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Abstract: This paper describes a three dimensional eco-epidemiological model consisting

of susceptible prey, infected prey and predator. We consider the positivity and boundedness of

the solution first and the local stability of the equilibrium is discussed. Obviously, the interior

equilibrium A∗ is always locally asymptotically stable according to the Routh-Hurwitz criterion.

At last, the geometric method of Li and Muldowney is used to investigate the global stability of

the interior equilibrium.
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1 Introduction

Since the seminal models for predator-prey interactions was put forward by Vito Voterra
and Alfred James Lotka in the mid 1920s, mutualist and competitive mechanism received
much attention from scientists [20, 21]. Mathematical ecology becomes an important factor
along with the experimental ecology in the development of quantitative theory for interaction
of predator and prey, see [24]. Similarly, after the pioneering work of Kermack-McKendrick
on SIRS, epidemiological models were studied extensively in the recent years by researchers,
see [22, 23]. Both the theoretical and experimental investigations of ecology and epidemiology
progressed independently along the years, until the late eighties and early nineties, more and
more people begin to pay their attention to merge these two important areas of research,
i.e., eco-epidemiological system, see [8, 22–24], in these three papers the authors investigated
the predator-prey system with disease in the prey species only. Obviously, we can find some
models with disease in the predator only or both the populations affected by disease [25,
26]. In these papers, the boundedness, bifurcation and stability criterion of the different
equilibrium points of the systems are analyzed. But most of them just investigate the local
stability criterion of the equilibrium points because it is not so easy to get a Lyapunov
function which is the well-known method to derive the global stability of the equilibrium.
Then, a new criterion for the global stability of equilibrium point is derived for nonlinear
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autonomous ordinary differential equations by Muldowney [1] in 1996 which received much
attention in the recent years. But most of them use the method in the epidemiological
models, see [2–4], or in the ecological model, see [5].

In the present paper, we consider an eco-epidemiological system, i.e., a predator-prey
model with disease in the prey, see [6]. Our paper is significantly different from the above
papers as we use the new method to study the global stability of the interior equilibrium
point. The organization is as follows: Section 2 introduces the model, giving the meaning
of the parameters. Section 3 deals with some basic results, e.g. positivity, boundedness of
the solutions. In Section 4, we analysis the local stability of the equilibrium points of the
model. Lastly, the geometric approach is used to solve the global stability problem of the
interior equilibrium point. For detailed calculations one can see Haque et al. [2], Bunomo
et al. [3], Kar and Mondal [4].

2 The Model

We consider the following model:

dS

dt
= rS(1− S + I

K
)− βSI,

dI

dt
= −cI + βSI − pIY, (2.1)

dY

dt
= −dY + qpIY

with initial conditions:

S(0), I(0), Y (0) ≥ 0, (2.2)

where all the parameters are strictly positive constants. The state variables S, I and Y

denote, respectively, the population of susceptible prey species, infected prey species and
predator species at time t. The susceptible prey population grows according to the logistic
with law intrinsic growth rate r, K is the environmental carrying capacity, β is the rate of
transmission from susceptible prey species to infected prey species who have a natural death
rate c, d is the death rate of predator species and the predation coefficients is p when the
coefficients of conversing prey into predator is q(0 < q ≤ 1).

Remark 1 It is to be noted that the prey species is divided into two classes, namely,
the susceptible prey (S) and the infected prey (I) , in the presence of disease. The disease
is only spread among the prey species.

Remark 2 It is assumed that only the susceptible prey have the ability to reproduce
with logistic law.

3 Positivity and Boundedness of Solution

In this section, we try to investigate the positivity and boundedness of the solutions of
system (2.1).
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Theorem 3.1 All the solutions of system (2.1) are positive.

Proof From the first equation of system (2.1) we can get dS
S

= [r(1 − S+I
K

) − βI]dt,

which implies dS
S

= φ(S, I)dt, where φ(S, I) = r(1− S+I
K

)− βI.

Now integrating above differential equation in the region [0, t], we obtain

S(t) = S(0)e
∫

φ(S,I)dt > 0,∀t ≥ 0.

Again, from the second equation of system (2.1) we have dI
I

= (−c + βS − pY )dt, which
implies dI

I
= ψ(S, I, Y )dt, where ψ(S, I, Y ) = (−c + βS − pY ).

Now integrating above differential equation in the region [0, t], we get

I(t) = I(0)e
∫

ψ(S,I,Y )dt > 0,∀t ≥ 0.

