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Abstract: A Green-Naghdi asymptotic model for small aspect ratio waves is investigated by

qualitative analysis methods of planar autonomous systems. Under different parameter conditions,
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also given. The exact expressions of some bounded traveling wave solutions are obtained, such as
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1 Introduction

The Green-Naghdi system was first derived by Green and Naghdi [1] in 1976 for describ-
ing a fully nonlinear shallow water gravity wave with a free surface or an interfacial surface.
The system also appears in different physical contexts such as bubbly fluid dynamics and
magneto-hydro dynamics. Its various aspects have been studied. For instance, Li [2] showed
that the system has no eigenvalues with a positive real part and solitary waves with a small
amplitude are linearly stable. Deng, Guo and Wang [3] obtained the exact expressions of its
smooth soliton wave solutions, cusp soliton wave solutions, smooth periodic wave solutions
and periodic cusp wave solutions and gave some numerical simulations of these solutions.

The Green-Naghdi asymptotic model for small aspect ratio waves
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which was first derived by Kraenkelb, Leona and Mannaa [4] in 2005, is a k-dependent
equation that describes the nonlinear deformations of the wave with a given wave number k.
Here S(x, t) is the free surface deformation, g is the gravitation, t is the time variable, and x

is the propagation direction. Thus the parameters g, k are both positive. Taking α =
√

g
k
,

(1.1) becomes

k2St − Sxxt − α

2
Sxxx +

3
2
αk2Sx + k3αSSx − 5

3
kαSxSxx − 1

3
kαSSxxx = 0. (1.2)

Recently, many mathematicians are very interested in traveling wave solutions of many
mathematical and physical models. For instance, Huang and Liu investigated new exact
traveling wave solutions of Fisher equation and Burgers-Fisher equation by using the method
of an auxiliary ODE method in [5]; Rong, Tang and Huang [6] considered bifurcations of
traveling solutions for the K(n, 2n,−n) equations; Tang et al. [7] discussed traveling wave
solutions for the generalized special type of the Tzitzeica-Dodd-Bullough equation; Zhong
and Gu [8] studied the bifurcation of traveling wave solutions for symmetric regularized wave
equations and so on.

To the best of our knowledge, there is no result about the traveling wave solutions of
(1.2). In this paper, we discuss the bifurcation of the traveling wave system of the equation
(1.2) under the different parameter conditions by qualitative analysis methods of planar
systems (See, e.g., [9]), give the corresponding phase portraits by using the software Maple
and show the exact expressions of smooth periodic wave solutions, kink-like wave solutions,
antikink-like wave solutions, compacton-like wave solutions, periodic cusp wave solutions,
solitary wave solutions and cusp solitary wave solutions. Furthermore, we simulate them.

This paper is organized as follows. In Section 2, (1.2) is changed into a traveling wave
system. Phase portraits are given in Section 3. Section 4 shows the exact expressions of
bounded wave solutions and the numerical simulations of these solutions.

2 Traveling Wave System

Let ξ = x− ct, where c 6= 0 is the wave speed. Substituting S(x, t) = u(x− ct) = u(ξ)
into (1.2) we get the following ordinary differential equation

(
3
2
α− c)k2uξ + (c− α

2
)uξξξ + k3αuuξ − 5

3
kαuξuξξ − 1

3
kαuuξξξ = 0. (2.1)

Integrating (2.1) once with respect to ξ yields the traveling wave equation

β + (
3
2
α− c)k2u +

1
2
k3αu2 + (c− α

2
− 1

3
kαu)uξξ − 2

3
kα(uξ)2 = 0, (2.2)

where β is the constant of integration. Let v = uξ and b = α
2
− c, and we have the following

traveling wave system from (2.2)
{

du
dξ

= v,
dv
dξ

= 1
1
3 kαu+b

(− 2
3
kαv2 + 1

2
k3αu2 + (α + b)k2u + β

)
.

