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Abstract: In this paper we study the extremal graphs with minimum distance spectral radius

among all connected graphs of order n and edge connectivity r. By using the combinatorial method,

we determine that K(n − 1, r) is the unique extremal graph, where K(n − 1, r) is obtained from

the complete graph Kn−1 by adding a vertex v together with edges joining v to r vertices of Kn−1.

All the above generalize the related results of the extremal graph theory.
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1 Introduction

Let G be a connected simple graph with vertex set V (G) and edge set E(G). The
distance between two vertices u, v of G, denoted by disuv, is defined as the length of the
shortest path between u and v in G. The distance matrix of G, denoted by D(G), is defined
by D(G) = (disuv)u,v∈V (G). Since D(G) is symmetric, its eigenvalues are all real. In addition,
as D(G) is nonnegative and irreducible, by Perron-Frobenius theorem, the spectral radius
ρ(G) of D(G) (called the distance spectral radius of G), is exactly the largest eigenvalue of
D(G) with multiplicity one; and there exists a unique (up to a multiple) positive eigenvector
corresponding to this eigenvalue, usually referred to the Perron vector of D(G).

The distance matrix is very useful in different fields, including the design of communica-
tion networks [1], graph embedding theory [2–4] as well as molecular stability [5, 6]. Balaban
et al. [7] proposed the use of the distance spectral radius as a molecular descriptor. Gutman
et al. [8] used the distance spectral radius to infer the extent of branching and model boiling
points of an alkane. Therefore, maximizing or minimizing the distance spectral radius over
a given class of graphs is of great interest and significance. Recently, the maximal or the
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minimal distance spectral radius of a given class of graphs has been studied extensively (see
e.g. [9–18]).

Recall that the edge connectivity of a connected graph is the minimum number of edges
whose removal disconnects the graph. For convenience, denote by Gr

n the set of all connected
graphs of order n and edge connectivity r. Clearly, 1 ≤ r ≤ n− 1, and Gn−1

n consists of the
unique graph Kn, where Kn denotes a complete graph of order n. Let K(p, q)(p ≥ q ≥ 1)
be a graph obtained from Kp by adding a vertex together with edges joining this vertex to
q vertices of Kp. Surely K(n − 1, r) ∈ Gr

n. In this paper we prove that K(n − 1, r) is the
unique graph with minimum distance spectral radius in Gr

n, where 1 ≤ r ≤ n− 2.

2 Main Results

Given a graph G on n vertices, a vector x ∈ Rn is considered as a function defined on
G, if there is a 1-1 map ϕ from V (G) to the entries of x; simply written xu = ϕ(u) for each
u ∈ V (G). If x is an eigenvector of D(G), then it is naturally defined on V (G), i.e., xu is
the entry of x corresponding to the vertex u. One can find that

xT D(G)x =
∑

u,v∈V (G)

disuvxuxv, (2.1)

and λ is an eigenvalue of D(G) corresponding to the eigenvector x if and only if x 6= 0 and

λxv =
∑

u∈V (G)

disvuxu, for each vertex v ∈ V (G). (2.2)

In addition, for an arbitrary unit vector x ∈ Rn,

xT D(G)x ≤ ρ(G), (2.3)

with the equality holds if and only if x is an eigenvector of D(G) corresponding to ρ(G).
The following lemma is an immediate consequence of Perron-Frobenius theorem.
Lemma 2.1 Let G be a connected graph with u, v ∈ V (G). If uv /∈ E(G), then

ρ(G) > ρ(G + uv). If uv ∈ E(G) and G− uv is also connected, then ρ(G) < ρ(G− uv).
By Lemma 2.1, for a connected graph G on n vertices, we have ρ(G) ≥ ρ(Kn) = n− 1,

with equality holds if and only if G = Kn; and ρ(G) ≤ ρ(TG), with equality holds if and
only if G = TG, where TG is a spanning tree of G.

