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1 Introduction

With the continuing advancement in the use of biological markers in epidemiology and
genetic studies, which often involve expensive assays, there is a growing incentive to further
improve study efficiency and power by optimally incorporating into the statistical analysis
the available auxiliary covariate. Some proposed methods have been developed for the
univariate survival time data in the areas of mismeasured covariates, missing data, and
auxiliary covariate problems. This includes, but is not limited to [1–3].

Models dealing with multivariate failure time data where the true covariates of interest
are fully available for all subjects have been well studied. In particular, if the correlation
among the observations is not of interest, the marginal proportional hazards model is widely
used, e.g., [4–9]. There has been limited progress on the methods for dealing with covari-
ate measurement error for multivariate failure time. Greene and Cai [10] proposed using
the SIMEX approach for handling measurement errors in the marginal hazards model for
multivariate failure time data, when a validation set is not available. Liu, Zhou and Cai
[11] consider an inference procedure for multivariate failure time with auxiliary covariate
information.
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Clustered failure time data arise when the study subjects are sampled in clusters so
that the failure times within the same cluster tend to be corrected. In this article, assuming
a validation set is available, we develop an estimated pseudopartial likelihood method for
handling auxiliary covariates for clustered failure time data under the framework of the
marginal hazards model with distinguishable baseline hazards.

The rest of the article is organized as follows. Section 2 outlines the marginal haz-
ard model and present the estimated pseudopartial likelihood estimator. In Section 3, We
characterize the asymptotic properties of the proposed estimator and propose a variance
estimator. We conclude the article with some discussion in Section 4. Outline of the proof
for theoretical results are given in the Appendix.

2 Model and Estimation

2.1 Notation and Data Structure

Suppose that there are n independent clusters. In cluster i, there are J subjects. For
subject j in cluster i, K different types of failures may occur. Let (i, j, k) denote the kth type
of failure on subject j in ith cluster, for i = 1, · · · , n; j = 1, · · · , J ; k = 1, · · · ,K. Let Tijk

and Cijk denote the potential failure time and censoring time, respectively. With censoring,
we observe Xijk = min(T ijk, Cijk). Let ∆ijk = I(Xijk ≤ Cijk) be the failure indicator
and Y ijk(t) = I(Xijk ≥ t) denote the at-risk indicator process. Let (Eijk, Zijk) denote
a set of covariate, where Eijk is the primary exposure subjecting to missing and Zijk =
(Zijk1, · · · , Zijkd)′ is the remaining observed covariates vector that is always. We denote
variable A as an auxiliary variable for the exposure variable E, assuming that conditional
on E, A provides no additional information to the regression model, i.e.,

λ(t;E(t), Z(t), A(t)) = λ(t, E(t), Z(t)).

Suppose that there is a simple random validation sample with sample size nV , denote by
V , such that (i, j, k) belonging to V have their (E, A) measured. Similarly, let V denote the
remaining subjects, the nonvalidation set, the subjects in V will only have their A measured.
Hence, the observed data structure for (i, j, k) is

{Xijk,∆ijk, Zijk, Aijk, Eijk}, if(i, j, k) ∈ V,

{Xijk,∆ijk, Zijk, Aijk}, if(i, j, k) ∈ V .

2.2 Models and Estimated Pseudopartial Likelihood Function

Assume that, the marginal hazard function for the kth failure type of subject j in cluster
i takes the form

λijk(t;Zijk(t), Eijk(t)) = Y ijk(t)λ0jk(t) exp{β′2Zijk(t) + β′1E
∗
ijk(t)}, (2.1)
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where E∗
ijk is an m-vector consisting of Eijk and possibly interaction terms between Eijk and

some fully observed covariates, β = (β′1, β
′
2)
′ is the parameter to be estimated, and λ0jk(t)

is an unspecified marginal distinct baseline hazard function pertaining to the type k failure.
If (i, j, k) belongs to the validation set, then Zijk and Eijk are observed and the marginal

model takes the form as in equation (2.1). If (i, j, k) belongs to the nonvalidation set V , we
only observe Zijk(t) and Aijk(t). Under this situation, we can show, using the argument of
Liu [11], that the hazard function for λijk(t;Zijk(t), Aijk(t)) satisfied the induced model

λijk(t;Zijk(t), Aijk(t)) = Y ijkλ0jk(t)eβ′2Zijk(t)E{eβ′1E∗ijk(t)|Y ijk(t) = 1, Aijk(t), Zijk(t)}
= Y ijkλ0jk(t)eβ′2Zijk(t)E{eβ′1E∗ijk(t)|Y ijk(t) = 1, A∗ijk(t)}, (2.2)

where A∗ includes auxiliary variable A and the part of the information in covariate Z that,
given A, are still related to E. That is, A∗ satisfying the following conditional dependence
f(Eijk(t)|Xijk(t) ≥ t, Zijk(t), Aijk(t)) = f(Eijk(t)|Xijk(t) ≥ t, A∗ijk(t)). Notice that under
this formulation, A∗ still satisfies the auxiliary assumption that given E and Z, A∗ does not
contribute to the regression model, i.e., λ(t;Z(t), E(t), A∗(t)) = λ(t;Z(t), E(t)).