(2.3)
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It is not convenient to study the phase portraits of system (2.3) because it has a singular
line u = − 3b

kα
. Thus, we introduce a transformation

dξ = (
1
3
kαu + b)dτ. (2.4)

Then system (2.3) is changed to
{

du
dτ

= ( 1
3
kαu + b)v,

dv
dτ

= − 2
3
kαv2 + 1

2
k3αu2 + (α + b)k2u + β.

(2.5)

The first integral of (2.3) and (2.5) is

H(u, v) =− 1
270

k5α3(2α + 11b)u5 − 1
2
kb2(αkb + kb2 − αβ)u2

+
1
2
(
1
3
kαu + b)4v2 − 1

18
k2αb(9kb2 + 6kαb + 2αβ)u3

− b3βu− 1
216

k3α2(2αβ + 18kαb + 45kb2)u4 − 1
324

k6α4u6.

(2.6)

Obviously, (2.3) and (2.5) have the same topological phase portraits except the singular line
l: u = − 3b

kα
. In the following, we focus on system (2.5). Let

v1 =

√
3

2kα

[
β − k

2α
3b(2α− b)

]
, v2 = −

√
3

2kα

[
β − k

2α
3b(2α− b)

]
,

u1 =
1

k2α

[
−k(α + b)−

√
k2(α + b)2 − 2αkβ

]
,

u2 =
1

k2α

[
−k(α + b) +

√
k2(α + b)2 − 2αkβ

]
,

which will be used later.

3 Bifurcations and Phase Portraits of the Traveling Wave System

Let

f(u) =
1
2
k3αu2 + (α + b)k2u + β. (3.1)

It is easy to see that

f ′(u) = k3αu + (α + b)k2. (3.2)

The symmetric axis and the discriminant of f are

u = −α + b

kα
(3.3)

and

∆ = 2αk3[
k

2α
(α + b)2 − β]. (3.4)
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Figure 1: The graphs of the function f(u) for 2b < α. (1) k
2α3b(2α − b) < β < k

2α (α + b)2. (2)
β = k

2α3b(2α− b). (3) β = k
2α (α + b)2. (4) β < k

2α3b(2α− b). (5) β > k
2α (α + b)2.

The coefficient matrix of the linearized system of (2.5) at an equilibrium E(ue, ve) is
(

1
3
kαve

1
3
kαue + b

f ′(ue) − 4
3
kαve

)
, (3.5)

whose determinant and trace are

D(E) = −4
9
k2α2v2

e − (
1
3
kαue + b)f ′(ue), T (E) = −kαve. (3.6)

By the qualitative theory of differential equations for an equilibrium of a planar dynam-
ical system [9], we know that the equilibrium E(ue, ve) is a saddle point if D < 0; It is a
node if D > 0 and T 6= 0; it is a center if D > 0 and T = 0; It is degenerate if D = 0. Using
these, we can obtain the phase portraits of (2.5) under different parameter conditions.

Note that from c 6= 0 and b = α
2
− c we have

k

2α
(α + b)2 − 3

2α
kb(2α− b) =

k

2α
(α− 2b)2 > 0,

which means k
2α

(α + b)2 > 3
2α

kb(2α − b). Using these, we discuss the bifurcation of system
(2.5) by the relative position of the function f(u) to the singular line l (see Figure ).

Theorem 1 If 2b < α and 3
2α

kb(2α − b) < β < k
2α

(α + b)2, then system (2.5) has
two equilibriums E1(− 3b

kα
, v1) and E2(− 3b

kα
, v2) on the singular line l and two equilibriums

E3(u1, 0) and E4(u2, 0) at the left side of l. E1, E2 and E3 are saddle points, and E4 is a
center (see (1)–(3) of Figure ).