Then from the third equation of system (2.1), we can write dY
Y

= (−d+qpI)dt, which implies
dY
Y

= ϕ(I, Y )dt, where ϕ(I, Y ) = (−d + qpI).

Now integrating above differential equation in the region [0, t] we have

Y (t) = Y (0)e
∫

ϕ(I,Y )dt > 0,∀t ≥ 0.

Hence all the solutions of system (2.1) are positive. In the next theorem, we attempt to find
some sufficient condition for which the solution of system (2.1) is bounded.

Theorem 3.2 All the solutions of system (2.1) are bounded above.

Proof From the third equation of system (2.1) we may conclude that I ≥ d
qp

,∀t. Again,
from the first equation of the system (2.1), we write S+I ≤ K, ∀t or S ≤ K−I ≤ K− d

qp
,∀t.

Using above equation in the second equation we can get Y ≤ βK − βd
qp
− c. At last, we can

obtain I ≤ K − S ≤ K. Thus, all the solutions of system (2.1) are bounded above.

4 Stability Analysis of the Model

In this section, we discuss the equilibrium points of system (2.1), consider the following
equations

S(r(1− S + I

K
)− βI) = 0,

I(−c + βS − pY ) = 0, (4.1)

Y (−d + p) = 0,

obviously, it has three possible nonnegative equilibrium points:

(i) the boundary equilibria A0(K, 0, 0);

(ii) the predator free equilibria A1(S1, I1, 0) where S1 = c
β
, I1 = kβr−cr

kβ2+rβ
;

(iii) the interior equilibrium A∗(S, I, Y ) are the positive root of system Ṡ = İ = Ẏ = 0,
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where

S = K − d

qp
− kβd

qpr
,

I =
d

qp
,

Y =
βK

p
− βd

qp2
− kβ2d

qp2r
− c

p
.

At first, we analyze the stability criterion of system (2.1) at the boundary equilibria
then we examine the local and global stability of the system followed by bifurcation analysis
at its interior equilibrium A∗(S, I, Y ).

Theorem 4.1 The boundary equilibrium A0(K, 0, 0), is locally asymptotically when
βK < c.

Proof The characteristic equation of system (2.1) at A0(K, 0, 0) can be written as
(λ + r)(λ + d)(λ + c− βK) = 0. Therefore the eigenvalues to system (2.1) at A0(K, 0, 0) are
given by

λ = −r,−d,−(βK − c).

Thus, if c < βK, then the boundary equilibrium A0(K, 0, 0) is stable otherwise it is unstable.
Theorem 4.2 The sufficient conditions for system (2.1) to be locally stable, at its

predator free equilibrium A1(S1, I1, 0), are qpI1 < d.
Proof The characteristic equation of system (2.1) at A1(S1, I1, 0) can be written as

(λ− qpI1 + d)(λ2 + rS1
K

λ + rβ
K

I1 + β2S1I1) = 0. Clearly, if qpI1 < d, then all the eigenvalues
to system (2.1), at its predator free equilibrium is locally asymptotically stable. Hence the
theorem.

Theorem 4.3 The interior equilibrium A∗ is always locally asymptotically stable.
Proof Clearly, the Jacobian matrix of system (2.1) at A∗ is

J(A∗) =



− rS

K
− rS

K
− βS 0

βI 0 −pI

0 qpY 0


 . (4.2)

The characteristic equation of the system (2.1) around its interior equilibrium point can
be written as

λ3 + Aλ2 + Bλ + C = 0, (4.3)

where

A =
rS

K
, B =

rβ

K
SI + β2SI + qp2IY, C =

rqp2

K
SIY.

Then

AB − C =
r2βS2I

K2
+

rβ2S2I

K
. (4.4)
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Obviously, A > 0, AB − C > 0. The theorem is trivially proved according to the Routh-
Hurwitz criterion.

5 Global Stability

Here, we illustrate the general method described by Li and Muldowney [1] to show an
n-dimensional autonomous dynamical system f : D −→ Rn, D ⊂ Rn, an open and simply
connected set and f ∈ C1(D), where the dynamical system is given by

dx

dt
= f(x) (5.1)

is global stable under certain parametric conditions. For detailed calculations one can see
Haque et al. [2], Bunomo et al. [3], Kar and Mondal [4].

