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Abstract: In this article, we study the traveling wave solutions of nonlinear Jaulent-Miodek
equations. By using the method of exponential function in rational form, a series new complex
solitary wave solutions including a combination of triangular periodic function and rational function
are obtained.
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1 Introduction

In this Letter, we consider the Jaulent-Miodek equation

3 9 3,
Uy + Ugyx + S0V + FV2Vgy — GUUUm — FUgLV = 07

V¢ + Vpge — ULV — BUV, — Evmvz =0

without any initial conditions. There are many methods to solve eq.(1.1) with some initial
conditions, such as variational iteration method [1], He’s homotopy perturbation method [2],
and homotopy analysis method [3]. These methods can only solve a special kind of solutions
and obtain solutions which satisfy initial conditions. Recently, some researchers use extended
tanh-method [4], generalized (G//G)-expansion method [5], and Riccati equations method
[6] to investigate the traveling wave solutions of eq. (1.1), and obtained some new types of
complex solitary solutions, i.e.various combinations of trigonometric periodic functions and
rational function solutions.

The purpose of this work is basing on exp-function method [7], use the exp-function

method in rational form [8] to find the exact solutions of eq.(1.1).

2 Exp-Function Method in Rational Form
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To apply the exp-function method in rational form to eq.(1.1), we make use of the
traveling wave transformation £ = kz + wt,u = u(§),v = v(£) where and are constants to

be determined later. Then eq.(1.1) reduce to ordinary differential equations.

3 9 3
wu' + By + ik?’vv'” + §k3v'v" — 6kuvv’ — iku'v2 =0,

15 (2.1)
wv' + K" — 6k(uv)’ — ?k’U/’UQ =0,
where the prime denotes the derivative with respect to &.
The exp-function method in rational form is based on the as
U= —_— (2.2)
5 )
= (1+ef)
= —_— 2.3
=L v (23)

where m and n are positive integers which are unknown to be further determined, a; and b,
are unknown constants. In order to determine the value of m and n, we balance the linear
term u”” with the nonlinear term vv”’ in the first equation of (2.1), and the linear term v"”

with the nonlinear term v'v? in the second equation of (2.1), by normal calculation, we have

K

" — I 2.4

Y (1 + ef)m+s’ (24)
K,

"o

w' = 7(1 mpeser=l (2.5)
K3

LR — 2.6

! (1+ e€)nts’ (2:6)
K

Ve = (2.7)

(1+ 8)ontt”

where Ky, Ky, K3, and K, are determined coefficients only for simplicity. Balancing highest
order of exp-function in equations (2.4) and (2.5), we have m = 2n. Similarly balancing
equations (2.6) and (2.7), we obtain n =1, so m = 2. Equations (2.2) and (2.3) become

ay a2

= 2-
YTt T T Ay e (28)
by
— byt 2.
v 0+1+€£ ( 9)

—

Substituting equations (2.8) and (2.9) into equation (2.1), by help of maplel6, we have