No. 6 Traveling wave solutions of a Green-Naghdi asymptotic model for small aspect ratio waves 1063

Proof The definition of f yields

f(− 3b

kα
) = β − 3kb

2α
(2α− b). (3.7)

From
−2

3
kαv2 + f(− 3b

kα
) = 0,

we have

v2 =
3

2kα
[β − 3

2α
kb(2α− b)]. (3.8)

By 3
2α

kb(2α − b) < β, we get that system (2.5) has two equilibrium points E1(− 3b
kα

, v1)
and E2(− 3b

kα
, v2). By (3.6) we have D(E1) < 0 and D(E2) < 0. Thus, E1(− 3b

kα
, v1) and

E2(− 3b
kα

, v2) are saddle points.
From β < k

2α
(α+b)2 and (3.4), we get that ∆ > 0. Thus, f(u) has two real roots u1 and

u2, and system (2.5) has two equilibriums E3(u1, 0) and E4(u2, 0). Next, we discriminate the
relative position of E3, E4 and l. From 2b < α we have

− 3b

kα
− (−α + b

kα
) =

α− 2b

kα
> 0. (3.9)

By (3.3) we obtain that the symmetric axis of f is at the left side of the singular line l. By
(3.7) and 3

2α
kb(2α − b) < β, we have f(− 3b

kα
) > 0. Thus, we get that E3 and E4 are at the

left side of l (see (a) of Figure 1). Furthermore, it is easy to see that f ′(u1) < 0, f ′(u2) > 0,
1
3
kαui + b < 0 (i = 1, 2). By (3.6) we have that D(E3) < 0 and D(E4) > 0. Thus, E3 is a

saddle point and E4 a center.
Theorem 2 If 2b < α and β = 3

2α
kb(2α − b), then system (2.5) has two equilibriums

E3(u1, 0) and E4(u2, 0). E3 is a saddle point, E4 is a degenerate saddle point (see (4) of
Figure ).

Proof The proof that E3 is a saddle point is similar as one of Theorem 1. We only
prove that E4 is a degenerate saddle point.

By β = k
2α

3b(2α − b), we have u2 = − 3b
kα

. Under the transformation u = y − 3b
kα

and
v = z, system (2.5) can be written as

{
dy
dτ

= 1
3
kαyz,

dz
dτ

= k2(α− 2b)y − 2
3
kαz2 + 1

2
k3αy2.

(3.10)

Thus, we focus on O(0, 0) of system (3.10). Let Y = k2(α− 2b)y − 2
3
kαz2 + 1

2
k3αy2, X = z,

and we have
{

dX
dτ

= Y,
dY
dτ

= 2
9
k2α2X3 − kαXY + (|X|3 + |XY |)O(|(X, Y )|). (3.11)

By Theorem 7.2 in Chapter 2 of [9], we get that O(0, 0) is a degenerate saddle point of (3.11).
which means that O(0, 0) is a degenerate saddle point of (3.10). Thus, E4 is a degenerate
saddle point of (2.5).
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Figure 2: The phase portraits of system (2.5) for 2b < α. (1) 3
2αkb(2α − b) < β < k

2α (α + b)2

and H(u1, 0) > H(− 3b
kα , v1). (2) 3

2αkb(2α − b) < β < k
2α (α + b)2 and H(u1, 0) = H(− 3b

kα , v1).
(3) 3

2αkb(2α − b) < β < k
2α (α + b)2 and H(u1, 0) < H(− 3b

kα , v1). (4) β = 3
2αkb(2α − b). (5)

β = k
2α (α + b)2. (6) β < 3

2αkb(2α− b). (7) β > k
2α (α + b)2.
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Theorem 3 If 2b < α and β = k
2α

(α + b)2, then system (2.5) has three equilibriums
E1(− 3b

kα
, v1), E2(− 3b

kα
, v2) and E3(u1, 0). E1 and E2 are saddle points, and E3 is a cusp (see

(5) of Figure ).
Proof The proof that E1 and E2 are saddle points is similar as one of Theorem 1. Next

we only prove that E3 is a cusp. With the transformation u = m− α+b
kα

and v = y, system
(2.5) becomes

{
dm
dτ

= 2b−α
3

y + 1
3
kαmy,

dy
dτ

= 1
2
k3αm2 − 2

3
kαy2.

