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Abstract: In this article, we study the traveling wave solutions of nonlinear Jaulent-Miodek

equations. By using the method of exponential function in rational form, a series new complex

solitary wave solutions including a combination of triangular periodic function and rational function

are obtained.
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1 Introduction

In this Letter, we consider the Jaulent-Miodek equation

ut + uxxx +
3
2
vvxxx +

9
2
vxvxx − 6uvvx − 3

2
uxv2 = 0,

vt + vxxx − 6uxv − 6uvx − 15
2

vxv2 = 0
(1.1)

without any initial conditions. There are many methods to solve eq.(1.1) with some initial
conditions, such as variational iteration method [1], He’s homotopy perturbation method [2],
and homotopy analysis method [3]. These methods can only solve a special kind of solutions
and obtain solutions which satisfy initial conditions. Recently, some researchers use extended
tanh-method [4], generalized (G′/G)-expansion method [5], and Riccati equations method
[6] to investigate the traveling wave solutions of eq. (1.1), and obtained some new types of
complex solitary solutions, i.e.various combinations of trigonometric periodic functions and
rational function solutions.

The purpose of this work is basing on exp-function method [7], use the exp-function
method in rational form [8] to find the exact solutions of eq.(1.1).

2 Exp-Function Method in Rational Form
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To apply the exp-function method in rational form to eq.(1.1), we make use of the
traveling wave transformation ξ = kx + wt, u = u(ξ), v = v(ξ) where and are constants to
be determined later. Then eq.(1.1) reduce to ordinary differential equations.

wu′ + k3u′′′ +
3
2
k3vv′′′ +

9
2
k3v′v′′ − 6kuvv′ − 3

2
ku′v2 = 0,

wv′ + k3v′′′ − 6k(uv)′ − 15
2

kv′v2 = 0,

(2.1)

where the prime denotes the derivative with respect to ξ.
The exp-function method in rational form is based on the as

u =
m∑

j=0

aj

(1 + eξ)j
, (2.2)

v =
n∑

j=0

bj

(1 + eξ)j
, (2.3)

where m and n are positive integers which are unknown to be further determined, aj and bj

are unknown constants. In order to determine the value of m and n, we balance the linear
term u′′′ with the nonlinear term vv′′′ in the first equation of (2.1), and the linear term v′′′

with the nonlinear term v′v2 in the second equation of (2.1), by normal calculation, we have

u′′′ =
K1

(1 + eξ)m+3
, (2.4)

vv′′′ =
K2

(1 + eξ)2n+3
, (2.5)

v′′′ =
K3

(1 + eξ)n+3
, (2.6)

v′v2 =
K4

(1 + eξ)3n+1
, (2.7)

where K1,K2,K3, and K4 are determined coefficients only for simplicity. Balancing highest
order of exp-function in equations (2.4) and (2.5), we have m = 2n. Similarly balancing
equations (2.6) and (2.7), we obtain n = 1 , so m = 2. Equations (2.2) and (2.3) become

u = a0 +
a1

1 + eξ
+

a2

(1 + eξ)2
, (2.8)

v = b0 +
b1

1 + eξ
. (2.9)

Substituting equations (2.8) and (2.9) into equation (2.1), by help of maple16, we have

1
A

[C1e
4ξ + C2e

3ξ + C3e
2ξ + C4e

ξ] = 0

and
1
B

[D1e
3ξ + D2e

2ξ + D3e
ξ] = 0,
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where

A = (1 + eξ)5, B = (1 + eξ)4,

C1 = −wa1 − 3

2
k3b1b0 + 6ka0a1 − k3a1 + 6kb1a0b0 +

3

2
ka1b

2
0,

C2 = 18kb1a0b0 + 18ka0a1 + 6ka2
1 − 8k3a2 + 12ka0a2 + 9kb1a1b0 + 3k3a1 +

9

2
ka1b

2
0 + 6kb2

1a0

+3ka2b
2
0 +

9

2
k3b1b0 − 6k3b2

1 − 3wa1 − 2wa2,

C3 = −4wa2 + 18kb1a0b0 + 6ka2b
2
0 +

15

2
kb2

1a1 + 3k3a1 + 12kb1a2b0 +
9

2
k3b1b0 + 24ka0a2

+18kb1a1b0 +
9

2
ka1b

2
0 + 12ka2

1 + 12kb2
1a0 +

21

2
k3b2

1 + 18ka0a1 + 18ka1a2 + 14k3a2 − 3wa1,

C4 =
15

2
kb2

1a1 + 9kb2
1a2 + 18ka1a2 + 12kb1a2b0 + 6kb2

1a0 +
3

2
ka1b

2
0 − 3

2
k3b1b0 + 6ka0a1 + 3ka2b

2
0

+12ka2
2 + 6kb1a0b0 + 12ka0a2 − wa1 − 2wa2 − k3a1 + 9kb1a1b0 − 3

2
k3b2

1 + 6ka2
1 − 2k3a2,

D1 = −k3b1 + 6kb1a0 − wb1 +
15

2
kb1b

2
0 + 6ka1b0,

D2 = 12kb1a0 + 12kb1a1 + 12ka1b0 + 12ka2b0 − 2wb1 + 4k3b1 + 15kb1b
2
0 + 15kb2

1b0,

D3 = −wb1 + 6kb1a0 + 6ka1b0 + 12ka2b0 +
15

2
kb1b

2
0 − k3b1 + 15kb2

1b0 + 12kb1a1 +
15

2
kb3

1 + 18kb1a2.

