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Abstract: This paper studies the stability of fixed points for random set-valued mappings.

Through set-valued analyses, the existence of essentially stable sets of random fixed points is es-

tablished. In the sense of Baire category, each random fixed point for most of random set-valued

mappings is essentially stable. These generalize some results in the corresponding references.
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1 Introduction

Many works in relation to random fixed points have appeared for the existence and
uniqueness for random single-valued and set-valued mappings, see [1–5] and references
therein. These have been also applied to random generalized games, random quasi-variational
inequalities, random equations, etc (see [6–8]).

It is known that the stability of fixed point theory is an important aspect in nonlinear
analysis. Originally, Fort introduced a conception of essential fixed point in the sense of
resisting the perturbation of functions in 1950 (see [9]). Nowadays, we can find that essential
stabilities have been widely used in many fields [10–16]. In the paper [17] by Beg, essential
fixed points in relation to random single-valued mappings were studied, and a sufficient and
necessary condition for the continuity of fixed point mappings was obtained.

Inspired by these methods for the study of fixed points, this paper studies the essential
stability of random fixed points in depth. Essentially stable sets are introduced to random
fixed points with set-valued mappings, and the existence of essentially stable sets of fixed
points is proved. In the sense of Baire category, we show that each random fixed point for
most of random set-valued mappings is essential.

2 Preliminaries
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Let E, Y be two topological spaces. We need recall some notions with set-valued map-
pings. Let F : E → 2Y be a set-valued mapping, where 2Y denotes the collection of all
subsets of Y .

(i) F is said to be upper semi-continuous (lower semi-continous) at x ∈ E, if for each
open set U with U ⊃ F (x) (U ∩ F (x) 6= ∅), there exists an open neighborhood O(x) of x

such that U ⊃ F (x′) (U ∩ F (x′) 6= ∅) for any x′ ∈ O(x);
(ii) F is continuous at x ∈ E if it is both upper semi-continuous and lower semi-

continuous at x;
(iii) F is said to an usco mapping if F is upper semi-continuous with compact values.
Let (X, d) be a compact convex subset of a separable metric linear space and (Ω,Σ) be

a Σ-measureable space, where Σ is a σ algebra on the set Ω. T : Ω×X → 2X is a random
set-valued mapping with nonempty closed convex values such that

(i) for each w ∈ Ω, T (w, ·) : X → 2X is continuous;
(ii) for each x ∈ X, T (·, x) : Ω → 2X is measurable.
Let CB(X) be the collection of such random set-valued mapping T . Employ the Haus-

dorff metric, for any two T, S ∈ CB(X), we can define the metric between them by

ρ(T, S) = sup
(w,x)∈Ω×X

H(T (w, x), S(w, x)).

Then (CB(X), ρ) is a metric space. Let M be the set of all Σ-measurable functions from Ω
to X. Define the metric between any two ξ, η ∈ M as m(ξ, η) = supw∈Ω d(ξ(w), η(w)), then
(M, m) is a compact metric space.

Definition 2.1 For each T ∈ CB(X), a mapping ξ : Ω → X is called a random fixed
point of T if ξ ∈ M and ξ(ω) ∈ (T (ω, ξ(ω)) for all ω ∈ Ω.

To study the stability of random fixed points for any T ∈ CB(X), denote by F (T ) the
set of random fixed points of T , then we define a set-valued mapping F as F : CB(X) → 2M .
By Theorem 3.2 in [18], F (T ) 6= ∅, ∀T ∈ CB(X).

Definition 2.2 For each T ∈ CB(X), a subset e(F ) of F (T ) is said to be an essential
stable set of T if

(i) e(F ) is closed;
(ii) for each ε > 0, there exists a δ > 0 such that for each S ∈ CB(X) with ρ(T, S) < δ

it holds that F (S) ∩B(e(F ), ε) 6= ∅, where B(e(F ), ε) is the ε neighborhood of e(F ).
If an essential stable set e(F ) = {x∗}, then x∗ is said to be an essential random fixed

point of T .
Lemma 2.1 Let {Tn} be a sequence of measurable mappings Tn : Ω → 2X with

nonempty closed values, and T : Ω → 2X a mapping such that for each w ∈ Ω, H(Tn(w), T (w))
→ 0 as n →∞. Then T is measurable.