(3.12)

Obviously, the topological structure of system (2.5) near the equilibrium E3 is homeomorphic
to the one of system (3.12) near O. Let w = m and z = 2b−α

3
y + 1

3
kαmy. System (3.12) is

changed into
{

dw
dτ

= z,
dz
dτ

= 1
2
k3αw2 + z2 kα

α−2b+kαw
.

(3.13)

By Theorem 7.3 in Chapter 2 of [9], we get that the equilibrium E3 is a cusp point.
Theorem 4 If 2b < α and β < 3

2α
kb(2α − b), then system (2.5) has two equilibriums

E3(u1, 0) and E4(u2, 0) which are both saddles (see (4) of Figure ).
The proof is same as one of Theorem 1.
Theorem 5 If 2b < α and β > k

2α
(α + b)2, then system (2.5) has two equilibriums

E1(− 3b
kα

, v1) and E2(− 3b
kα

, v2) which are both saddle points (see (5) of Figure ).
If 2b > a we have similar results as follows.
Theorem 6 For 2b > α,

(1) If 3
2α

kb(2α − b) < β < k
2α

(α + b)2, then (2.5) has four equilibriums E1(− 3b
kα

, v1),
E2(− 3b

kα
, v2), E3(u1, 0) and E4(u2, 0). E1, E2 and E4 are saddle points, and E3 is a center

(see (1)–(3) of Figure ).
(2) If β = k

2α
3b(2α−b), then system (2.5) has two equilibriums E3(− 3b

kα
, 0) and E4(u2, 0).

E4(u2, 0) is a saddle point and E3 is degenerate saddle point (see (4) of Figure ).
(3) If β = k

2α
(α+b)2. then system (2.5) has three equilibriums E1(− 3b

kα
, v1), E2(− 3b

kα
, v2)

and E3(−α+b
kα

, 0). E1 and E2 are saddle points and E3 is a cusp (see (5) of Figure ).
(4) If β < k

2α
3b(2α− b). then system (2.5) has two equilibriums E3(u1, 0) and E4(u2, 0).

E3 and E4 are both saddle points (see (6) of Figure ).
(5) If β > k

2α
(α+b)2. then system (2.5) has two equilibriums E1(− 3b

kα
, v1) and E2(− 3b

kα
, v2)

which are both saddle points (see (7) of Figure ).

4 Traveling Wave Solutions and Numerical Simulations

In this section, we give smooth periodic wave solutions, kink-like wave solutions, antikink-
like wave solutions, compacton-like wave solutions, periodic cusp wave solutions, solitary
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(1) (2) (3)

(4) (5) (6)
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Figure 3: The phase portraits of system (2.5) for 2b > α. (1) 3
2αkb(2α − b) < β < k

2α (α + b)2

and H(u2, 0) > H(− 3b
kα , v1). (2) 3

2αkb(2α − b) < β < k
2α (α + b)2 and H(u2, 0) = H(− 3b

kα , v1).
(3) 3

2αkb(2α − b) < β < k
2α (α + b)2 and H(u2, 0) < H(− 3b

kα , v1). (4) β = 3
2αkb(2α − b). (5)

β = k
2α (α + b)2. (6) β < 3

2αkb(2α− b). (7) β > k
2α (α + b)2.
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wave solutions and cusp solitary wave solutions and their numerical simulations. Let u(ξ)
be a traveling wave solution of (1.2) for ξ ∈ (−∞,+∞) and

lim
ξ→−∞

u(ξ) = A, lim
ξ→+∞

u(ξ) = B,

where ξ = x − ct and A,B are constants. u(ξ) is called a solitary wave solution of (1.2) if
A = B and a kink (or antikink) wave solution if A 6= B. Usually, a solitary wave solution of
(1.2) corresponds to a homoclinic orbit of system (2.5), a kink (or antikink) wave solution
of (1.2) corresponds to a heteroclinic orbit of system (2.5), and a periodic traveling wave
solution of (1.2) corresponds to a periodic orbit of system (2.5). In the following, we just
consider the cases that 2b < α and 3

2α
kb(2α− b) < β < k

2α
(α + b)2 (see (1)–(3) of Figure ).

