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Abstract: In this paper, the stability of single valued extension property under compact
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1 Introduction

Throughout this paper, H will denote a complex separable infinite dimensional Hilbert
space. Let B(H) denote the algebra of all bounded linear operators on H and IC(H ) the ideal
of compact operators in B(H). We recall that, for T € B(H), the spectrum o(T") collects
the complex numbers A for which T — A[ fails to be invertible, equivalently is either not one
to one or not onto. An operator T' € B(H) is called upper semi-Fredholm if it has closed
range R(T) with finite dimensional null space N(T), and if R(T') has finite co-dimension,
T € B(H) is called a lower semi-Fredholm operator. We call T' € B(H) Fredholm if it has
closed range with finite dimensional null space and its range of finite co-dimension. For
a semi-Fredholm operator, let n(7) = dimN(T) and d(T) = dimH/R(T) = codimR(T).
The index of a semi-Fredholm operator T € B(H) is given by ind(7) = n(T) — d(T'). The
ascent of T, asc(T'), is the least non-negative integer n such that N(7T™) = N(T""!) and
the descent, des(T'), is the least non-negative integer n such that R(T") = R(T"™!). An
operator T' € B(H) is called Weyl if it is Fredholm of index zero. And T' € B(H) is called
Browder if it is Fredholm “of finite ascent and descent” : equivalently [4, Theorem 7.9.3]
if T is Fredholm and T — Al is invertible for sufficiently small A # 0 in C. The essential
spectrum o, (T), the Weyl spectrum o, (T), the Browder spectrum o3,(T"), the Wolf spectrum
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osr(T) of T € B(H) are defined by (see [4, 5]): 0.(T) = {A € C: T — A is not Fredholm},
ow(T)={A € C:T — A is not Weyl}, 0,(T) = {\ € C: T — A\ is not Browder},

osr(T) ={A€ C:T — Al is not semi — Fredholm}.

Let 00(T) = o(T)\ow(T), pu(T) = Cow(T), pp(T) = C\ow(T), psr(T) = C\osp(T) and
osr, (T)(osp_ (T)) = {A € C: T — A\is not upper (lower) semi — Fredholm}.

We call T € B(H) is bounded from below if N(T') = {0} and R(T) is closed, o,(T) =
{A € C: T — Al is not bounded from below} denotes the approximate point spectrum and
0s(T) ={A € C: T — A is not surjective}.

In this note, we investigate the stability of single valued extension property under com-
pact perturbations for the Helton class operators. Also, we characterize 2x 2 upper triangular
operator matrices for which the single valued extension property is stable under compact

perturbations.

2 SVEP and Its Perturbations

In [6], Helton initiated the study of operators which satisfy an identity of the form

T - ( T ) 71T 4o (1) T™ =0, (1)

We need further study for this class of operators based on (1). Let R and S be in B(H) and
let C(R,S): B(H) — B(H) be defined by C(R,S)(A) = RA — AS. Then

k
C(R,8)" (1) => (-1} ( ) > RIS*,

If there is an integer k > 1 such that an operator S satisfies C(R, S)*(I) = 0, we say that
S belongs to the Helton class of R with order k. We denote this by S € Heltony(R). Let’s

begin with a lemma.
Lemma 2.1 Let S € Heltony(R), then:
(1) 04(8) C 0a(R), 0sp, (S) C osp, (R);
(2) 0s(R) C 04(5), 0sr_(R) € osr_(5);
(3) For any A € C, N(S — AI) C N[(R — \I)F];
(4) 5,(S) C oy (R).
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Proof For any A € C, we have the following equation:
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(M — S)+1 + ]f > (R =AM = S)F2
- < kfl (R— AI)FY(AL = §) = —(R — A)*,

(R — )J)[( ]j ) (M — §)+1

+ee ( kﬁ ) > (R=ADF2X = S) + (R—=AD)F 1] = —(A\ - S)k.
From the first equation, we can prove that o,(S) C 04(R), osp, (S) C ogp, (R), 0,(S) C
0,(R) and for any A € C, N(S — A\I) C N[(R — AI)*]. Using the second equation, we get
that o04(R) C 04(S) and ogr_(R) C ogp_(5).

