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Abstract: A Green-Naghdi asymptotic model for small aspect ratio waves is investigated by
qualitative analysis methods of planar autonomous systems. Under different parameter conditions,
the bifurcation of its traveling wave system is discussed and the corresponding phase portraits are
also given. The exact expressions of some bounded traveling wave solutions are obtained, such as
smooth periodic wave solutions, kink-like wave solutions, antikink-like wave solutions, compacton-
like wave solutions, periodic cusp wave solutions, solitary wave solutions and cusp solitary wave
solutions. Furthermore, these solutions are simulated by applying the software Maple.
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1 Introduction

The Green-Naghdi system was first derived by Green and Naghdi [1] in 1976 for describ-
ing a fully nonlinear shallow water gravity wave with a free surface or an interfacial surface.
The system also appears in different physical contexts such as bubbly fluid dynamics and
magneto-hydro dynamics. Its various aspects have been studied. For instance, Li [2] showed
that the system has no eigenvalues with a positive real part and solitary waves with a small
amplitude are linearly stable. Deng, Guo and Wang [3] obtained the exact expressions of its
smooth soliton wave solutions, cusp soliton wave solutions, smooth periodic wave solutions
and periodic cusp wave solutions and gave some numerical simulations of these solutions.

The Green-Naghdi asymptotic model for small aspect ratio waves

lg 1 /g 3 /9 Joiss, — . 9

* Received date: 2012-10-01 Accepted date: 2013-10-30
Foundation item: Supported by the Natural Science Foundation of Zhanjiang Normal University

(L1104 and LZL1101); the Natural Science Foundation of Guangdong Province (S2013010015957).
Biography: Zhong Jiyu (1974-), male, Tujia, born at Enshi, Hubei, lecture, major in differential

equation and dynamical systems.
Corresponding author: Li Xiaopei



1060 Journal of Mathematics Vol. 34

which was first derived by Kraenkelb, Leona and Mannaa [4] in 2005, is a k-dependent
equation that describes the nonlinear deformations of the wave with a given wave number £.
Here S(x,t) is the free surface deformation, g is the gravitation, ¢ is the time variable, and z
is the propagation direction. Thus the parameters g, k are both positive. Taking o = \/% ,

(1.1) becomes

3 5 1
k%S, — Syur — %sm + Jak%S, + k'S8, — SkaS,S,s — kaSS.. = 0. (1.2)

Recently, many mathematicians are very interested in traveling wave solutions of many
mathematical and physical models. For instance, Huang and Liu investigated new exact
traveling wave solutions of Fisher equation and Burgers-Fisher equation by using the method
of an auxiliary ODE method in [5]; Rong, Tang and Huang [6] considered bifurcations of
traveling solutions for the K(n,2n, —n) equations; Tang et al. [7] discussed traveling wave
solutions for the generalized special type of the Tzitzeica-Dodd-Bullough equation; Zhong
and Gu [8] studied the bifurcation of traveling wave solutions for symmetric regularized wave
equations and so on.

To the best of our knowledge, there is no result about the traveling wave solutions of
(1.2). In this paper, we discuss the bifurcation of the traveling wave system of the equation
(1.2) under the different parameter conditions by qualitative analysis methods of planar
systems (See, e.g., [9]), give the corresponding phase portraits by using the software Maple
and show the exact expressions of smooth periodic wave solutions, kink-like wave solutions,
antikink-like wave solutions, compacton-like wave solutions, periodic cusp wave solutions,
solitary wave solutions and cusp solitary wave solutions. Furthermore, we simulate them.

This paper is organized as follows. In Section 2, (1.2) is changed into a traveling wave
system. Phase portraits are given in Section 3. Section 4 shows the exact expressions of

bounded wave solutions and the numerical simulations of these solutions.

2 Traveling Wave System

Let £ = x — ct, where ¢ # 0 is the wave speed. Substituting S(z,t) = u(x — ct) = u(§)
into (1.2) we get the following ordinary differential equation
3 . 5) 1
(ia —o)k?ug + (¢ — g)u&g + K auug — gkau5u§5 — gkauu&g =0. (2.1)
Integrating (2.1) once with respect to £ yields the traveling wave equation
3 1 1 2
8+ (ia —o)k*u + §k3au2 + (¢ — % - gkau)u& - gka(u£)2 =0, (2.2)

where 3 is the constant of integration. Let v = u¢ and b = § — ¢, and we have the following

traveling wave system from (2.2)

du _
(Cilf) 1 2 2 11.3 2 2 (23>



No. 6 Traveling wave solutions of a Green-Naghdi asymptotic model for small aspect ratio waves 1061