Now, we assume the following condition.
(A1) The autonomous dynamical system (2.1) has a unique interior equilibrium point

x∗ in D.
(A2) The domain D is simply connected.
(A3) There is a compact absorbing set Ω ⊂ D.
Definition 5.1 (Li and Muldowney) The unique equilibrium point x∗ of the dynamical

system (2.1) is global asymptotically stable in the domain D if it is locally asymptotically
stable and all the trajectories in D converge to its interior equilibrium point x∗.

Let J = (Jij)n be the variational matrix of system (2.1) and J |2| be the second additive
compound matrix with order nC2 ×n C2.

In particular, for n=3 we can write

J |2| =
∂f |2|

∂x
=




V11 + V22 V23 −V13

V32 V11 + V33 V12

−V31 V21 V22 + V33


 . (5.2)

Let M(x) in C1(D), Li and Muldowney [1], be the nC2 ×n C2 matrix valued function.
Moreover, we also consider B a matrix such that B = MfM−1 + MJ |2|M−1 where the

matrix Mf is represented by

(Mij(x))f = (
∂Mij

∂x
)T · f(x) = ∇Mij · f(x).

Again, we consider the Lozinskii measure Γ of B ( Martin [15]) with respect to a vector norm
| · | in RN , N =n C2, then we have

Γ(B) = lim
h→0+

|l + hb| − 1
h

.

If (A1)–(A3) hold then Li and Muldowney [1] show that

lim sup
t→∞

sup
x0∈D

1
t

∫ t

0

Γ(B(x(s, x0)))ds < 0. (5.3)
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Condition (5) ensures that there are no orbits (i.e., homoclinic orbits, heteroclinic cycles and
periodic orbits) which give rise to a simple closed rectifiable curve in D, invariant for system
(2.1). It is also a robust Bendixson criterion.

Now, we use the above discussion to show that our system (2.1) is globally stable around
its interior equilibrium.

The autonomous system (2.1) can be written in the following form

dX

dt
= f(X), (5.4)

where f(X) =




rS(1− S+I
K

)− βSI

−cI + βSI − pIY

−dY + qpIY


 and X =




S

I

Y


 . Then the variational matrix

V (x, y, z) of system (2.1) can be written as

V =
∂f

∂X
=




r − 2rS+rI
K

− βI − rS
K
− βS 0

βI −c + βS − pY −pI

0 qpY −d + qpI


 . (5.5)

If V |2| be second additive compound matrix of V then V |2|, Bunomo et al. [3], can be
expressed as

V |2| =




r − 2rS+rI
K

− βI − c + βS − pY −pI 0
qpY r − 2rS+rI

K
− βI − d + qpI − rS

K
− βS

0 βI −c + βS − pY − d + qpI


 .

(5.6)

We consider M(x) in C1(D) in such a way that M = diag{ S
Y

, S
Y

, S
Y
}. Then we have

M−1 = diag{Y

S
,
Y

S
,
Y

S
}

and

Mf =
dM

dX
= diag{ Ṡ

Y
− S

Y 2
Ẏ ,

Ṡ

Y
− S

Y 2
Ẏ ,

Ṡ

Y
− S

Y 2
Ẏ }.

Thus it is easy to show that

MfM−1 = diag{ Ṡ

S
− Ẏ

Y
,
Ṡ

S
− Ẏ

Y
,
Ṡ

S
− Ẏ

Y
}

and MV |2|M−1 = V |2|. We have

B = MfM−1 + MV |2|M−1 =

(
B11 B12

B21 B22

)
,

where B11 = Ṡ
S
− Ẏ

Y
+r− 2rS+rI

K
−βI−c+βS−pY, B12 =

(
−pI 0

)
, B21 =

(
qpY 0

)T

,

and

B22 =

(
Ṡ
S
− Ẏ

Y
+ r − 2rS+rI

K
− βI − d + qpI − rS

K
− βS

βI Ṡ
S
− Ẏ

Y
− c + βS − pY − d + qpI

)
.
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Now let us define the following vector norm in <3 as

|(u, v, w)| = max{|u|, |v|+ |w|},

where (u, v, w) is the vector in <3 and it is denoted by Γ, the Lozinskii measure with respect
to this norm. Therefore, Γ(B) ≤ sup{g1, g2}, where gi = Γ1(Bii) + |Bij | for i = 1, 2 and
i 6= j, where |B12|, |B21| are matrix norms with respect to the L1 vector norm and Γ1 is the
Lozinskii measure with respect to that norm.