Lemma 2.2 (see [19]) Let Y be a metric space, E be a Baire space, and F : E → 2Y

be an usco mapping. Then, there is a dense residual subset Q of E such that F is lower
semi-continuous at each x ∈ Q.
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3 Essential Stability of Random Fixed Points

Theorem 3.1 The set-valued mapping F is usco.
Proof For each T ∈ CB(X), F (T ) is compact. Let ξn ∈ F (T ) and ξn → ξ ∈ M . Then

ξn(w) ∈ T (w, ξn(w)),∀w ∈ Ω. Sine ξn → ξ, we have m(ξn, ξ) → 0, hence, d(ξn(w), ξ(w)) →
0,∀w ∈ Ω. Noting that T (w, ·) is continuous for each w ∈ Ω, the right side hand of the
following inequality

d(ξ(w), T (w, ξ(w))) ≤ d(ξ(w), ξn(w)) + d(ξn(w), T (w, ξn(w)) + H(T (w, ξn(w)), T (w, ξ(w)))

gets close to zero as n tends to infinity, where d(x,A) = infy∈A d(x, y). Then ξ ∈ F (T )
because T (w, ξ(w)) is closed, hence F (T ) is closed and compact also.

For each T ∈ CB(X), F is upper semi-continuous at T . By way of contradiction,
suppose that F is not upper semi-continuous at T . Then there exists a ε > 0 and Tn ∈
CB(X) with Tn → T , such that F (Tn) 6⊂ B(F (T ), ε), n = 1, 2, · · · . That is, there is a
ξn ∈ F (Tn) but ξn 6∈ B(F (T ), ε), n = 1, 2, · · · . Since the sequence {ξn} ⊂ M , by the
compactness of M , there exists a convergent sequence as it’s subsequence. Without loss of
generality, we may assume that ξn → ξ∗ ∈ M . Clearly, we have ξ∗ 6∈ B(F (T ), ε) and for
each w ∈ Ω, it holds that

d(ξ∗(w), T (w, ξ∗(w))) ≤ d(ξ∗(w), ξn(w)) + d(ξn(w), Tn(w, ξn(w))

+H(Tn(w, ξn(w)), T (w, ξn(w))) + H(T (w, ξn(w)), T (w, ξ∗(w))).

Since ξn ∈ F (Tn), Tn → T , ξn → ξ∗ and the continuity of T (w, ·), for arbitrary α > 0, we
have d(ξ∗(w), T (w, ξ∗(w)) ≤ α as n gets close to infinity. Noting that T (w, ξ∗(w)) is closed,
we obtain that ξ∗(w) ∈ T (w, ξ∗(w)), ∀w ∈ Ω, that is, ξ∗ ∈ F (T ), a contradiction with
ξ∗ 6∈ B(F (T ), ε).

Generally, the mapping F is not lower semi-continuous on CB(X) though it is upper
semi-continuous by Theorem 3.1. See the following example.

Example 3.1 Let Ω = X = [0, 1], T : Ω × X → 2X such that T (w, x) = [x, 1] for
each (w, x) ∈ Ω × X. Let y : Ω → X be a measurable function such that y(w) = w for
each w ∈ Ω. Since y(w) = w ∈ T (w, y(w)) = [w, 1], we have y is a random fixed point of
T . For each n = 1, 2, · · · , define a set-valued mapping Tn : Ω×X → 2X such that for each
(w, x) ∈ Ω×X,

Tn(w, x) = [x +
1− x

n
, 1],∀ (w, x) ∈ Ω×X.

Clearly, we have Tn → T as n gets close to infinity. Consider a function z : Ω → X, for each
w ∈ Ω, if z(w) ∈ [0, 1), then we have

z(w) 6∈ Tn(w, z(w)) = [z(w) + 1−z(w)
n

, 1];

if z(w) = 1, then

z(w) ∈ Tn(w, z(w)) = 1, ∀n = 1, 2, · · · .
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Therefore, for each n = 1, 2, · · · , there is only one measurable function z such that z(w) ≡ 1
as the random fixed point of Tn. For each ε < 1, we have F (T ) ∩ B(y, ε) 6= ∅, however,
whatever close Tn is to T , it holds that F (Tn)∩B(y, ε) = ∅ because m(y, z) ≡ 1. That is, F

is not lower semi-continuous at T .
Thus, for each T ∈ CB(X), the set F (T ) is closed, and from Theorem 3.1 and the

concept of an essentially stable set, we can obtain the following result.
Corollary 3.1 For each T ∈ CB(X), F (T ) itself is an essentially stable set of T .
Next, we show a property of essential fixed point set and a sufficient and necessary

condition for the mapping F being continuous.
Theorem 3.2 For each T ∈ CB(X), then the set EF (T ), consisting of all essential

fixed points of T , is closed.
Proof Let ξt ∈ EF (T ) with ξt → ξ. Then for each t = 1, 2, · · · , ξt(w) ∈ T (w, ξt(w)),