Let G be a graph and let v be a vertex of G. Denote by N(v) the set of neighbors of v

in G, and by dv the degree of v in G (i.e. the cardinality of N(v)).
Lemma 2.2 Let G be a connected graph containing two vertices u, v, and let x be a

Perron vector of D(G).
(1) If N(u)\{v} ⊆ N(v)\{u}, then xu ≥ xv, with strict inequality if N(u)\{v} (

N(v)\{u}.
(2) If N(u)\{v} = N(v)\{u}, then xu = xv.
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Proof The second assertion follows from the first or can be found in [11]. So we only
prove assertion (1). From (2.2), we have

ρ(G)xu = disuvxv +
∑

w∈V (G)\{u,v}
disuwxw, (2.4)

ρ(G)xv = disvuxu +
∑

w∈V (G)\{u,v}
disvwxw. (2.5)

Since N(u)\{v} ⊆ N(v)\{u}, for each w ∈ V (G)\{u, v}, we have

disuw ≥ disvw, (2.6)

and hence ∑

w∈V (G)\{u,v}
disuwxw ≥

∑

w∈V (G)\{u,v}
disvwxw. (2.7)

By (2.4), (2.5) and (2.7), we get

(ρ(G) + disuv)xu ≥ (ρ(G) + disuv)xv.

So xu ≥ xv.
If N(u)\{v} ( N(v)\{u}, then there exists a vertex w ∈ (N(v)\{u}) \ (N(u)\{v}) such

that disuw > disvw = 1. So inequality (2.6) is strict for some vertex w and hence (2.7) holds
strictly, which implies xu > xv.

Let G ∈ Gr
n. Then each vertex v of G holds dv ≥ r. If there exists some vertex v of G

with dv = r, we have the following result immediately.
Lemma 2.3 Let G ∈ Gr

n (1 ≤ r ≤ n − 2), which contains a vertex of degree r. Then
ρ(G) ≥ ρ(K(n− 1, r)), with equality if and only if G = K(n− 1, r).

Proof Let v be a vertex of G such that dv = r. Adding all possible edges within the
subgraph of G induced by the vertices of V (G) \ {v}, we will arrive at a graph G′, which is
isomorphic to K(n − 1, r). If G 6= G′, then ρ(G) > ρ(G′) = ρ(K(n − 1, r)) by Lemma 2.1.
The result follows.

In the following we discuss the graph G ∈ Gr
n each vertex of which has degree greater

than r. We will formulate two lemmas about the behaviors of the distance spectral radius
under some graph transformations, and then establish the main result of this paper.

Lemma 2.4 Let G be a graph obtained from Kn1 ∪Kn2 by adding r (≥ 1) edges be-
tween u1 and v1, v2, · · · , vr, where V (Kn1) = {u1, u2, · · · , un1}, V (Kn2) = {v1, v2, · · · , vn2},
min{n1, n2} ≥ r + 2. Let G̃ be the graph obtained from G by deleting the edges of Kn1

incident to u1 and adding all possible edges between the vertices of V (Kn1)\{u1} and those
of V (Kn2). Then ρ(G) > ρ(G̃).

Proof Arrange in order the vertices of G̃ as u1, u2, · · · , un1 , v1, · · · , vr, vr+1, · · · , vn2 .
Let x be the unit Perron vector of D(G̃). By Lemma 2.2, x may be written as

x = (x1, x2, · · · , x2︸ ︷︷ ︸
n1−1

, x3, · · · , x3︸ ︷︷ ︸
r

, x2, · · · , x2︸ ︷︷ ︸
n2−r

)T , (2.8)
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Fig. 2.1: The graphs G (left) and G̃ (right) in Lemma 2.4,

where ∨ means joining each vertex of Kn1−1 and each of Kn2

where x3 < x2 < x1. Notice that the transformation from G to G̃ leads to the distance
between u1 and ui (i = 2, · · · , n1) increasing by 1, the distance between ui (i = 2, · · · , n1)
and vj (j = 1, · · · , r) decreasing by 1, and the distance between ui (i = 2, · · · , n1) and
vj (j = r + 1, · · · , n2) decreasing by 2, while the distance between any other two vertices
having no change. Thus by (2.1) and (2.8),

xT D(G)x− xT D(G̃)x = −2
∑

i=2,··· ,n1

xu1xui
+ 2

∑
i=2,··· ,n1,
j=1,··· ,r

xui
xvj

+ 4
∑

i=2,··· ,n1,
j=r+1,··· ,n2

xui
xvj

= −2(n1 − 1)x1x2 + 2r(n1 − 1)x2x3 + 4(n1 − 1)(n2 − r)x2
2

= 2(n1 − 1)x2[−x1 + rx3 + 2(n2 − r)x2]. (2.9)

Considering (2.2) on the vertex u1 of G̃, we get

ρ(G̃)x1 = ρ(G̃)xu1 =
r∑

i=1

xvi
+

n2∑
j=r+1

2xvj
+

n1∑
k=2

2xuk
= rx3 + 2(n1 + n2 − r − 1)x2. (2.10)

Noting that ρ(G̃) > n1 + n2 − 1, from (2.10) we have

x1 =
1

ρ(G̃)
[rx3 + 2(n1 + n2 − r − 1)x2] < rx3 + 2(n2 − r)x2. (2.11)

By (2.9) and (2.11), we get xT D(G)x− xT D(G̃)x > 0. So according to (2.3) we get

ρ(G) ≥ xT D(G)x > xT D(G̃)x = ρ(G̃).