Consequently, we can obtain the following terms

Γ1(B11) =
Ṡ

S
− Ẏ

Y
+ r − 2rS + rI

K
− βI − c + βS − pY.

|B12| =pI,

|B21| =qpY,

Γ1(B22) =
Ṡ

S
− Ẏ

Y
+ max{r − 2rS + rI

K
− d + qpI,

− c + 2βS − pY − d + qpI +
rS

K
}.

From system (2.1),

Ẏ

Y
= −d + qpI,

g1 = Γ1(B11) + |B12| = Ṡ

S
+ d− c− qpI + r − 2rS + rI

K
− βI + βS − pY,

g2 = Γ1(B22) + |B21| = Ṡ

S
+ d− qpI + qpY

+max{r − 2rS + rI

K
− d + qpI,−c + 2βS − pY − d + qpI +

rS

K
}

=
Ṡ

S
+ d− c + max{r − 2rS + rI

K
− d + qpY + c, 2βS − pY − d + qpY +

rS

K
}.

Hence

Γ(B) ≤ Ṡ

S
+ d− c + max{−qpI + r − 2rS + rI

K
− βI + βS − pY, r − 2rS + rI

K
− d + qpY + c,

2βS − pY − d + qpY +
rS

K
},

i.e.,

Γ(B) ≤ Ṡ

S
+ d− c−min{qpI − r +

2rS + rI

K
+ βI − βS + pY,−r +

2rS + rI

K
+ d− qpY − c,

−2βS + pY + d− qpY − rS

K
}.

It is assumed that there exists a positive µ1 ∈ < and t1 > 0, such that

µ1 = { inf
t≥t1

S(t), inf
t≥t1

I(t), inf
t≥t1

Y (t)}.
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Also, we take

µ2 = min{qpµ1 − r +
2rµ1 + rµ1

K
+ βµ1 − βµ1 + pµ1,−r +

2rµ1 + rµ1

K
+ d− qpµ1 − c,

−2βµ1 + pµ1 + d− qpµ1 − rµ1

K
},

µ2 = min{qpµ1 − r +
3rµ1

K
+ pµ1,−r +

2rµ1 + rµ1

K
+ d− qpµ1 − c,

−2βµ1 + pµ1 + d− qpµ1 − rµ1

K
},

Γ(B) ≤ Ṡ

S
+ d− c− µ2,

Γ(B) ≤ Ṡ

S
− (c + µ2 − d),

1
t

∫ t

0

Γ(B)ds ≤ 1
t

S(t)
S(0)

− (c + µ2 − d),

lim sup
t→∞

sup
x∈D

1
t

∫ t

0

Γ(B(x(s, x)))ds < −(c + µ2 − d) < 0.

In consequence to the above analysis we have reached to state the following theorem.
Theorem 5.1 System (2.1)is globally asymptotically stable around its interior equilib-

rium if c + µ2 > d, where

µ2 = min{qpµ1−r+
3rµ1

K
+pµ1,−r+

2rµ1 + rµ1

K
+d−qpµ1−c,−2βµ1+pµ1+d−qpµ1− rµ1

K
}

with µ1 ∈ <+ such that for t1 > 0 we have µ1 = { inf
t≥t1

S(t), inf
t≥t1

I(t), inf
t≥t1

Y (t)}.

6 Conclusions

In this paper, we deal with a three dimensional eco-epidemiological model consisting
of susceptible prey, infected prey and predator. It is assumed that the disease only spreads
among the prey species and just the susceptible prey has the ability to reproduce with
logistic law. The dynamics of the system such as, boundedness of the solutions, existence of
nonnegative equilibria and the local stability of the equilibrium points are analyzed. Then,
we use the geometric method of Li and Muldowney to investigate the global stability of
system (2.1). We expect that this approach can be applied to solve global stability problems
in many other models.

Lastly, two future directions of work are mentioned to extend the present paper:
i) One can consider the case in which incidence is nonlinear.
ii) One can consider the case in which the predation coefficient is nonlinear.
ii) One can considers the delay effect incurred in contacts between susceptible and

infected populations.
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食饵带疾病的捕食模型的全局稳定性

刘细宪 ,李必文 ,陈伯山

(1.湖北师范学院数学与统计学院,湖北黄石 435002)

摘要: 本文研究了一类三维生态传染病模型的正解性和边界性, 并分析了系统平衡点的局部稳定性.

利用一种新的几何方法, 获得了内平衡点的全稳定性, 推广了Li和Muldowney[1]提出的这种方法的应用, 这

种方法避免了寻找Lyapunov的困难.
关键词: 捕食者与被捕食者; 疾病; Hopf分支; 全局稳定
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