∀w ∈ Ω. Since F (T ) is closed, we have that ξ is a random fixed point of T . Next we
show that ξ is essential. Suppose that ξ is not an essential fixed point of T . Then there
exists ε > 0 and Tn ∈ CB(X) with Tn → T such that F (Tn) ∩ B(ξ, ε) = ∅, ∀n = 1, 2, · · · .
Since ξt → ξ, there is a number N such that m(ξt, ξ) < ε/2 for each t > N . That is,
ξt 6∈ F (Tn),∀n = 1, 2, · · · . For each t, by the essentiality of ξt and the fact Tn → T , there
exists a number s(t) such that we can find a point ηn ∈ F (Tn) satisfying that m(ξt, ηn) < ε/2
for each n ≥ s(t). Then, as t is large enough, we have

m(ξ, ηs(t)) ≤ m(ξ, ξt) + m(ξt, ηs(t)) < ε/2 + ε/2 = ε.

This contradicts with F (Ts(t)) ∩B(ξ, ε) = ∅. The proof is completed.
Remark 3.1 Theorem 3.2 generalizes the corresponding result for single-valued case

in [17] into set-valued operators.
Theorem 3.3 For each T ∈ CB(X), each random fixed point of T is essential if and

only if the set-valued mapping F is continuous at T .
Proof Assume that F is continuous at T , then, for any ε > 0 there exists δ > 0 such

that for each S ∈ M with ρ(T, S) < δ satisfying that H(F (T ), F (S)) < ε. Therefore, for each
ξ ∈ F (T ), for any S ∈ M with ρ(T, S) < δ there is a point η ∈ F (S) such that m(ξ, η) < ε,
that is, ξ is essential.

Conversely, assume that each random fixed point of T is essential. From Theorem 3.1,
we only need to show that F is lower semi-continuous at T . By way of contradiction, if F is
not lower semi-continuous at T , then there is an open set V in M such that V ∩ F (T ) 6= ∅
and Tn ∈ CB(X) with Tn → T but F (Tn)∩V = ∅, n = 1, 2, · · · . Take a point ξ0 ∈ V ∩F (T ),
then there is an open neighborhood U(ξ0) of ξ0 with U(ξ0) ⊂ V . Since ξ0 is an essential
random fixed point of T , there exists a number N such that F (Tn) ∩ U(ξ0) 6= ∅, ∀n > N , a
contradiction with F (Tn) ∩ V = ∅, n = 1, 2, · · · .

Next, we will give some generic stability results for random fixed points.
Theorem 3.4 The metric space (CB(X), ρ) is complete.
Proof Let {Tn}∞n=1 ⊂ CB(X) be a Cauchy sequence. Then for each ε > 0, there is a

number N such that ρ(Tn, Tm) < ε for any n,m > N . That is, H(Tn(w, x), Tm(w, x)) < ε for
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each point (w, x) ∈ Ω×X. Therefore, the sequence {Tn(w, x)}∞n=1, consisting of nonempty
closed convex sets, is a Cauchy sequence. By the completeness of X, for each (w, x) ∈ Ω×X,
there exists a nonempty closed convex set in X denoted by T (w, x) such that Tn(w, x) →
T (w, x) as n tends to infinity. That is, there is a set-valued mapping T : Ω×X → 2X with
nonempty closed values. For each w ∈ Ω, since ρ is the uniform metric, from the continuity
of Tn(w, ·), we have T (w, ·) is also continuous. For each x ∈ X, noting that Tn(·, x) : Ω → 2X

is measurable with nonempty closed convex values and H(Tn(w, x), T (w, x)) → 0, by Lemma
2.1, we have T (·, x) is also measurable. Therefore, T ∈ CB(X), hence, (CB, ρ) is complete.

