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Abstract: In this paper, the Lattices generated by partial maps for the finite set [n] =

{1, 2, · · · , n} is investigated. By using the rank function and the Möbius function, we discuss the

geometricity of such lattices. Finally, their characteristic polynomials are obtained, which generalize

the results of lattice generated by finite set.
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1 Introduction

Let (P,≤) be a poset. We write a < b whenever a ≤ b and a 6= b. For any two elements
a, b ∈ P , we say a covers b, denoted by b l a, if b < a and there exists no c ∈ P such that
b < c < a. If P has the minimum (respectively maximum) element, then we denote it by 0
(respectively »), and say that P is a poset with 0 (respectively »). A poset P is said to be a
lattice if both a ∨ b := sup{a,b} and a ∧ b := inf{a,b} exist for any two elements a, b ∈ P .
Let P be a finite lattice with 0. For a ∈ P , if 0 l a, then a is called an atom. A lattice
P with 0 is called an atomic lattice if a ∈ P\{0} is the least upper bound of some atoms.
Let P be a finite poset with 0. If there is a function r from P to set of all the nonnegative
integers such that

(1) r(0) = 0,

(2) r(b) = r(a) + 1, if al b.
Then r is said to be the rank function on P . Note that the rank function on P is unique if
it exists.

Let P be a finite atomic lattice. P is said to be geometric lattice, if P admits a rank
function r and for any two elements a, b ∈ P,

r(a ∧ b) + r(a ∨ b) ≤ r(a) + r(b).
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Let P be a poset with 0 and », and let P admit the rank function r . The polynomial

χ(P, x) =
∑
a∈P

µ(0, a)xr(»)−r(a)

is called the characteristic polynomial of P .
Let A be an m-subset of [n] := {1, 2, · · · , n} , and f : A → [n] be a map. Then the pair

(A, f) is said to be an m-partial map of [n]. In particular, we write (A, f) = 0 if A = ∅.
Let P = {(A, f) | (A, f) be a partial map of [n]} ∪ {»}. For any two elements (A, f) ∈

P\{»}, (B, g) ∈ P\{»}, we define that » includes (A, f), and (B, g) includes (A, f) if A ⊆ B

and g|A = f . Partially ordered P by ordinary or reverse inclusion, two families of finite
posets are obtained, denoted by PO and PR, respectively.

In this paper we will prove that PO and PR are finite atomic lattices, discuss their
geometricity and compute their characteristic polynomials.

The results on the lattices generated by transitive sets of subspaces under finite classical
groups may be found in Huo, Liu and Wan [3–5]. In [1], Guo discussed the lattices associated
with finite vector spaces and finite affine spaces. The lattices generated by the orbits of
subspaces under finite classical groups have been obtained in a series of papers by Huo and
Wan [6], Wang and Feng [8], Wang and Guo [9, 10], Guo and Nan [2, 7], Wang and Li [11].

2 The Poset PO

In this section we will prove that PO is a finite atomic lattice and computes its charac-
teristic polynomial. We begin with a useful lemma.

Lemma 2.1 PO is a finite lattice.
Proof For any (A, f) ∈ PO\{»}, it is easy to see that

»= (A, f)∨ » and (A, f) =» ∧(A, f).

For any (A, f), (B, g) ∈ PO\{»}, we assert that

(A, f) ∨ (B, g) =

{
(A ∪B, h), h|A = f, h|B = g, f |A∩B = g|A∩B,

», f |A∩B 6= g|A∩B.

Case 1 f |A∩B = g|A∩B. Let (C, ϕ) be an upper bound of (A, f) and (B, g), then

A ⊆ C, B ⊆ C and ϕ|A = f = h|A, ϕ|B = g = h|B.

Thus, A∪B ⊆ C and ϕ|A∪B = h, i.e., (A∪B, h) ≤ (C, ϕ). Hence (A, f)∨(B, g) = (A∪B, h).
Case 2 f |A∩B 6= g|A∩B. Assume that (C,ϕ) is an upper bound of (A, f) and (B, g),

i.e.,
(A, f) ≤ (C, ϕ) and (B, g) ≤ (C, ϕ).

Then ϕ|A∩B = f |A∩B, ϕ|A∩B = g|A∩B, a contradiction.
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On the other hand, for any (A, f), (B, g) ∈ PO\{»}, we assert that (A, f) ∧ (B, g) =
(D, h), where D is the maximum element of the set

{C ⊆ A ∩B | f |C = g|C}

and
h = f |D = g|D.

In fact, let (C,ϕ) be a lower bound of (A, f) and (B, g). Then

C ⊆ A,C ⊆ B and f |C = g|C .

Thus C belongs to {C ⊆ A ∩B | f |C = g|C}. Hence, (A, f) ∧ (B, g) = (D, h).
Theorem 2.2 Let n ≥ 2. Then PO is a finite atomic lattice, but not a geometric

lattice.
Proof Define rO(A, f) = |A| for any (A, f) ∈ PO\{»} and rO(») = n + 1. Then rO is

the rank function on PO.
Pick

A = {1}, f : A → [n], 1 7→ 1; and g : A → [n], 1 7→ 2. (2.1)

Then (A, f) and (A, g) are the atoms of PO, and »= (A, f) ∨ (A, g).
For any (A, f) ∈ PO\{»} with A = {a1, a2, · · · , am}, we have

(A, f) = ({a1}, f |{a1}) ∨ ({a2}, f |{a2}) ∨ · · · ∨ ({am}, f |{am}).