Equating the coefficients of all powers of enξ to be zero, we obtain

[C1 = 0, C2 = 0, C3 = 0, C4 = 0, D1 = 0, D2 = 0, D3 = 0]. (2.10)

Solving the system, equations (2.10), simultaneously, we get the following solution

a0 = −1
4
b2
0, a1 = −1

2
k(k ± b0i), a2 =

3
4
k2, b1 = ±ik, w = ±3k2b0i− k3 + 3kb2

0. (2.11)

Using the transformations {
ξ = iζ = Kx + Wt,

eξ = cos(ζ) + i sin(ζ),

and k = iK, w = iW , where K and W are real number, eq.(2.11) becomes

a0 = −1
4
b2
0, a1 =

1
2
K2 ± 1

2
Kb0, a2 = −3

4
K2, b1 = ∓K,w = ∓3K2b0 −K3 + 3Kb2

0. (2.12)

Inserting equation (2.12) into equations (2.8) and (2.9) yields the following exact solution

u =− 1
4
b2
0 +

1
2
K2 ± 1

2
Kb0

1 + eiζ
− − 3

4
K2

(1 + eiζ)2

=
− 3

2
b2
0 + 3

4
K2 ± 3

2
b0K + (±2b0K − 2b2

0 + 1
2
K2) cos(ζ) + (± 1

2
b0K − 1

2
b2
0 − 1

4
K2) cos(2ζ)

6 + 8 cos(ζ) + 2 cos(2ζ)

+ i
(b0K ∓ 1

2
K2) sin(ζ) + ( 1

2
b0K ∓ 1

4
K2) sin(2ζ)

6 + 8 cos(ζ) + 2 cos(2ζ)
.

(2.13)
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If we search for a periodic solution or compaction-like solution, the imaginary part of
eq.(2.13) must be zero, that requires

(b0K ∓ 1
2
K2) sin(ζ) + (

1
2
b0K ∓ 1

4
K2) sin(2ζ) = 0. (2.14)

Solving eq.(2.14), we obtain

b0 = ±1
2
K. (2.15)

Substituting eq.(2.15) into eq.(2.12), then eq.(2.12) becomes

a0 = − 1
16

K2, a1 =
3
4
K2, a2 = −3

4
K2, b1 = ∓K, W = −7

4
K3. (2.16)

Inserting equation (2.16) into the real part of equations (2.13) and (2.9) yields the following
exact solution

u1 =
− 3

8
K2 − 1

2
K2 cos(i(Kx− 7

4
K3t))− 5

8
K2 cos(2i(Kx− 7

4
K3t))

6 + 8 cos(i(Kx− 7
4
K3t)) + 2 cos(2i(Kx− 7

4
K3t))

,

v1 =
−iK sin(i(Kx− 7

4
K3t)

2 + 2 cos(i(Kx− 7
4
K3t)

,

u2 =
9
8
K2 + K2 cos(i(Kx− 7

4
K3t))− 1

8
K2 cos(2i(Kx− 7

4
K3t))

6 + 8 cos(i(Kx− 7
4
K3t)) + 2 cos(2i(Kx− 7

4
K3t))

,

v2 =
iK sin(i(Kx− 7

4
K3t)

2 + 2 cos(i(Kx− 7
4
K3t)

,

(2.17)

where K is free parameter.
The graph of the solution (2.17) is given in the following figures with K = 2.

u1 v1

u2 v2
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3 Conclusions

In this study, exp-function method in rational form with a computerized symbolic
computation has been successfully applied to find generalized complex solitary solutions
of Jaulent-Miodek equation without any initial conditions, so the solutions are more general.
The results are simpler with the fewest free parameters and can be shown graphically.
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利用有理形式的指数函数法解决非线性Jaulent-Miodek方程

的一系列复孤波解

兰春霞 ,金云娟

(丽水学院理学院, 浙江丽水 323000)

摘要: 本文研究了非线性Jaulent-Miodek方程的行波解. 利用有理形式的指数函数法, 得到了一系列

包括由三角周期函数和有理函数组合而成的新复孤波解.
关键词: 指数函数法; Jaulent-Miodek 方程; 复孤波解
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