Using the same way, we can discuss other cases. Note that, from (2.4), we have ξ → −∞ if
τ → +∞ and u < − 3b

kα
.

Theorem 7 (Periodic wave solutions) Suppose that 2b < α, 3
2α

kb(2α − b) < β <
k
2α

(α + b)2. Consider the following conditions:
(1) H(u1, 0) ≥ H(− 3b

kα
, v1) and u2 < u0 < − 3b

kα
(see (1) and (2) of Figure );

(2) H(u1, 0) < H(− 3b
kα

, v1) and u2 < u0 < e0, where e0 ∈ (u2,− 3b
kα

) is the solution of
equation H(u, 0) = H(u1, 0) (see (3) of Figure ).

If one of the two conditions holds, then (1.2) has a periodic wave solution

u(ξ) =

{
φ1(ξ − 2nT0) for ξ ∈ [2nT0, (2n + 1)T0),
φ1(−ξ + 2(n + 1)T0) for ξ ∈ ((2n + 1)T0, 2(n + 1)T0),

n = 0,±1,±2, · · · , with u(0) = u0 and v(0) = 0 satisfying

∫ φ1

u0

− 1√
F (s)

ds = ξ, (4.1)

where

F (u) =
2

( 1
3
kαu + b)4

(
1

324
k6α4u6 +

1
270

k5α3(2α + 11b)u5 + b3βu

+
1
2
kb2(αkb + kb2 + αβ)u2 +

1
18

k2αb(9kb2 + 6kαb + 2αβ)u3

+
1

216
k3α2(2αβ + 18kαb + 45kb2)u4 −H(u0, 0)

)
,

(4.2)

T0 is given by

T0 =
∫ u−0

u0

− 1√
F (s)

ds,

and u−0 ∈ (u1, u2) is a solution of H(u, 0) = H(u0, 0).
Proof By (1) of Theorem 1 system (2.5) has a periodic orbit Γ = Γ+ ∪ Γ− since the

equilibrium E4 is a center. Take (u0, 0) ∈ Γ. From the definition of H(u, v) in (2.6), Γ
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lies on the curve given by H(u, v) = H(u0, 0). Note that H(u, 0) = H(u0, 0) has a solution
u−0 ∈ (u1, u2), i.e., Γ intersects the u−axis at the point (u−0 , 0).

H(u, v) = H(u0, 0) yields v = ±
√

F (u). By (2.3) we have

dξ =
du

v
=

du

±
√

F (u)
.

Integrating the above along Γ in clockwise gives (4.1).
Theorem 8 (Kink-like or antikink-like wave solutions) Suppose that 2b < α, 3

2α
kb(2α−

b) < β < k
2α

(α + b)2 and H(u1, 0) > H(− 3b
kα

, v1). Let Γ1 and Γ2 denote the orbit connecting
E3(u1, 0) (see (1) of Figure ). Take an initial value (u0, v0) with u1 < u0 < u2 and v0 > 0
(or v0 < 0) on the Γ1 (or Γ2). Then (1.2) has a kink-like (or antikink-like) wave solution
u = u(ξ) satisfying

∫ u

u0

1√
F (s)

ds = ξ

(
or

∫ u

u0

− 1√
F (s)

ds = ξ

)

for ξ ∈ (−∞, T1) (or ξ ∈ (T̃1,+∞)), where F (u) is defined in (4.2) by replacing H(u0, 0)
with H(u1, 0) and T1 (or T̃1) is given by

T1 =
∫ − 3b

kα

u0

1√
F (s)

ds

(
or T̃1 =

∫ − 3b
kα

u0

− 1√
F (s)

ds

)
.