Equation (2.2) implies that this induced hazard model is also a proportional hazard
model with the relative risk function exp(β′2Zijk(t))φijk(β1; t), where

φijk(β1; t) = E{eβ′1Eijk(t)|Y ijk(t) = 1, A∗ijk(t)}.

Based on equations (2.1) and (2.2), the relative risk function can be written as

rijk(β, t) = Rijk(β1, t) exp(β′2Zijk(t)),

where Rijk(β1, t) = exp(β′1E
∗
ijk(t))ρijk +φijk(β1, t)(1−ρijk) and the binary variable ρijk = 1

or 0 denote whether (i, j, k) is in validation set V or not. If f(Eijk(t)|Xijk(t) ≥ t, A∗ijk(t)) is
a known function up to a parameter θ, then the inference about β and θ can be drawn from a
pseudopartial likelihood [4, 6]. However, misspecification of such parameterization may lead
to biased estimates. We develop an estimated pseudopartial likelihood approach for clustered
correlated failure time data that avoids making undesirable parametric assumptions on the
conditional distribution.

If all the observations were independent, we could write the partial likelihood as

PPL(β) =
K∏

k=1

J∏
j=1

n∏
i=1

[
rijk(β, Xijk)

n∑
l=1

Yljk(Xijk)rljk(β, Xijk)

]∆ijk

. (2.3)

When the failure times within a subject are not independent, the above function is referred to
as the pseudopartial likelihood [4, 6]. Without loss of generality, we assume that {A∗ijk} are
identically distributed categorical variables with the distribution Pr(A∗ = am) = pm,m =

1, · · · , L,
L∑

m=1

pm = 1. Hence, if (i, j, k) is in the nonvalidation set V , we will estimate the
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induced hazard function, φijk(β1, t), as

φ̂ijk(β1, t) =

∑
(p,q,s)∈V Ypqs(t)I(A∗pqs(t) = A∗ijk(t)) exp(β′1E

∗
pqs(t))∑

(p,q,s)∈V Ypqs(t)I(A∗pqs(t) = A∗ijk(t))
. (2.4)

It follows that the estimated relative risk function is

r̂ijk(β, t) = R̂ijk(β1, t) exp[β′2Zijk(t)],

where
R̂ijk(β1, t) = exp(β′1E

∗
ijk(t))ρijk + φ̂ijk(β1, t)(1− ρijk).

Replacing rijk(β, t) by r̂ijk(β, t) in equation (2.3), we obtain an estimated pseudopartial
likelihood function

EPPL(β) =
K∏

k=1

J∏
j=1

n∏
i=1

[
r̂ijk(β, Xijk)

n∑
l=1

Yljk(Xijk)r̂ljk(β, Xijk)

]∆ijk

. (2.5)

We define our proposed estimator β̂E as the maximizer of equation (2.5). β̂E can be
obtained by solving the estimated pseudo partial likelihood score equation, Û(β) = 0, where

Û(β) =
K∑

k=1

J∑
j=1

n∑
i=1

∫ τ

0

r̂
(1)
ijk(β, u)

r̂ijk(β, u)
dN ijk(u)−

K∑
k=1

J∑
j=1

n∑
i=1

∫ τ

0

∑
l Yljk(u)r̂(1)

ijk(β, u)∑
l Yljk(u)r̂ijk(β, u)

dN ijk(u)

(2.6)
and N ijk(t) = I(Xijk ≤ t, ∆ijk = 1) is the counting process corresponding to failure time
T ijk. For a function g(β, u), g(j)(β, u) denotes the jth derivative of g(β, u) with respect to
β. A Newton-Raphson iterative procedure can be invoked to obtain β̂E .

3 Asymptotic Properties

To investigate the asymptotic properties of the estimated pseudopartial likelihood esti-
mator β̂E , we define the following notations. For a vector a, define a

⊗
0 = 1, a

⊗
1 = a, a

⊗
2 =

aa′, ||a|| = supi |ai|. For a matrix A, define ||A|| = supi,j |aij |. We also define

s
(0)
jk (β, t) = E(Y ijk(t)rijk(β, t)), s(d)

jk (β, t) = E(Y ijk(t)r
(d)
ijk(β, t)), d = 1, 2,

e1jk(β, t) = E
(
Y ijk(t)

(r
(1)
ijk(β, t)

rijk(β, t)

)⊗
2

rijk(β0, t)
)
,

e2jk(β, t) = E
(
Y ijk(t)

(r
(2)
ijk(β, t)

rijk(β, t)

)⊗
2

rijk(β0, t)
)
.