An operator T on a complex Hilbert space H is said to have the single valued extension
property(SVEP for short), denoted by T €(SVEP), if for every open set U C C, the only
analytic solution f(-) : U — H of the equation (T"— XI)f(A) = 0 for all A € U is the zero
function on U. Clearly, T' has the SVEP if into,(T) = (), where 0,(T") denotes the point
spectrum of T'. The single valued extension property is possessed by many important classes
of operators such as hyponormal operators and decomposable operators. The interested
reader is referred to (see [1, 3, 9]) for more details. Next we study the Helton class of an
operator which has the single valued extension property.

Theorem 2.1 Let S € Heltong(R). If R € B(H) has the single valued extension
property, then S has the single valued extension property.

Proof Let f : D — H be an analytic function such that (Al — S)f(\) = 0, where
D C C is open. By (4) in Lemma 2.1, we know that (R — AI)*f(\) = 0. Since R € B(H)
has the single valued extension property, it follows that (R — AI)¥~!f()\) = 0. By induction,
we have f()\) = 0. So we conclude that S has the single valued extension property.

In order to study the stability of the single valued extension property, we first give a
lemma (see [10], Theorem 1.3).

Lemma 2.2 Let T € B(H), then T + K €(SVEP) for all K € K(H) if and only if
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(1) intogp(T) = 0;

(2) psr(T) is connected.

If R € K(H) and S € Helton,(R), from Lemma 2.1, we know that ogp, (S) = {0}.
Then osr(S) = {0} since S has the single valued extension property. For any polynomial p,
osr(p(S)) = {p(0)}. Thus int osr(p(S)) = 0 and psr(p(S)) is connected. So we have that

Corollary 2.1 If R € K(H) and S € Heltong(R), then p(S) + K has the single valued
extension property for any polynomial p and any K € K(H).

In [10], if psp(T) is connected, then o(T' + K) = ogp(T + K) U 0o(T + K) for all
K e K(H).

Theorem 2.2 Let S € Helton,(R). If R+ K has the single valued extension property
for all K € K(H), then S + K has the single valued extension property for all K € IC(H) if
and only if ogp, (S) = osr_(5).

Proof We know that o(R) = osr(R) U 0o(R) since psr(R) is connected (Lemma 2.2).
It can induce that ogp, (R) = osr_(R).

If S 4+ K has the single valued extension property for all K € K(H), we know that
psr(S) is connected. Then o(S) = ogp(S) U oo(S). This implies that ogp, (S) = osr_(9).

For the converse, if ogp, (S) = osp_(5), we know from Lemma 2.1 that

O'SF+(S) = O'SF+<R) = O0OSF_ (R) = Uspf(S).
Then
osp(S) = osp, (S) Nosr_(S) = osp, (S) = 05 (R) Nosr_(R) = osp(R).

So psr(S) = psp(R) and intogr(S) = intogp(R). Since R+ K has the single valued extension
property for all K € K(H), by Lemma 2.2, S + K has the single valued extension property
for all K € K(H).

From the proof of Theorem 2.2, we can get: Let S € Heltong(R), if R has the single
valued extension property, then S + K has the single valued extension property for all
K € K(H) if and only if ogp, (S) = ogr_(S) and R + K has the single valued extension
property for all K € K(H).

If S € Heltony(R) and R € Helton,(S), then

o.(S) =0, (R),

where o, € {0, OSF, s OSF_,Op, 0s}. By Theorem 2.1 and Theorem 2.2, we have

Corollary 2.2 Let S € Helton,(R) and R € Helton(S), then

(1) R has the single valued extension property if and only if S has the single valued
extension property;

(2) R+ K has the single valued extension property for all K € K(H) if and only if
S + K has the single valued extension property for all K € IC(H).