The proof is similar to the one of Theorem 3.3.
Theorem 9 (Compacton-like wave solutions) Suppose that 2b < α, 3

2α
kb(2α−b) < β <

k
2α

(α + b)2 and H(u1, 0) > H(− 3b
kα

, v1). If u1 < e1 < e0, where e0 ∈ (u1, u2) is the solution
of equation H(u, 0) = H(− 3b

kα
, v1) (see (1) of Figure ), then (1.2) has a compacton-like wave

solution

u(ξ) =

{
φ2(ξ) for ξ ∈ [0, T2),
φ2(−ξ) for ξ ∈ (−T2, 0),

with (u(0), v(0)) = (e1, 0) satisfying
∫ φ2

e1

1√
F (s)

ds = ξ,

where F (u) is defined in (4.2) by replacing H(u0, 0) with H(e1, 0) and T2 is given by

T2 =
∫ − 3b

kα

e1

1√
F (s)

ds.

Theorem 10 (Periodic cusp wave solutions) Suppose that 2b < α, 3k
2α

b(2α − b) < β <
k
2α

(α+ b)2 and H(u1, 0) > H(− 3b
kα

, v1). If u1 < e0 < u2, where e0 ∈ (u1, u2) is the solution of
the equation H(u, 0) = H(− 3b

kα
, v1) (see (1) of Figure ), then (1.2) has a periodic cusp wave

solution

u(ξ) =

{
φ3(ξ − 2nT3) for ξ ∈ [2nT3, (2n + 1)T3),
φ3(−ξ + 2nT3) for ξ ∈ [(2n− 1)T3, 2nT3),
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n = 0,±1,±2, · · · , with u(0) = e0 and v(0) = 0 satisfying

∫ φ3

e0

1√
F (s)

ds = ξ,

where F (u) is defined in (4.2) by replacing H(u0, 0) with H(e0, 0), and T3 is given by

T3 =
∫ − 3b

kα

e0

1√
F (s)

ds.

Theorem 11 (Solitary wave solutions]) Suppose 2b < α, 3
2α

kb(2α−b) < β < k
2α

(α+b)2

and H(u1, 0) < H(− 3b
kα

, v1) (see (3) Figure ). Then (1.2) has a solitary wave solution

u(ξ) =

{
φ4(ξ) for ξ ∈ [0,+∞),
φ4(−ξ) for ξ ∈ (−∞, 0)

with u(0) = e0 and v(0) = 0 satisfying

∫ φ4

e0

− 1√
F (s)

ds = ξ, (4.3)

where e0 ∈ (u2,− 3b
kα

) is the solution of equation H(u, 0) = H(u1, 0) and F (u) is defined in
(4.2) by replacing H(u0, 0) with H(u1, 0).

Theorem 12 (Cusp solitary wave solutions) Suppose that 2b < α, 3
2α

kb(2α− b) < β <
k
2α

(α + b)2 and H(u1, 0) = H(− 3b
kα

, v1). Let Γ1 (or Γ2) denote the orbits connecting (u1, 0)
and (− 3b

kα
, v1) (or (− 3b

kα
,−v1)). Take an initial value (u(0), v(0)) = (u0, v0) ∈ Γ1. Then (1.2)

has a cusp solitary wave solution

u(ξ) =

{
φ5(ξ) for ξ ∈ (−∞, T4);
φ5(−ξ + 2T4) for ξ ∈ (T4,+∞),

where φ5 satisfies ∫ φ5

u0

1√
F (s)

ds = ξ,

F (u) is defined in (4.2) by replacing H(u0, 0) with H(u1, 0) and

T4 =
∫ − 3b

kα

u0

1√
F (s)

ds = ξ.