It is not convenient to study the phase portraits of system (2.3) because it has a singular

line u = —%. Thus, we introduce a transformation

de = (%kau + b)dr. (2.4)

Then system (2.3) is changed to

% - (%k‘au—f— b)v, (2.5)
L= _2kav? + LkPau® + (a + b)k*u + 6. '
The first integral of (2.3) and (2.5) is
1 1
H(u,v) =— 2—701@‘5a3(2a + 11b)u® — ika(akb + kb* — af)u?
1.1 1
+ 5(gmu +b)*? — E/<:204b(91<;b2 + 6kab + 2a3)u® (2.6)

1 1
_ 13 . 3.2 2) 1 4 2\, 4 6 4 6.
b’ Bu —216ka (208 4 18kadb + 45kb%)u —324k:ozu

Obviously, (2.3) and (2.5) have the same topological phase portraits except the singular line
I: u=—322 In the following, we focus on system (2.5). Let

3 k 3 k
v = \/2]{:04 [5—2a3b(20‘_b>]vv2 :_\/kaa [5_2a3b(20‘_b> )

[—k:(a 4+ b) — k2 (a + D)2 — Qakﬁ} :

= k2o

Uz

[—k(a +b) + VE2(a + b)? — Zakﬂ} )

T Ka
which will be used later.
3 Bifurcations and Phase Portraits of the Traveling Wave System
Let

Fu) = %mzﬁ +(a+b)ku+ B, (3.1)

It is easy to see that
f'(u) = KPau + (a + b)K>. (3.2)

The symmetric axis and the discriminant of f are

__a+b
o ka

and

A= 20414:3[%(04 +b)? - 3. (3.4)
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(4) (5)

Figure 1: The graphs of the function f(u) for 2b < . (1) 2%3b(2ac — b) < B < = (o +b)%. (2)
B =323b2a —b). (3) B = g5 (a+b)%. (4) B < 53b(2a —b). (5) B> 2 (v +b)*.

2c

The coefficient matrix of the linearized system of (2.5) at an equilibrium E(u., ve) is

( %k:owe %k‘aua +b ) (3.5)
' (ue) —%k‘ave ’

whose determinant and trace are

D(E) = —gk%ﬂvg _ (%kaue 0 (u), T(E)=—kav,. (3.6)

By the qualitative theory of differential equations for an equilibrium of a planar dynam-
ical system [9], we know that the equilibrium FE(u.,v.) is a saddle point if D < 0; It is a
node if D > 0 and T # 0; it is a center if D > 0 and T' = 0; It is degenerate if D = 0. Using
these, we can obtain the phase portraits of (2.5) under different parameter conditions.
Note that from ¢ # 0 and b = § — ¢ we have

%(a +b)? - %kb(?a - %(a _ op)?
which means %(a +b)? > 2 kb(2cc — b). Using these, we discuss the bifurcation of system
(2.5) by the relative position of the function f(u) to the singular line [ (see Figure ).
Theorem 1 If 2b < a and 2kb(2a — b) < 8 < 2=(a + b)?, then system (2.5) has
two equilibriums F;(— ival) and Eg(-m,’lQ) on the singular line [ and two equilibriums
E5(u1,0) and E4(ug,0) at the left side of I. FEy, E5 and Ej3 are saddle points, and Ey is a

center (see (1)—(3) of Figure ).
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Proof The definition of f yields

3b 3kb
20y =-S5 2a—b). (37)
From 3b
we have
7 = %a —[B— %kb( a—b)]. (3.8)

By 2kb(2a —b) < 3, we get that system (2.5) has two equilibrium points B (— ka,vl)
and EQ( 3 15). By (3.6) we have D(E;) < 0 and D(E,) < 0. Thus, Ei(—
Ey(—

3 1) and
ka ,v2) are saddle points.

From 8 < 2 (a+b)? and (3.4), we get that A > 0. Thus, f(u) has two real roots u; and

ug, and system (2.5) has two equilibriums Fs5(uq,0) and Ej(ug,0). Next, we discriminate the

relative position of F5, /4 and [. From 2b < o we have

3b a+b o—2b
o e ) = o > 0. (3.9)

By (3.3) we obtain that the symmetric axis of f is at the left side of the singular line [. By
(3.7) and 2 kb(2a — b) < B, we have f(—22) > 0. Thus, we get that E3 and E, are at the
left side of [ (see (a) of Figure 1). Furthermore, it is easy to see that f'(u;) <0, f'(ugz) > 0,
skau; +b <0 (i = 1,2). By (3.6) we have that D(FEs) < 0 and D(Ey) > 0. Thus, Ej is a
saddle point and E, a center.