If S and R have the single valued extension property, does S+ R have the single valued

extension property? So far we don’t know the answer about this question. But we consider
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the special cases of this question. We start with the case of Helton class. If S € Heltony(R)
and SR = RS, then R € Helton,(S). By Corollary 2.2, there is the result

Corollary 2.3 Let S € Helton,(R) and SR = RS, then

(1) R has the single valued extension property if and only if S has the single valued
extension property;

(2) R+ K has the single valued extension property for all K € K(H) if and only if
S 4 K has the single valued extension property for all K € K(H);

(3) S + K has the single valued extension property for all K € K(H) if and only if
S + R + K has the single valued extension property for all K € K(H).

Proof We only need to prove (3). It is easy to calculate that C(2R, R + S)*(I) = 0,
that is R+ S € Helton,(2R). It is clear that 2R - (R+ S) = (R+ 95) - 2R, then from (2),
S 4+ K has the single valued extension property for all K € K(H) if and only if R + K has
the single valued extension property for all K € K(H) if and only if 2R+ K = 2(R + %)
has the single valued extension property for all K € IC(H) if and only if S+ R + K has the
single valued extension property for all K € K(H).

If SN = NS and N* = 0 for some k € N, then S € Helton,(S + N) and S(S+ N) =
(N +5)S; Also, we can prove that ¢S € Helton(tS + N) for any ¢t € N. Then

Corollary 2.4 Let SN = NS. If N*¥ = 0 for some k € N, then

(1) S has the single valued extension property if and only if S+ N has the single valued
extension property;

(2) S + K has the single valued extension property for all K € K(H) if and only if
S + N + K has the single valued extension property for all K € IC(H);

(3) S + K has the single valued extension property for all K € IC(H) if and only if
tS 4+ N + K has the single valued extension property for all K € K(H) and for any ¢ € N.

In Corollary 2.4, if we let N € B(H) be a quasi-nilpotent operator, we can get that
S + K has the single valued extension property for all K € C(H) if and only if S+ N + K
has the single valued extension property for all K € I(H). In fact, we know that N is a
Riesz operator. Then psp(S + N) = psr(S). From Lemma 2.2, we can prove the claim.

Example 2.1 Let T}, Ty € B(¢?) be defined by

Tl(xlvx%"') == ($1,0,$3,$4,"'); T2(x17x27"') = (valvoaof"))

0 T
single valued extension property for all K € K(¢? & ¢2). Thus tS + N + K has the single
valued extension property for all K € IC(H) and for any ¢ € N.

T,
andletS—(O1 0),]\7—(8 0 , then SN = NS, N2 = 0 and S + K has the

In [2], the single valued extension property of upper triangular operator matrices has
been studied. We continue this work. In the following, we characterize 2 x 2 upper triangular
operator matrices for which the single valued extension property is stable under compact
perturbations. Let us give some lemmas which will be used in the main result (Lemma 2.10
in [8] and Theorem 3.1 in [7] or Corollary 4.3 in [10]).



1038 Journal of Mathematics Vol. 34

Lemma 2.3 Let T € B(H) and suppose that ) # 7 C ogr(T), then given € > 0, there
N C

exists a compact operator K with ||K|| < e such that T+ K = 0 A

), where N is a

normal operator and o(N) = os5p(N) =7.
Lemma 2.4 Let T' € B(H). If o(T) = 052, where 2 is a bounded connected open

subset of C, then, given € > 0, there exists K € K(H) with [|K| < @ + € such that
o(T + K) = Q. Here m(-) denotes the planar Lebesgue measure.
R S
Theorem 2.3 Let T = 0 N € B(H & H), then T + K has the single valued

extension property for all K € K(H @ H) if and only if

(1) R+ K; and N + K, have the single valued extension property for all K; € K(H)
(i=1,2);

(2) ow(T+K)=0,(T+K) forall K € K(H & H).

Proof Suppose T+ K has the single valued extension property for all K € K(H @ H).
Then intogr(T) = 0 and psr(T) is connected, also 0, (T + K) = 0,(T + K) for all K €
K(H®H).

