
Now, for any m>n2N,letdgi:d{",then > %: 3> dgi = Gm — Gn = gm -

1=n+1 i=n-+1
By the fact dgfn) = g§") - gi@l =g, — gi_1 = dg; = L, (i > n) and
- n n = E(dfm+1|2m)
Z ||E(97(nJ)r1|Em) - 97(71)||1 = Z ||m—+1||
m=n-+1 m=n+1
< Y B |Sm) — fu)lls < 00,
m=n+1

we know g™ = (¢"") m > n) is a quasi-martingale.

By Theorem 1, we have

g5 17 < e( D Eldgt™ ") + 1o (g™ + R (g™)IF)
1=n—+1
ie.,
— df;
E gr

>

i=n+1

— Elldfi|" — B(ldfllP[Zi-1) s — Edfi]Z )|l

< of > - +E(Y - =)PE() i 2.
1=n-+1 1=n—+1 1=n—+1
(3.9)

T+ 1T+ 111
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Since Eldf 1715
lim M =0 a.s.,
n— oo ZT
then Bl 1715
sup Uldfnl"12n 1) < 00 a.s.. (3.10)
n>1 n’
Thus we have
— E(ldfi]")
I = —_—
>
1=n+1
— E(dfi]"|Zi-1)
= E _—
1=n+1
— BUldfill"[Zi-1) \1jr BALll[Zi1) 1
= F /T 1-1/r
(>« ) ( )T
1=n—+1
E(|dfoll"1Z0-1) 1i1sr s BN Zi21) 10
< B(oup BlTE )y (EUI )
nzl n i=n+1 t
— 0. (3.11)
Since 7 > p, by Jensen inequality
R 1Ty Iy,
Eldfill"1%i-1) < (E(Ildlel\ IEz—l))p/fr < (E(dez\’l IZH))W’ Vi1,
P A A
then
— E(|ldf:]IP[%i1) Bl [Zi1) 1y
H:E(‘Z — )< E(lz ()= 0 (o). (3.12)
1=n—+1 1=n—+1
Since
— EWfi|Zi0)|  E(||dfill|Zi-1)
yo MR g B
i=n—+1 i=n—+1
Bl Zi1) 10
< P L L D T
< Z( = )T =0  (n—o0).
i=n-+1
Then
N NEdf]Zi1) ||\
nr=g(y M) =0 (n— o). (3.13)

X 1
1=n+1

m

By (14), (15) and (16) we have lim E|| > %|” =0 as. and > % is convergent

i=n+1

almost everywhere. By Kronecher lemma * f,, = £ %" df; — 0 a.s..
i=1

i=1
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