Theorem 2 If 2b < a and 8 = 2-kb(2a — b), then system (2.5) has two equilibriums
Es5(u1,0) and E4(us,0). Ej is a saddle point, E, is a degenerate saddle point (see (4) of

Figure ).
Proof The proof that Fs5 is a saddle point is similar as one of Theorem 1. We only
prove that Fj is a degenerate saddle point.

By 8 = £3b(2a — b), we have up = —22. Under the transformation v = y — 22 and
v = z, system (2.5) can be written as
dy _ 1
dy _ 1}
Do 2y — Zhas? 1 Ly’ (310)
E =k (a—2b)y — skaz® + 3K ay’.

Thus, we focus on O(0,0) of system (3.10). Let Y = k?(a — 2b)y — 3kaz? 4+ 3k%ay?, X = z,

and we have
dax —Y.
dT 2’ (3.11)
v k2 2X3 — kaXY + (| X2+ | XYDO(|(X,Y))]).

dr

By Theorem 7.2 in Chapter 2 of [9], we get that O(0,0) is a degenerate saddle point of (3.11).
which means that O(0,0) is a degenerate saddle point of (3.10). Thus, E, is a degenerate
saddle point of (2.5).
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Figure 2: The phase portraits of system (2.5) for 2b < a. (1) 5=kb(2a — b) < B < 2= (o + b)?
and H(up,0) > H(— ka,’ul) (2) %kb(Qafb) < fB < f(aer) and H(up,0) = H(— ,i’g,vl)

(3) =kb(2a —b) < B < £(a+0b)? and H(ui,0) < H(—22,v1). (4) B = 2kb(2a — b). (5)
B:%(O‘+b)2-()ﬁ< kb(?a—b)()ﬁ>i(a+b)
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Theorem 3 If 20 < a and 3 =
Ei(— ,fa, 1), Ea(— ,m,vg) and E3(uq
(5) of Figure ).

Proof The proof that E; and Ey are saddle points is similar as one of Theorem 1. Next
we only prove that Fj5 is a cusp. With the transformation v = m — %;b and v = y, system

(2.5) becomes

2 (a + b)?, then system (2.5) has three equilibriums
,0). Fy and F, are saddle points, and Ej3 is a cusp (see

dm — 2oy 4 Lkamy,
dy _ 1.3 2 2 L2 (3'12)

Obviously, the topological structure of system (2.5) near the equilibrium Ej3 is homeomorphic
(3.12) is

to the one of system (3.12) near O. Let w = m and z = 2=

changed into

d—w:
{dr “ (3.13)

dz __ 113 2 2 ko
dr — 2k aw® + z a—2b+kaw*

By Theorem 7.3 in Chapter 2 of [9], we get that the equilibrium FEj is a cusp point.

Theorem 4 If 2b < a and 8 < 3-kb(2a — b), then system (2.5) has two equilibriums
E5(uy1,0) and F4(usg,0) which are both saddles (see (4) of Figure ).

The proof is same as one of Theorem 1.

Theorem 5 If 2b < a and 8 > & (o + b)?, then system (2.5) has two equilibriums
Ei (=22, v) and Ea(—32,v;) which are both saddle points (see (5) of Figure ).

If 2b > a we have similar results as follows.

Theorem 6 For 2b > a,

(1) If 2kb(20 —b) < B < £ (o + b)?, then (2.5) has four equilibriums F;(—22,v;),
Es(— ka, ), E5(u1,0) and E4(us,0). E;, Ey and E, are saddle points, and Ej3 is a center
(see (1)—(3) of Figure ).

(2) If B = 5=3b(2c—b), then system (2.5) has two equilibriums F3(—22,0) and Ey(us, 0).
E4(us,0) is a saddle point and Ej is degenerate saddle point (see (4) of Figure ).

(3) If B = 2= (a-+b)?. then system (2.5) has three equilibriums Ey(— 22, vy), Eao(—22,v5)
and E5(—tb 0) E, and E, are saddle points and Ej is a cusp (see (5) of Figure ).

(4) 1t ﬁ < 23b(2a —b). then system (2.5) has two equilibriums E3(uy,0) and Ey(us, 0).
E5 and E4 are both saddle points (see (6) of Figure ).