First, we will prove that intogr(R) = 0 and psp(R) is connected. If intogr(R) # 0,
then there exists A\g € ogr(R) and § > 0 such that Bs(Ag) C ogr(R). Since intogp(T) = ()
and T has the single valued extension property, there must exist \; € Bs(\g) such that

T — M\ I is an upper semi-Fredholm operator. Using the equation

R-MI S I 0 IS R—MI 0
T— M= = ,
0  N-\I 0 N-—\I 0 I 0o I

we know that R — Ail is upper semi-Fredholm. It is in contradiction to the fact that

A1 € Bs(Xo) € osr(R). For the connected property of psr(R), if psrp(R) is not connected,

then we can choose a bounded component €2 of psp(R). Since 02 C ogpr(R), by Lemma
N, B

2.3, there exists K;; € K(H) such that R + Ky, = 01 ek where N; is normal and

o(Ny) = osr(N;) = 09. By Lemma 2.4, we can choose a compact operator K’ such

that o(N; + K') = Q. We have the fact that N; + K’ — A is Weyl for any A € Q. Let

K' 0 N +K' B
K = then Ki» € K(H) and R+ Ky + Ko = | ' . Let
0 0 0 A
K, 0 R+K, S
K, = Ky + Kip and K = 01 o | e get that T + K = ( +0 ! N Since

intogr(T) = 0, there exists A\; € Q such that T+ K — A\ I is upper semi-Fredholm with
ind(T + K — M\I) <0. Thus T+ K — X\o! is bounded from below for some Ay € €2 since
T + K has the single valued extension property. This induces that R+ K; — A2[ is bounded
from below. Also Ni+ K’ — Ay1 is bounded from below. But since Ny + K’ — A1 is Weyl, we
know that N, + K’ — A\, is invertible. It is in contradiction to the fact that o(N; + K') = Q.
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Now we prove that intogr(R) = () and psr(R) is connected, then R + K; has the single
valued extension property for all K; € K(H).

Second, using the same way we will prove that intogr(IN) = () and pgp(N) is connected.
If intogp(N) # 0, then there exists \g € osp(IN) and 6 > 0 such that Bs(A\g) C ogr(N).
Since intogp(T) = intogr(R) = 0 and both T and R have the single valued extension
property, there must exist A\; € Bs()\g) such that T — AT and R — A\;I are upper semi-
Fredholm operators. From the fact that psp(7) and psr(R) are connected, we know that
T — M1 and R — A\ are Browder operators (see [10], Corollary 2.5). Then there exists
A2 € Bs(Ao) such that T'— A\yI and R — Aol are invertible. This induces that N — A\o7 is
invertible. It is a contradiction. If psr(NN) is not connected, then we can choose a bounded
component €2 of pgp(N). Similar to the preceding proof, we can choose K € C(H) such that

N, +K' B

N+K, = 0 4 ) , where Ny is normal, K’ is compact and o(Ny + K') = Q. Also,

0 N+ K,

Since intogr(T') = intogr(T + K) = (), there exists A; € Q such that T+ K — A1 is upper
semi-Fredholm. Then R — AI is upper semi-Fredholm. But since psp(T) and psr(R) are
connected, we know that both T+ K — A1 I and R — A\;I are Browder operators. Thus there
is Ay € Q) such that both T'4+ K — Aol and R — Ay are invertible. We get that N + Ky — Aol
is invertible, which implies that Ny + K’ — Ao is bounded from below. Then No+ K’ — M1 is
invertible since Ny + K’ — \oI is Weyl. It is in contradiction to the fact that o(Ny+ K') = Q.
We now get that intogr(N) = 0 and psp(N) is connected, so N + K, has the single valued
extension property for all Ky € IC(H).

N2+K’)\IisWeylforany)\GQ.LetK:(g ]?' )andT+K:<R o >
2

For the converse, suppose R+ K; and N 4 K5 have the single valued extension property
for all K; € K(H) (i = 1,2). First we need to prove that 7" has the single valued extension
property if R and N have the single valued extension property. Let f = fi®fo: D - HOH
be an analytic function such that (A —T') f(A) = 0, then we have that

(AT = R)f1(A) = 5f2(A) =0,
(AL = N)f2(A) = 0.