[6’1645 + Coe® + Che?t + C4e€] =0

o | =

and 1
‘EWﬂ%+Dﬁ%+Dﬁq:Q
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where
A = (14€)°,B=(1+¢€),
Ci = —way — gk‘gblbo + 6kaoar — k3a1 + 6kbiaobo + gkalbg,
Cs = 18kbiagbo + 18kaoayr + 6ka% — 8k3a2 + 12kagas + 9kbiai1bo + 3k3a1 + gkalbg + Gkbfa()
+3kasbi + gknglbo — 6k*b7 — 3wa; — 2was,
1
Cs = —4was + 18kbiagbo + 6kazbi + ;kbfal + 3k%ay + 12kbrasbo + gksblbo + 24kaoas
9 2 2 2 21 31,2 3
—|—18kb1a1b0 —+ §ka1b0 —+ 12ka1 + 12kb1a0 —+ 7[43 bl + 18kaoa1 —+ 18ka1a2 —+ 14k a2 — 3wa1,
1
C, = ;kbfal + 9kbIas + 18kaias + 12kbiasbe + 6kb?ao + %kzalb% - %k%lbo + 6kaoar + 3kasbs
+12ka3 + 6kbiaobo + 12kaoas — war — 2was — k>a1 + 9kbraibo — gk%f + 6ka’ — 2k%as,
3 15 2
Dy = —k°by +6kbiag — wby + 7kb1b0 + 6kaibo,
Dy = 12kbiao + 12kbiar + 12kaibo + 12kasbo — 2wby + 4k>by + 15kb1bg + 15kb3bo,
1 1
Ds = —wby + 6kbiao + 6kaibo + 12kasby + gkblbg — k3by + 15kb3bo + 12kbiay + gkbi’ + 18kbyas.
Equating the coefficients of all powers of €™ to be zero, we obtain
[C1=0,C,=0,C3=0,Cy=0,D; =0,Dy =0, D5 = 0]. (2.10)

Solving the system, equations (2.10), simultaneously, we get the following solution
1 9 1 . 3 2 . 2 . 3 2
ag = —lbo,al = —516(]{7 + boi), az = Zk by = Lik, w = £3k*boi — k° + 3kbj,. (2.11)

Using the transformations

E=i( = Kz + Wt,
e® = cos(¢) + isin((),

and k = iK,w = iW, where K and W are real number, eq.(2.11) becomes

1

1 3
2K2 + §Kbo,a2 = —ZK%Z)1 =FK,w=F3K?by — K* +3Kb2. (2.12)

1
ag = _Eb?)’ a; =
Inserting equation (2.12) into equations (2.8) and (2.9) yields the following exact solution

y 162 N 3 K? + L Kby B —3K?
40 1+ eic (1 + ei¢)2
=505+ SKP & ShoK + (£200K — 205 + 5 K?) cos(C) + (+500 K — 505 — 3 K?) cos(2()
6 + 8 cos(¢) + 2 cos(2¢)
_H.(boK F 3 K?)sin(() + (500K F 1 K?)sin(2()
6 + 8cos(¢) + 2 cos(2()

(2.13)
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If we search for a periodic solution or compaction-like solution, the imaginary part of

eq.(2.13) must be zero, that requires

1 1 1
(boK F 5K2) sin(¢) + (§b0K F ZK2) sin(2¢) = 0. (2.14)
Solving eq.(2.14), we obtain
by — %K. (2.15)

Substituting eq.(2.15) into eq.(2.12), then eq.(2.12) becomes
1, 3 3 5 T .3
— I =_= = W=—-K°. 1
ag 16K Sy 4K , G2 4K b = FK, 4K (2.16)

Inserting equation (2.16) into the real part of equations (2.13) and (2.9) yields the following
exact solution

—3K? — 1 K? cos(i(Kx — TK3t)) — SK? cos(2i(Kx — 1K)

_ "8
" 6 + 8cos(i(Kz — TK3t)) + 2cos(2i(Kz — TK3t)) ’
—iK sin(i(Kz — TK3t)
v = . 7 )
2 4 2 cos(i(Kx — [ K3t)
9 . . 1 . . (2.17)
_ SKP 4 K cos(i(Ka — [K°t)) — g K2 cos(2i(Kx — [ K°t))
1= 6 + 8cos(i(Kz — TK3t)) + 2cos(2i(Kz — TK3t)) ’
iK sin(i(Kz — TK3t)
V2

T2+ 2cos(i(Kz — TK3t)

where K is free parameter.

The graph of the solution (2.17) is given in the following figures with K = 2.

:
S4e spooc




No. 4 A series of complex solitary solutions for nonlinear jaulent-miodek equation - - - 683

3 Conclusions

In this study, exp-function method in rational form with a computerized symbolic
computation has been successfully applied to find generalized complex solitary solutions
of Jaulent-Miodek equation without any initial conditions, so the solutions are more general.

The results are simpler with the fewest free parameters and can be shown graphically.
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