Hence PO is a finite atomic lattice.
Pick (A, f) and (A, g) as in (2.1). Then (A, f)∨ (B, g) =» and (A, f)∧ (B, g) = 0, which

implies that

rO((A, f) ∨ (B, g)) + rO((A, f) ∧ (B, g)) = n + 1 > 2 = rO(A, f) + rO(B, g).

Therefore, the desired result follows.
Lemma 2.3 The Möbius function on PO is

µO(x, y) =





0, x � y,

(−1)|B|−|A|, x = (A, f) ≤ (B, g) = y 6=»,
−(1− n)n−|A|, x = (A, f) < y =»,
1, x = y =» .

Proof In order to prove that µO is the Möbius function on PO, we only need to show
that ∑

x≤z≤y

µO(x, z) = 0

for any x, y ∈ PO with x < y.
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If y = (B, g) 6=», let |B| − |A| = m. Then

∑
x≤z≤y

µO(x, z) =
m∑

k=0

Ck
m(−1)k = (1− 1)m = 0.

If y =», let |A| = m. Then

∑
x≤z≤»

µO(x, z) =
n−m∑
k=0

Ck
n−m(−1)knk + µ(x, 1) = (1− n)n−m + [−(1− n)n−|A|] = 0.

Hence, the function µO is the Möbius function on PO.
Theorem 2.4 The characteristic polynomial of PO is

χ(PO, x) = x(x− n)n − (1− n)n.

Proof By Lemma 2.3 we obtain

χ(PO, x) =
∑

u∈PO

µO(0, u)xrO(»)−rO(u)

=
n∑

m=0

(−1)mCm
n nmxrO(»)−m + µO(0, »)xrO(»)−rO(»)

= x

n∑
m=0

(−1)mCm
n nmxn−m + [−(1− n)nx0]

= x(x− n)n − (1− n)n.

3 The Poset PR

In this section we will prove that PR is a finite atomic lattice and compute its charac-
teristic polynomials. Similar to the proof of Lemma 2.1, we obtain the following result.

Lemma 3.1 PR is a finite lattice.
Theorem 3.2 Let n ≥ 2. Then PR is a finite atomic lattice, but not a geometric

lattice.
Proof Define rR(A, f) = n + 1− |A| for any (A, f) ∈ PR\{»} and rR(») = 0. Then rR

is the rank function on PR.
Pick f : [n] → [n], i 7→ 1 and g : [n] → [n], i 7→ 2. Then 0 = ([n], f) ∨ ([n], g). For

(A, f) ∈ PR\{»} with A = {a1, a2, · · · , am}, pick ([n], g), ([n], h) ∈ PR, such that

g : [n] → [n], ai 7→ f(ai), a 7→ 1 if a /∈ A; h : [n] → [n], ai 7→ f(ai), a 7→ 2 if a /∈ A. (3.1)

Then ([n], g) and ([n], h) are atoms in PR and (A, f) = ([n], g)∨ ([n], h). Hence, PR is a finite
atomic lattice.

Pick f, g as in (3.1). Then

([n], f) ∨ ([n], g) = 0, ([n], f) ∧ ([n], g) =»,
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which implies that

rR(([n], f) ∨ ([n], g)) + rR([n], f) ∧ ([n], g)) = n + 1 > 2 = rR([n], f) + rR([n], g).

Therefore, the desired result follows.
Lemma 3.3 The Möbius function on PR is

µR(x, y) =





0, x � y,

(−1)|A|−|B|, »6= x = (A, f) ≤ y = (B, g),
−(1− n)n−|B|, »= x < y = (B, g),
1, x = y =» .

Proof If x 6=», let |A| − |B| = m. Then

∑
x≤z≤y

µR(x, z) =
m∑

k=0

Cm−k
m (−1)k = (1− 1)m = 0.

If x =», let |B| = m. Then

∑
»≤z≤y

µR(», z) = µ(», ») +
n−m∑
k=0

Ck
n−m[−(1− n)n−m−k]nk = 1− [n + (1− n)]n−m = 0.

Hence, the function µR is the Möbius function on PR.
Theorem 3.4 The characteristic polynomial of PR is

χ(PR, x) = xn+1 − (nx− n + 1)n.

Proof By Lemma 3.3 we obtain

χ(PR, x) =
∑

u∈PR

µR(», (A, f))xrR(0)−rR(u)

=
n∑

m=0

Cm
n nm[−(1− n)n−m]xm + µR(», »)xrR(0)−rR(»)

= xn+1 − (nx + 1− n)n.
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有限集合的部分映射生成的格

徐秋丽 ,张宝环 ,姜 伟 ,刘军丽

(廊坊师范学院数学与信息科学学院, 河北 廊坊 065000)

摘要: 本文研究了有限集合[n] = {1, 2, · · · , n}的部分映射生成的格. 利用秩函数和Möbius函数, 讨论

了这类格的几何性, 得到了它们的特征多项式. 推广了有限集合生成格的相关性质.
关键词: 部分映射; 原子格; 特征多项式
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