Since N has the single valued extension property, it follows that fo(\) = 0. Then
(AL = R)f(A) = 0.

Thus fi1(A) = 0 since R has the single valued extension property. We get that f(\) =
0, which means that T has the single valued extension property. Second we prove that
intogr(T) = () and psp(T) is connected. Since psr(R) and pgr(IN) are connected, it follows
that ogp, (R) = ogr(R) and ogp, (N) = ogp(N). Using the fact that ogp(T) = ogp, (T) C
osp, (R) Uogp, (N) = osp(R) Uogp(N) and intosp(R) = intosp(N) = 0, we get that
intogr(T) C intogr(R) Uintogr(N) = 0, that is intoge(T) = 0. If psr(T) is not connected,
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then we can choose a bounded component 2 of psr(7"). Thus we can choose K € K(H @ H)
such that

Ns+ K, B
T+K:< 3_5 ! A>IH1@H2HH1@H2:H@H7

_ K, K
where N3 is normal, K; is compact and o(N3 + K;) = Q. Let K = ( Ku K12 ), where
21 22

K;; is compact (i,j = 1,2). Then

TLK — Ns+ K, B _ R+Kyy S+ Ko
0 A K21 N+K22

- <R+Kn S+Ku>+< 0 0)

0 N + Koo Ko 0O
Since intogr(R) = intogr(N) = 0, there exists A; € Q such that R — A\ I and N — \,I are
semi-Fredholm. Using the fact that both psp(R) and psr(N) are connected, R+ K11 — A1
and N + Ksy — A\ I are Browder (see [10], Corollary 3.5). Then T'+ K — A\ I is Weyl. By
ow(T + K) = 0,(T + K), there exists \y € Q such that T4+ K — A\y[ is invertible, this
means that N3 + K; — Ao is invertible. It is a contradiction again. So intogr(T) = 0 and
psr(T) is connected, which means that 7'+ K has the single valued extension property for
all K € K(H & H).

Similar to the proof of Theorem 2.3, let T = (T;;) € B(®}_,H) be an n x n upper
triangular operator matrix, then 7'+ K has the single valued extension property for all
K € K(®}_,H) if and only if T}; + K, has the single valued extension property for all
K, e K(H) (i=1,2,---,n)and 0,(T + K) = 0,(T + K) for all K € K(®}_,H).

If N € B(H) is a Riesz operator, then intogr(N) = 0 and pgr(N) is connected. This
means that N 4+ K has the single valued extension property for all K € K(H). Then

R S
Corollary 2.5 Let T = 0N > € B(H® H). If N € B(H) is a Riesz operator,

then T+ K has the single valued extension property for all K € K(H® H) if and only if R+ K,
has the single valued extension property for all K; € K(H) and 0, (T + K) = 0,(T + K) for
all K € K(H & H).
R S .
Let T = 0 N € B(H®H). If RS = SN, we claim that 0,(T) = 0,(R)Uog,(N).
In fact, we only need to prove that o, (R)Uo,(N) C 0,(T). Let Ao ¢ 0,(T), then \g ¢ 0,(R).
First we will prove that N(N —XoI) = {0}. If 29 € N(N—XoI), by (R—XoI)S = S(N —X\oI),
then (R — Agl)Szo = 0. This induces that Szo = 0 since R — A\¢I is bounded from below.
0
We can find that € N(T — M\oI). But since N(T — \oI) = {0}, it follows that
Zo
2o = 0. So N(N — X\gI) = {0}. Second we will prove that R(N — A\gI) is closed. Let
(N=XoI)y, — yo(n — o0), then S(N—XoI)y,, — Syo(n — 00). By (R—XoI)S = S(N—XoI),
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(R — XoI)Syn — Syo(n — o0). Since R — Aol is bounded from below, there is k > 0 such
that |[(R — XoI)x| > k||z| for all x € H. Then {Sy,} is a Cauchy sequence. Suppose
Syn — y1(n — o0). Then

_ 0 _ Syn _ Y1 N — o0
(T AOI)(%> <(N_A01)yn) <y0>( ))-

From the fact that R(T — AoI) is closed, there exists ( o ) such that

T2

n(2)-(2)
T2 Yo

Then (R — Agl)z1 + Sxo = y1 and (N — Agl)z2 = yo. This implies that yo € R(N — A1),
which means that R(N — A\gl) is closed. So A\g ¢ 0,(IN) and hence 0,(T) = 0,(R) Uo,(N).