Lemma 2.5 Let G be a graph obtained from Kn1 ∪ Kn2 by adding t (≥ 1) edges
between u1 and v1, v2, · · · , vt and r − t (≥ 1) edges between some vertices of V (Kn1) \ {u1}
and some vertices of V (Kn2), where V (Kn1) = {u1, u2, · · · , un1}, V (Kn2) = {v1, v2, · · · , un2},
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Fig. 2.2: The graphs G (left) and G̃ (right) in Lemma 2.5,

where ∨ means joining each vertex of Kn1−1 and each of Kn2

min{n1, n2} ≥ r + 2. Let G̃ be a graph obtained from G by deleting n1 − (r + 1− t) edges
of Kn1 between u1 and ui for i = 2, · · · , n1 − (r − t), and adding all possible edges between
the vertices of V (Kn1)\{u1} and those of V (Kn2). Then ρ(G) > ρ(G̃).

Proof Arrange in order the vertices of V (G̃) as u1, u2, · · · , un1−(r−t), un1−(r−t)+1, · · · , un1 ,
v1, · · · , vt, vt+1, · · · , vn2 . Let x be the unit Perron vector of D(G̃). By Lemma 2.2, x may
be written as

x = (x1, x2, · · · , x2︸ ︷︷ ︸
n1−(r+1−t)

, x3, · · · , x3︸ ︷︷ ︸
r−t

, x3, · · · , x3︸ ︷︷ ︸
t

, x2, · · · , x2︸ ︷︷ ︸
n2−t

)T , (2.12)

where x3 < x2 < x1. Let

U1 = {u2, · · · , un1−(r−t)}, U2 = {un1−(r−t)+1, · · · , un1}, V1 = {v1, · · · , vt}, V2 = {vt+1, · · · , vn2}.

Assume that in the graph G there are rij edges between Ui and Vj for i, j = 1, 2. Surely,
r11 + r12 + r21 + r22 = r − t. Denote by F the set of order pairs (u, v) such that uv is an
edge of G, where u ∈ U1 ∪U2, v ∈ V1 ∪V2, and by (Ui, Vj) the set of order pairs (u, v), where
u ∈ Ui, v ∈ Vj , i, j = 1, 2. Then by (2.1)

1
2
[xT D(G̃)x− xT D(G)x] =

∑
u∈U1

xu1xu −
∑

(u,v)∈(U1,V1)\F
xuxv −

∑
(u,v)∈(U1,V2)\F

δuvxuxv

− ∑
(u,v)∈(U2,V1)\F

xuxv −
∑

(u,v)∈(U2,V2)\F
δuvxuxv,

(2.13)
where δuv = 2 if u, v has distance 3 in the graph G, and δuv = 1 otherwise. By (2.12) and
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(2.13), and taking δuv = 1, we have

1
2
[xT D(G̃)x− xT D(G)x] ≤ [n1 − 1− (r − t)]x1x2 − {[n1 − 1− (r − t)]t− r11}x2x3

−{[n1 − 1− (r − t)](n2 − t)− r12}x2
2 − [(r − t)t− r21]x2

3

−[(r − t)(n2 − t)− r22]x2x3

= [n1 − 1− (r − t)]x1x2 − {[n1 − 1− (r − t)]t + (r − t)(n2 − t)}x2x3

−{[n1 − 1− (r − t)](n2 − t)}x2
2 − (r − t)tx2

3

+(r11 + r22)x2x3 + r12x
2
2 + r21x

2
3

≤ [n1 − 1− (r − t)]x1x2 − {[n1 − 1− (r − t)]t + (r − t)(n2 − t)}x2x3

−{[n1 − 1− (r − t)](n2 − t)}x2
2 − (r − t)tx2

3 + (r − t)x2
2

= [n1 − 1− (r − t)]x1x2 − {[n1 − 1− (r − t)]t + (r − t)(n2 − t)}x2x3

−{[n1 − 1− (r − t)](n2 − t)− (r − t)}x2
2 − (r − t)tx2

3. (2.14)

Considering (2.2) on the vertex u1 of G̃, we get

ρ(G̃)x1 = rx3 + 2(n1 + n2 − r − 1)x2.