(5) If B > 2= (a+b)?. then system (2.5) has two equilibriums E; (— 22, v1) and Ey(— 22, vs)
which are both saddle points (see (7) of Figure ).

4 Traveling Wave Solutions and Numerical Simulations

In this section, we give smooth periodic wave solutions, kink-like wave solutions, antikink-

like wave solutions, compacton-like wave solutions, periodic cusp wave solutions, solitary
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Figure 3: The phase portraits of system (2.5) for 2b > a. (1) 5= kb(2a — b) < B < (a +b)?

and H(ug,0) > H(— ka,vl) (2) %kb@a—b) < B < —(a-l-b) and H (ug,0) = H( kfw”l)

(3) 2kb(2a —b) < B < £(a+b)? and H(u,0) < H(—22,v1). (4) B = 2kb(2a — b). (5)
(

B = (@t (6) B < Hkb2a—b). (1) > £(a+).
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wave solutions and cusp solitary wave solutions and their numerical simulations. Let u(§)
be a traveling wave solution of (1.2) for £ € (—o0,400) and
Jim u(€) =4, lim u(f) =B,

where £ = x — ¢t and A, B are constants. u(§) is called a solitary wave solution of (1.2) if
A = B and a kink (or antikink) wave solution if A # B. Usually, a solitary wave solution of
(1.2) corresponds to a homoclinic orbit of system (2.5), a kink (or antikink) wave solution
of (1.2) corresponds to a heteroclinic orbit of system (2.5), and a periodic traveling wave
solution of (1.2) corresponds to a periodic orbit of system (2.5). In the following, we just
consider the cases that 2b < o and 5> kb(2a — b) < 8 < 2= (a + b)? (see (1)~(3) of Figure ).
Using the same way, we can discuss other cases. Note that, from (2.4), we have £ — —oc if

T—>+ooandu<—%.
Theorem 7 (Periodic wave solutions) Suppose that 20 < «, %kb@a —b) < B <

% (a+b)?. Consider the following conditions:

(1) H(up,0) > H(—2£,v1) and up < up < —22 (see (1) and (2) of Figure );

(2) H(u1,0) < H(—2,v1) and uz < ug < eo, where ey € (uz, —22) is the solution of
equation H (u,0) = H(uy,0) (see (3) of Figure ).

If one of the two conditions holds, then (1.2) has a periodic wave solution

(€) = 1(€ — 2nTy) for £ € [2nTy, (2n + 1)Ty),
] (=4 2(n+1)Ty) for & € ((2n+ )Ty, 2(n + 1)Ty),

n=0,%+1,+2, .-, with u(0) = ug and v(0) = 0 satisfying

¢1 1
———=ds =¢, (4.1)
ug V F(s)
where
F(u) :# Lk:c’o/luG + ik“""oz‘o’(Qoz + 11b)u° + b*Bu
(%k‘au +b)* \ 324 270
1 1 .
+ 5/~cb2(od<:b + kb + aB)u’ + Ekzab(gkb? + 6kab + 203)u’ (4.2)

1
+2—16k3a2(2a5 + 18kab + 45kb?)u* — H (uo, 0)) :

Ty is given by

Ug 1
T, :/ = ds,
uo V F(s)

and u, € (u,us) is a solution of H(u,0) = H (ug,0).
Proof By (1) of Theorem 1 system (2.5) has a periodic orbit I' = I'y UT'_ since the
equilibrium Ej is a center. Take (up,0) € I'. From the definition of H(u,v) in (2.6), T’
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lies on the curve given by H(u,v) = H(ug,0). Note that H(u,0) = H(ug,0) has a solution
ug € (u1,uz), i.e., I' intersects the u—axis at the point (ug ,0).
H(u,v) = H(ug,0) yields v = £4/F(u). By (2.3) we have
gedv_ _duv
v ++/F(u)

Integrating the above along T' in clockwise gives (4.1).
Theorem 8 (Kink-like or antikink-like wave solutions) Suppose that 2b < «, %k‘b@a —
b) < B < 2= (a+b)? and H(uy,0) > H(—2,v1). Let I'y and Ty denote the orbit connecting

E5(u1,0) (see (1) of Figure ). Take an initial value (ug,vo) with u; < uy < uz and vy > 0
(or vy < 0) on the I'y (or I'z). Then (1.2) has a kink-like (or antikink-like) wave solution

u = u(§) satisfying
“ 1 b 1
/uo F(s)ds =¢ (or /uo — F(s)ds = f)

for £ € (—o0,T}) (or € € (T}, 400)), where F(u) is defined in (4.2) by replacing H (ug,0)
with H (uy,0) and T} (or T1) is given by