Corollary 2.6 Let T = ]0% ]ff € B(H® H) and RS = SN, then T + K has the

single valued extension property for all K € K(H @ H) if and only if
(1) Both R and N have the single valued extension property;
(2) intogp(T) = 0;
(3) For any K = K1 K
Ky Ko
K,).
Proof Suppose T+ K has the single valued extension property for all K € K(H®H). By
Theorem 2.3, psr(T'), psr(R) and psp(N) are connected. Then ogp, (R+ K1) = 0p(R+K;)
and ogp, (N + K3) = 0y(N + K») for any K, K, € K(H). Since

K, K
o= T 12 00
0 N+K, Ky 0

0 0 K, K
and ( is compact for any K = ! ' € K(H @ H), it follows that

> GIC(H@H), Ub(T+K) :USF+(R+K1)UUSF+(N+

Ky 0 Ko Ko
oo(T + K) = osp, (T + K) C ogp, (R+ K1) Uogp, (N + K3). Let \g ¢ 03,(T + K), then
Xo & osp, (R + Kp). But since pgp(R) is connected, we know that R 4+ K; — A\l is a
Weyl operator. Then N + K; — Aol is Weyl, which means that Ay ¢ osp, (N + K3). So
K, K
Ky Ky
For the converse, we only need to prove that psp(T) is connected. If pgr(T) is not

oo(T+ K) =0sp, (R+ K1) Uogp, (N + Ks) for any K = EK(H®H).

connected, then we can choose a bounded component 2 of psr(T). Then we can choose
N;+ K| B

, where N3 is normal, K is compact
0

K eK(H®H) SuchthatT+K_<
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and o(N3 + K/) = Q. Similar to the proof in Theorem 2.3, we know that T" has the single

valued extension property and

T4 K— N;+ K| B _ R+ K, S+ K .
0 A K21 N+K2

Since intogr(T) = @ and T has the single valued extension property, there exists Ao € Q such
that T'— Aol is bounded from below. Then R — AgI and N — \gl are bounded from below
because 0,(T") = 0,(R)U0c,(N). This implies that Ao ¢ osp, (R+K;)Uogp, (N + K3), thus
Ao ¢ 0u(T + K). Then there exists A\; € Q such that T + K — A\ I is invertible. It follows
that N3 + K| — A1 is invertible, a contradiction.

Let T = ]0% ]i € B(H® H) and N € Heltong(R). If 0gp, (N) = osp_(NN) and
R+ K has the single valued extension property for all K; € K(H), then pgr(R) = psr(N).
Thus psr(T) = psr(R) N psr(N) = psr(R) is connected. If R € Heltong(N), psr(R) is
connected and N + K3 has the single valued extension property for all K, € K(H), also
we have that psp(T) = psr(R) N psr(N) is connected. By Lemma 2.1, Theorem 2.2 and
Theorem 2.3, we have

Corollary 2.7 (1) Let T = ( ? ]L\q[ € B(H® H) and N € Heltony(R), then T+ K

has the single valued extension property for all K € K(H @ H) if and only if ogp, (N) =
osp (N) and R + K, has the single valued extension property for all Ky € K(H);

R S
(2) Let T = 0N € B(H @ H) and R € Helton,(N), then T + K has the single

valued extension property for all K € K(H @ H) if and only if psr(R) is connected and
N + K3 has the single valued extension property for all Ky € C(H).
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HeltonE T M BEI SKIER

G, B2, R
(1. HERATIE ARSI, EE 400074)
(2. BRPEIMTE S50 515 SRR, Bt i 710062)
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