Assume that the study duration is from 0 to τ . Suppose that β0 = (β′10, β
′
20)

′ is the true
hazards parameter. Our asymptotic results rely on the following assumptions:

[A1]
∫ τ

0

λ0jk(t) < ∞, j = 1, · · · , J ; k = 1, · · · ,K.

[A2] Pr(Y ijk(t) = 1|A∗ijk(t) = am) > 0,m = 1, · · · , L.
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[A3] For any j = 1, · · · , J ; k = 1, · · · ,K, there exists a neighborhood B2 of β20 such
that

E
(

sup
B2×[0,τ ]

||Zijk(t)||2eβ′2Zijk(t)
)

< ∞.

[A4] There exists an open set B1, containing β10, such that φijk(β1, t) is bounded away
from 0 on B1 × [0, τ ].

∑
(β0), as defined in Theorem 3.2, is positive definite.

[A5] For any j = 1, · · · , J ; k = 1, · · · ,K,

E
(

sup
B1×[0,τ ]

[Y ijk(t)R
(d)
ijk(β, t)]

)
< ∞, d = 0, 1, 2,

E
(

sup
B1×[0,τ ]

[
Y ijk(t)

∥∥∥
(R

(1)
ijk(β, t)

Rijk(β, t)

)⊗
2∥∥∥

d

Rijk(β0, t)
])

< ∞, d = 1, 2,

E
(

sup
B1×[0,τ ]

[
Y ijk(t)

∥∥∥R
(2)
ijk(β, t)

Rijk(β, t)

∥∥∥
d

Rijk(β0, t)
])

< ∞, d = 1, 2.

[A6] sup
t∈[0,τ ]

|L(d)
k (t)| = Op(1), d = 0, 1, where

L(d)(t) =
√

nv

[ 1
nv

∑

(i,j,k)∈V

I(Y ijk(t)=1,A∗ijk=a)γ
(d)
ijk(β1, t)− E

(
I(Y ijk(t)=1,A∗ijk=a)γ

(d)
ijk(β1, t)

)]

and γijk(β1, t) = exp(β′1Eijk).
Following closely the argument of [11, 12], we can show the asymptotic properties of β̂E .

We summarize the results in the following theorems and give the outline of the proofs in the
Appendix.

Theorem 3.1 (Consistency) β̂E is a consistent estimator of β0 under assumptions
(A1)–(A6).

Theorem 3.2 (Asymptotic Normality) Under the assumptions (A1)–(A6) in Appendix,
we have that n1/2(β̂E − β0) is asymptotically normally distributed with mean zero and
variance matrix

∑
EPPL(β0) =

∑−1(β0)
∑

1(β0)
∑−1(β0), where

∑
(β0) = −

∫ τ

0

K∑
k=1

J∑
j=1

[(s
(1)
jk (β0, t)

s
(0)
jk (β0, t)

)⊗
2

s
(0)
jk (β0, t)− e1jk(β0, t)

]
λ0jk(t)dt,

∑
1
(β0) = (1− q)E(gijk(β0)g′ijk(β0)) + qE(hijk(β0)h′ijk(β0)),

gijk(β0) =
∫ τ

0

K∑
k=1

[(
φ

(1)
ijk(β10,t)

φijk(β10,t)

Zijk(t)

)
− s

(1)
jk (β0, t)

s
(0)
jk (β0, t)

]
dM ijk(t),

hijk(β0) =
∫ τ

0

K∑
k=1

[(
φ

(1)
ijk(β10,t)

φijk(β10,t)

Zijk(t)

)
− s

(1)
jk (β0, t)

s
(0)
jk (β0, t)

]
dM ijk(t)− 1− q

q

(
Qijk(β0)
H ijk(β0)

)
,

Qijk(β0) =
∫ τ

0

K∑
k=1

(φ
(1)
ijk(β10, t)

φijk(β10, t)
− s

(11)
jk (β0, t)

s
(0)
jk (β0, t)

)
Y ijk(t)

(
eβ′10E∗ijk − φijk(β0, t)

)
δ∗jk(β0, t)λ0jk(t)dt,

H ijk(β0) =
∫ τ

0

Y ijk(t)
(
eβ′10E∗ijk − φijk(β0, t)

)
δ∗∗jk(β0, t)λ0jk(t)dt.
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Here s
(11)
jk (β0, t) is the first m elements of s

(1)
jk (β0, t) and s

(12)
jk (β0, t) is the remaining p ele-

ments,

δ∗jk(β0, t) = E
(
eβ′20Zijk(t)|Y ijk(t) = 1, A∗ijk(t)

)
,

δ∗∗jk(β0, t) = E
([

Zijk(t)−
s
(12)
jk (β0, t)

s
(0)
jk (β0, t)

]
eβ′20Zijk(t)

∣∣∣Y ijk(t) = 1, A∗ijk(t)
)
,

q = lim
n→∞

(nv/n),M ijk(t) = N ijk(t)−
∫ τ

0
λijk(u)du is the marginal martingale.