T, / e d T / T ! d
= S or = — S .
" e VEG) e VEG)

The proof is similar to the one of Theorem 3.3.
Theorem 9 (Compacton-like wave solutions) Suppose that 2b < a, %kb@a— b) < B <
%(a +0)? and H(uy,0) > H(—%,Ul). If uy < ey < eq, where eq € (ug,us) is the solution

of equation H(u,0) = H(—22,vy) (see (1) of Figure ), then (1.2) has a compacton-like wave

solution

u(€) = $2(§)  for £ €[0,T2),
p2(=¢) for £ € (—T5,0),
with (u(0),v(0)) = (e1,0) satisfying
2
e1 F(s)

where F'(u) is defined in (4.2) by replacing H (ug,0) with H(e;,0) and T3 is given by

ds = &,

‘o:
>

|

=%

1
——ds.
e1 V F(s)
Theorem 10 (Periodic cusp wave solutions) Suppose that 2b < «, %b@a —-b) < p<

2 (a+b)? and H(uy,0) > H(—22,vy). If uy < ey < ug, where g € (u1,uz) is the solution of
the equation H(u,0) = H(—22,v;) (see (1) of Figure ), then (1.2) has a periodic cusp wave

" koo

T =

solution

u(é—) . ¢3(§ - 27'LT3) for § € [2”T3, (271 + 1)T3>,
") (=€ +2nTy) for € € [(2n — 1)Ty, 2nTy),
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n=0,%£1,42 -+ with u(0) = eg and v(0) = 0 satisfying
¢3

F

where F'(u) is defined in (4.2) by replacing H (ug,0) with H(eo,0), and T3 is given by

ds =¢,

o L ds
€0 V F(S)

Theorem 11 (Solitary wave solutions]) Suppose 2b < o, 2kb(2a—b) < 3 < 2 (a+b)?
and H(u1,0) < H(—22,v;) (see (3) Figure ). Then (1.2) has a solitary wave solution

) ¢a(§)  for £ €[0,400),
ulé) = { $4(—€) for £ € (—00,0)

with u(0) = ey and v(0) = 0 satisfying
$a

eOF

where g € (uz, —22) is the solution of equation H(u,0) = H(uy,0) and F(u) is defined in
(4.2) by replacing H (ug,0) with H(uy,0).

Theorem 12 (Cusp solitary wave solutions) Suppose that 2b < «, %kb(2a —b)<p<
(a4 b)? and H(uy,0) = H(—22,v1). Let T'; (or ') denote the orbits connecting (us,0)
and (=22, vy) (or (—22, —vy)). Take an initial value (u(0),v(0)) = (uo,vo) € T'1. Then (1.2)

has a Cusp solitary wave solution

——ds =¢, (4.3)

u({) _ ¢5(£) for 5 € (_007T4);
¢s(—§ +2Ty)  for § € (T4, 00),

where ¢ satisfies

s 1
/uo N

F(u) is defined in (4.2) by replacing H (ug,0) with H(uy,0) and

7]-37& 1
T, = / —— ds=¢
w A\ F(s)
First, in order to simulate some bounded wave solutions, we take b = 3, 8 = %2 and

k = 0.2 which imply a = 7 for ¢ = 9.8. After simple calculations, we obtain u1:—6.64483,
up=—4.06944, v; = 0.70801, the singular line I: u=-1.07143, H(u;,0) = 0.57234 and
H(—1.07143,0.70801) = 0.02327 Thus, the conditions in Theorems 4.1-4.4 are satisfied.
Solving equation H(u,0) = H(—1.07143,0.70801) yields ey = —5.03733
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Figure 4: The simulation of the equation (1.2) for b= %, k = 0.2 and a = 7. (1) (u(0),v(0)) =
(=3,0) and 3 = 3. (2) (u(0),v(0)) = (—6,0. 11160) and 8= 2. (3) (u(0),v(0)) = (-6, 0. 1116 )
and 3= 2. (4) (u(0),v(0)) = (=6,0) and § = 2. (5) (u(0),v(0)) = (—5.03733,0) and § = 2. (6)