So x1 = 1
ρ(G̃)

[rx3 + 2(n1 + n2 − r − 1)x2] < 1
n1+n2−1

[rx3 + 2(n1 + n2 − r − 1)x2]. Therefore,

1
2
xT [D(G̃)−D(G)]x <

n1 − 1− (r − t)
n1 + n2 − 1

rx2x3 +
[n1 − 1− (r − t)] · 2(n1 + n2 − r − 1)

n1 + n2 − 1
x2

2

−{[n1 − 1− (r − t)]t + (r − t)(n2 − t)}x2x3

−{[n1 − 1− (r − t)](n2 − t)− (r − t)}x2
2 − (r − t)tx2

3. (2.15)

Let a, b, c be the coefficients of x2
2, x2x3, x

2
3 in (2.15), respectively. Noting that min{n1, n2} ≥

r + 2, we have

a = 2[n1 − 1− (r − t)](1− r

n1 + n2 − 1
)− {[n1 − 1− (r − t)](n2 − t)− (r − t)}

= 2[n1 − 1− (r − t)](1− r

n1 + n2 − 1
− n2 − t

2
) + (r − t)

< 2[n1 − 1− (r − t)](1− n2 − t

2
) + (r − t)

≤ 2[n1 − 1− (r − t)]
2− n2 + t

2
+ (n2 − 2− t)

= −(n2 − t− 2)[n1 − 2− (r − t)] < 0,

b = [n1 − 1− (r − t)](
r

n1 + n2 − 1
− t)− (r − t)(n2 − t) < 0,

c = −(r − t)t < 0.

Thus xT D(G̃)x− xT D(G)x < 0, and hence ρ(G) ≥ xT D(G)x > xT D(G̃)x = ρ(G̃).
Lemma 2.6 Let G be a connected graph, and let Ec be an edge cut set of G of size

r (≥ 1) such that G − Ec = Kn1 ∪ Kn2 , where n1 + n2 = n. If dv > r for each vertex
v ∈ V (G), then n1 ≥ r + 2, n2 ≥ r + 2.
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Proof If n1 ≤ r, then there exists a vertex u of Kn1 such that

d(u) ≤ n1 − 1 +
r

n1

≤ (n1 − 1)
r

n1

+
r

n1

= r,

a contradiction. If n1 = r + 1, then there exists a vertex w not incident with any edges of
Ec, which implies d(u) = r, also a contradiction. The discussion for the assertion on n2 is
similar.

Theorem 2.7 For each r = 1, 2, · · · , n− 2, the graph K(n− 1, r) is the unique graph
with minimum distance spectral radius in Gr

n.
Proof Let G be a graph that attains the minimum distance spectral radius in Gr

n. Note
that each vertex of G has degree not less than r. If there exists a vertex u of G with degree
r, by Lemma 2.3, ρ(G) ≥ ρ(K(n − 1, r)), with equality if and only if G = K(n − 1, r). So
the result follows in this case.

Next we assume all vertices of G have degrees greater than r. Let Ec be an edge cut
set of G containing r edges, and let G1, G2 be two components of G− Ec with order n1, n2

respectively. We assert G1 = Kn1 and G2 = Kn2 ; otherwise adding all possible edges within
G1, G2 we would get a graph with smaller distance spectral radius by Lemma 2.1. By Lemma
2.6, n1 ≥ r + 2, n2 ≥ r + 2. Let u1 be a vertex of G1 such that u1 joins t vertices of G2,
where 1 ≤ t ≤ r. If t = r, by Lemma 2.4 there exists a graph G̃ ∼= K(n − 1, r) such that
ρ(G) > ρ(G̃). If 1 ≤ t < r, by Lemma 2.5 there also exists a graph G̃ ∼= K(n − 1, r), such
that ρ(G) > ρ(G̃). This completes the proof.
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给定边连通度的图的最小距离谱半径

李小新1,2, 范益政2, 汪 毅2

(1.池州学院数学与计算机科学系, 安徽池州 247000)

(2.安徽大学数学科学学院, 安徽合肥 230601)

摘要: 本文研究了边连通度为r的n阶连通图中距离谱半径最小的极图问题. 利用组合的方法, 确定

了K(n − 1, r)为唯一的极图, 其中K(n − 1, r)是由完全图Kn−1添加一个顶点v以及连接v与Kn−1中r个顶点

的边所构成. 上述结论推广了极图理论中的相关结果.
关键词: 图; 距离矩阵; 谱半径; 边连通度
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