Theorem 3.5 Each random fixed point for most random set-valued mappings in CB(X)
is essentially stable.

Proof Noting that the complete metric space CB(X) is a Baire space, from Theorem
3.1 and Fort’s Lemma 2.2 (or Theorem 4.2 in [20]), there is a dense residual subset Q of
CB(X), such that F is continuous on Q. By Theorem 3.3, we have that each random fixed
point for any T ∈ Q is essentially stable.

References

[1] Bednarczuk E. A note on lower semicontinuity of minimal points [J]. Nonlinear Anal., 2002, 50:

285–297.

[2] Itoh S. A random fixed point theorem for a multivalued contraction mapping [J]. Pac. J. Math.,

1977, 68: 85–90.

[3] Kumam W, Kumam P. Random fixed point theorems for multivalued subsequentially limit-

contractive maps satisfying inwardness conditions [J]. J. Comput. Anal. Appl., 2012, 2: 239–251.

[4] Lin Tzu Chu. Random approximations and random fixed point theorems for non-self-maps [J]. Proc.

Amer. Math. Soc., 1988, 103: 1129–1135.

[5] Shahzad N. Random fixed points of pseudo-contractive random operators [J]. J. Math. Anal. Appl.,

2004, 296: 302–308.

[6] Yu Jian, Yuan Xianzhi. A random section theorem and its applications [J]. Math. Comput. Model,

1995, 21 :57–66.

[7] O’regan D. Random fixed point theory with applications [J]. Nonlinear Anal., 1997, 30: 3295–3299.

[8] Tan Kok Keong, Yuan Xianzhi. Random equilibria of random generalized games with applications

to non-compact random quasi-variational inequalities [J]. Topol. Method. Nonl. An., 1995, 5: 59–82.

[9] Fort M K. Essential and nonessential fixed points [J]. Amer. J. Math., 1950, 72: 315–322.

[10] Song Qiqing, Tang Guoqiang, Wang Laisheng. On essential stable sets of solutions in set optimization

problems [J]. J. Optim. Theory Appl., 2013, 156: 591–599.

[11] Khanh P Q, Quan N H. Generic stability and essential components of generalized KKM points and

applications [J]. J. Optim. Theory Appl., 2011, 148: 488–504.

[12] Govindan S, Wilson R. Essential equilibria [J]. P. Natl. Acad. Sci. USA., 2005, 102: 15706–15711.

[13] Xiang Shuwen, Zhou Yonghui. On essential sets and essential components of efficient solutions for

vector optimization problems [J]. J. Math. Anal. Appl., 2006, 315: 317–326.

[14] Yang Hui, Yu Jian. On essential components of the set of weakly Pareto-Nash equilibrium points

[J]. Appl. Math. Lett., 2002, 15: 553–560.



68 Journal of Mathematics Vol. 35

[15] Yu Jian. Essential weak efficient solution in multiobjective optimization problems [J]. J. Math.

Anal. Appl., 1992, 166: 230–235.

[16] Carbonell-Nicolau O. Essential equilibria in normal-form games [J]. J. Econ. Theory, 2010, 145:

421–431.

[17] Beg I. Essential random fixed point set of random operators [J]. Aust. J. Math. Anal. Appl., 2005,

2: 1–5.

[18] Benavides T D, Acedo G L, Xu Hongkun. Random fixed points of set-valued operators [J]. Proc.

Amer. Math. Soc., 1996, 124: 831–838.

[19] Fort M K. Points of continuity of semicontinuous function [J]. Publ. Math. Debrecen, 1951, 2:

100–102.

[20] Xiang Shuwen, Jia Wensheng, He Jihao, Xia Shunyou, Chen Zhiyou. Some results concerning the

generic continuity of set-valued mappings [J]. Nonlinear Anal., 2012, 75: 3591–3597.

关于集值映射的随机不动点的稳定性

宋奇庆

(桂林理工大学理学院,广西桂林 541004)

摘要: 本文研究随机集值映射不动点的稳定性. 通过集值分析, 得到了随机集值不动点的本质稳定集

的存在性. 在Baire分类意义下, 大多数的随机集值映射的随机不动点都是本质稳定的. 这些推广了现有文献

中的相应结果.
关键词: 随机不动点; 稳定性; 本质
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