(
(u(0),v(0))=(—3.74457,0) and 8 = 225, (7) (u ( ),v(0)) = (=5,0.17172) and 3 = 2181,
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The graph of the periodic wave solution u(§) of (1.2) with an initial value (u(0),v(0)) =
(—3,0) is shown in (1) of Figure . The graph of the kink-like (or antikink-like ) wave solution
u(€) of (1.2) with an initial value

(u(0),v(0)) = (—6,0.11160)

(or (u(0),v(0)) = (—6,—0.11160)) is shown in (2) (or (3)) of Figure . The graph of the
compacton-like wave solution u(¢) of (1.2) with an initial value (u(0),v(0)) = (—6,0) is
shown in (4) of Figure . The graph of the periodic cusp wave solution u(§) of (1.2) with an
initial value (u(0),v(0)) = (—5.03733,0) is shown in (5) of Figure .

Second, in order to simulate solitary wave solutions, we take b = %, 8= 5—755 and k = 0.2

which imply a = 7 for g = 9.8. After simple calculations, we obtain
up = —5.97573, us = —4.73855, v1 = 0.73453,

the singular line I: u=—1.07143, H(u;,0) = —0.13603 and H(—1.07143,0.73453) = 0.02446.
Thus, the conditions in Theorem 4.5 are satisfied. Solving equation H(u,0) = H(—5.97573,0)
yields eg = —3.74457. The graph of the solitary wave solution w(§) of (1.2) with an initial
value (u(0),v(0))=(—3.74457,0) is shown in (6) of Figure .

Last, in order to simulate cusp solitary wave solutions, we take b = %, 8= % and

k = 0.2 which imply a =7 for g = 9.8. After simple calculations, we obtain
up = —6.21428, uy = —4.49999, v; = 0.72730,

the singular line I: u=—1.07143, H(uy,0) = 0.02413 and H(—1.07143,0.72730) = 0.02413.

Thus, the conditions in Theorem 4.6 are satisfied. Solving equation
H(-5,v) = H(—6.21428,0)

yields v = 0.17172 (or v = —0.17172). The graph of the cusp solitary wave solution u(§) of
(1.2) with an initial value (u(0),v(0)) = (—5,0.17172) is shown in (7) of Figure .
Acknowledgements The author cordially thank Dr Shengfu Deng for his patient

guidance and the referees for their careful reading and helpful comments.

References

[1] Green A E, Naghdi P M. A derivation of equations for wave propagation in water of variable depth[J].
J. Fluid. Mech., 1976, 78: 237-246.

[2] LiY A. Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations[J].
J. Nonlin. Math. Phys., 2002, 9: 99-105.

[3] Deng S, Guo B, Wang T. Some traveling wave solutions of the Green-Naghdi System[J]. Int. J. Bif.
Chaos., 2011, 21: 575-585.

[4] Kraenkelb R A, Leona J, Mannaa M A. Theory of small aspect ratio waves in deep water[J]. Physica
D, 2005, 211: 377-390.



1072 Journal of Mathematics Vol. 34

[5] Huang J, Liu H. New exact traveling wave solutions for Fisher equation and Burgers-Fisher equa-
tion[J]. J. Math. (PRC), 2011, 31 (4): 631-637.

[6] Rong J, Tang S, Huang W. Bifurcations of traveling wave solutions for the k(n, 2n, —n) equations[J].
J. Math. (PRC), 2010, 30 (4): 603-612.

[7] Tang S, Tang Q. Traveling wave solutions for the generalized special type of the Tzitzeica-Dodd-
Bullough equation[J]. J. of Math. (PRC), 2009, 29 (1): 27-37.

[8] Zhong J, Gu X. Bifurcation of traveling wave solutions for symmetric regularized wave equations[J].
Math. Appl., 2011, 24(3): 488-492.

[9] Zhang Z, Ding T, Huang W, Dong Z. Qualitative theory of differential equations[M]. Providence:
American Mathematical Society, 1991.

INFB L EL K B Green-Naghdi#hif #& 8Y g4 77K %

Bl L, ZEhRsE
(T 22 e By S SRR, | R T 524048)

' AW T /NESZHB ) Green-Naghd i B I F 1 H i RS REE 7%, £
FIRZHERAET, WHE TERATBER SR 73 & F Hgn 1 X RROARIE, 1520 7 6 F e, | SCHBOR, |~
SURATBE AR, | SR, TR, IR AL I A AORS i ik . 328, I H B Mapleti

T IR o
$#17: Green-Naghdidfi st #5284, 17U, AHE; 424
MR/(2010)F 8 47 2 5:  35Q35; 34C23; 34A26 FESHS: 017524