The variance estimator for β̂E can be consistently estimated by replacing the population
quantities in the covariance matrix

∑
EPPL(β0) with their corresponding sample quantities.

The cumulative hazard Λ0jk(t) can be estimated by Aalen-Breslow type of estimator:

Λ̂ijk(t) =
∫ t

0

n∑
i=1

dN ijk(s)

n∑
i=1

Y ijk(s)r̂ijk(β̂E , s)
=

∫ t

0

1

Ŝ
(0)
jk (β̂E , s)

1
n

n∑
i=1

dN ijk(s),

where Ŝ
(0)
jk (β, t) = n−1

n∑
i=1

Y ijkr̂ijk(β, t).

4 Concluding Remarks

In this article, we studied an estimated pseudopartial likelihood method for clustered
failure time data with an auxiliary covariate. A key feature of this method is that it is
nonparametric with respect to the association between the missing covariate and the observed
auxiliary covariate. The auxiliary variable is assumed to be discrete with the number of
categories fixed. One way to deal with a continuous auxiliary variable is to discretize it
into categories and then apply the proposed method. Future work about common baseline
hazard models and mixed baseline hazard models for clustered correlated failure time data
with auxiliary covariates will be considered.
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Appendix

In this appendix, we outline the proofs of the theorems.
Proof of Theorem 3.1 Note that β̂E solves n−1Û(β) = 0. Follow closely the argument

of [12], one can show that β̂E is consistent for β0, provided:
[R1] n−1∂Û(β)/∂β exists and is continuous in an open neighborhood B of β0.
[R2] n−1∂Û(β0)/∂β0 is negative definite with probability going to 1.
[R3] n−1∂Û(β)/∂β converges in probability to a fixed function,

∑
(β), uniformly in an

open neighborhood of β0.
[R4] n−1Û(β0) → 0 in probability.
Let

Ŝ
(d)
jk (β, t) = n−1

n∑
i=1

Y ijkr̂
(d)
ijk(β, t), d = 0, 1, 2,
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ê1jk(β, t) = n−1

n∑
i=1

Y ijk

( r̂
(1)
ijk(β, t)

r̂ijk(β, t)

)⊗
2

rijk(β0, t),

ê2jk(β, t) = n−1

n∑
i=1

Y ijk

r̂
(2)
ijk(β, t)

r̂ijk(β, t)
rijk(β0, t),

similar to [11], we can show that the four conditions are satisfied. Therefore, β̂E converges
in probability to β0.

Proof of Theorem 3.2 It can be shown that the score function n−1∂ log EPPL(β)/∂β

can be expressed as

n−1/2Û(β) =n−1/2

K∑
k=1

J∑
j=1

n∑
i=1

∫ τ

0

[ r̂
(1)
ijk(β, u)

r̂ijk(β, u)
−

∑
l Yljk(u)r̂(1)

ijk(β, u)∑
l Yljk(u)r̂ijk(β, u)

]
dM ijk(u)

+ n−1/2

K∑
k=1

J∑
j=1

n∑
i=1

∫ τ

0

[ r̂
(1)
ijk(β, u)

r̂ijk(β, u)
−

∑
l Yljk(u)r̂(1)

ijk(β, u)∑
l Yljk(u)r̂ijk(β, u)

]

rijk(β0, u)Y ijk(u)λ0jk(u)du.

By Taylor expansion of Û(β0), we have

n−1/2Û(β0) = −n−1∂Û(β∗)/∂β∗ · n−1/2(β̂E − β0),

where β∗ is between β̂E and β0. To prove the asymptomatic normality, it suffices to prove that
n−1/2Û(β0) converges to a normal random variable in distribution and that n−1∂Û(β∗)/∂β∗
converges to an invertible matrix. By consistency of β̂E and the convergence proof of
n−1∂Û(β)/∂β for (R3), it can be shown that n−1∂Û(β∗)/∂β∗ converges to the invertible
matrix

∑
(β0). These results together with the Slutsky Lemma give the desired normally

result for β̂E in Theorem 3.2.