First, in order to simulate some bounded wave solutions, we take b = 1
2
, β = 5.3

7
and

k = 0.2 which imply α = 7 for g = 9.8. After simple calculations, we obtain u1=−6.64483,

u2=−4.06944, v1 = 0.70801, the singular line l: u=−1.07143, H(u1, 0) = 0.57234 and
H(−1.07143, 0.70801) = 0.02327 Thus, the conditions in Theorems 4.1–4.4 are satisfied.
Solving equation H(u, 0) = H(−1.07143, 0.70801) yields e0 = −5.03733
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(1) (2)

(3) (4)

(5) (6)

(7)

Figure 4: The simulation of the equation (1.2) for b = 1
2 , k = 0.2 and α = 7. (1) (u(0), v(0)) =

(−3, 0) and β = 5
7 . (2) (u(0), v(0)) = (−6, 0.11160) and β = 5

7 . (3) (u(0), v(0)) = (−6,−0.11160)
and β = 5

7 . (4) (u(0), v(0)) = (−6, 0) and β = 5
7 . (5) (u(0), v(0)) = (−5.03733, 0) and β = 5

7 . (6)
(u(0), v(0))=(−3.74457, 0) and β = 5.55

7 . (7) (u(0), v(0)) = (−5, 0.17172) and β = 5.481
7 .
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The graph of the periodic wave solution u(ξ) of (1.2) with an initial value (u(0), v(0)) =
(−3, 0) is shown in (1) of Figure . The graph of the kink-like (or antikink-like ) wave solution
u(ξ) of (1.2) with an initial value

(u(0), v(0)) = (−6, 0.11160)

(or (u(0), v(0)) = (−6,−0.11160)) is shown in (2) (or (3)) of Figure . The graph of the
compacton-like wave solution u(ξ) of (1.2) with an initial value (u(0), v(0)) = (−6, 0) is
shown in (4) of Figure . The graph of the periodic cusp wave solution u(ξ) of (1.2) with an
initial value (u(0), v(0)) = (−5.03733, 0) is shown in (5) of Figure .

Second, in order to simulate solitary wave solutions, we take b = 1
2
, β = 5.55

7
and k = 0.2

which imply α = 7 for g = 9.8. After simple calculations, we obtain

u1 = −5.97573, u2 = −4.73855, v1 = 0.73453,

the singular line l: u=−1.07143, H(u1, 0) = −0.13603 and H(−1.07143, 0.73453) = 0.02446.

Thus, the conditions in Theorem 4.5 are satisfied. Solving equation H(u, 0) = H(−5.97573, 0)
yields e0 = −3.74457. The graph of the solitary wave solution u(ξ) of (1.2) with an initial
value (u(0), v(0))=(−3.74457, 0) is shown in (6) of Figure .

Last, in order to simulate cusp solitary wave solutions, we take b = 1
2
, β = 5.481

7
and

k = 0.2 which imply α = 7 for g = 9.8. After simple calculations, we obtain

u1 = −6.21428, u2 = −4.49999, v1 = 0.72730,

the singular line l: u=−1.07143, H(u1, 0) = 0.02413 and H(−1.07143, 0.72730) = 0.02413.

Thus, the conditions in Theorem 4.6 are satisfied. Solving equation

H(−5, v) = H(−6.21428, 0)

yields v = 0.17172 (or v = −0.17172). The graph of the cusp solitary wave solution u(ξ) of
(1.2) with an initial value (u(0), v(0)) = (−5, 0.17172) is shown in (7) of Figure .
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小展弦比波的Green-Naghdi渐进模型的行波解

钟吉玉 ,李晓培

(湛江师范学院数学与计算科学学院, 广东湛江 524048)

摘要: 本文研究了小展弦比波的Green-Naghdi渐进模型. 利用平面自治系统的稳定性分析方法, 在不

同的参数条件下, 讨论了它的行波系统的分岔并且给出了对应的相图, 得到了光滑周期波解, 广义扭波解, 广

义反扭波解, 广义紧波解, 周期尖波解, 孤波解和孤立尖波解的精确表达式. 进一步, 通过数学软件Maple模

拟了这些解.
关键词: Green-Naghdi渐进模型; 行波解; 相图; 分岔
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