Vol. 84 (2014) J. of Math. (PRC)

SOME RESULTS FOR CERTAIN SUBCLASS OF
MULTIVALENT AND ANALYTIC FUNCTIONS

XIONG Liang-peng, HAN Hong-wei, MA Zhi-yuan
(School of Engineering and Technical, ChengDu University of Technology, Leshan 614007, Chma)

Abstract: In this paper, we investigate functions of the class G}, .(a, b, o) which are analytic
and multivalent in the open unit disk U = {z : |z] < 1}. By using the method of function theory,
we obtain some general results concerning the quasi-Hadamard product and the extreme points and
support points of Gy, .(a,b,0). Many interesting consequences of the main results extend related
works of several earlier authors.
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1 Introduction

Let A denote the functions f,(z) of the form
Fo(2) = 42" = a0 2™ (ap > 03apip 2 05p € N = {1,2,-+- 1), (1.1)
n=1

which are multivalent and analytic in the unit disc U = {z € C : |z| < 1}.
Here, we define the general quasi-Hadamard product of the functions f,; by

S

s—1 o) s
Joatxa Fo2 e fps -y fos = { Ham}zp - (H Xi) Z { Ha"ﬂhi}znﬂyv (1.2)
i=1

i=1 n=1 i=1

where y; are any nonnegative real numbers and f,;(z) € A are defined as (1.1), i =
1,2,--- s
A function f,(2) defined by (1.1) is said to be in the class G (a,b, o) if and only if

2f,(2)

he P
W <o z¢€ U, (13)
fn(2) ap
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where —1 < a < b < 1,0 < o < 1. Moreover, let M,(a,b, o) denote the class of functions
fp(2) such that # is in the class G (a,b, o).

We also have the following special cases on G} (a,b,o) and M,(a,b,0):

(I) For a, = 1in (1.1) , the classes G (a,b,0) = J;(a,b,0) and My(a,b,0) = Cy(a,b,0)
were studied by Raina, Nahar [1].

(I) For p = 1l,a = —1,b = a,0 = f, the classes G5(—1,a,03) = So(a,3) and
Mi(—1,«,3) = Co(e, ) introduced by Owa [2] are well known.

Using similar arguments as given by Raina, Nahar [1], we can easily prove the following
Lemmas for functions in the classes G (a,b,o) and M,(a,b,0):

Lemma 1.1 A function f,(z) defined by (1.1) belongs to G}(a,b,0) if and only if

Z{(l +bo)n+ (b—a)potani, < (b—a)poay, (1.4)
n=1
where —1 <b<a<1,0<o<1,pe N*={1,2,---}.
Lemma 1.2 A function f,(z) defined by (1.1) belongs to M,(a,b, o) if and only if

o n+
SO+ b+ (b= a)poYans, < (b= a)poay, (1.5)
n=1
where —1<b<a<1,0<o<1l,pe N*={1,2,--- }.
Now, we introduce a new general class of analytic functions connected with the classes
Gr(a,b,0) and M(a,b, o), which is important in the following discussion.
Definition 1.1 A function f,(2) defined by (1.1) belongs to G} .(a,b,0) if and only if

oo

S ; BY{(1+bo)n+ (b= a)potans, < (b — a)poa,, (1.6)

n=1

where —1 <b<a<1,0<o0<1,pe N*={1,2,---} and c is any fixed nonnegative real
number.
In fact, for every nonnegative real number ¢, the class G;C(a, b, o) is nonempty as the

functions of the form

—a.zP — = (b_ a)pgal) Lt
fo(2) = ap ; ("Tfp)C[(l + bo)n + (b — a)po] A, (1.7)

where a, > 0, A\, = 0 and ) A, < 1, satisfy inequality (1.6).
n=1

We note that

(I) For ¢ = 0, the class G y(a,b,0) = G (a,b,0).

(IT) For ¢ =1, the class G} ,(a,b,0) = My(a,b,0).

(ITI) For p = 1,a = —1,b = a,0 = f3, the class G} .(—1,a, ) = S.(a, B) was studied
by Aouf [3].
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(IV) For any positive integer ¢, we have the inclusion relation

G (a,b,0) C G,

p}cfl(a,b,a) Cc G . slabo)C - C G;’Q(a, b,o) C M,(a,b,0) C G;(a, b, o).

p,c—2

The topology of A is defined to be the topology of uniform convergence on compact
subsets of the unit disk U. Suppose that X is a subset of the space A, then f € X is called
an extreme point of X if and only if f can not be expressed as a proper convex combination
of two distinct elements of X. The set of all extreme points of A" is denoted by EFX.

Furthermore, a function f is called a support point of a compact F of A if f € F and

if there is a continuous linear functional J on A such that ReJ is non-constant on F and
ReJ(f) = max{ReJ(g) : g € F}.

We shall denote the set of all support points of F by suppF.

Throughout this paper we use the notation HF for the closed convex hull of F.

Lemma 1.3 (see [4]) Let A be a locally convex linear topological space and let F be a
compact subset of A, then

(i) If F is non-empty, then EF is non-empty.

(i) HEF = HF.

(iii) If HF is compact, then EHF C F.

The main object of the present work is to discuss some interesting results concerning
the quasi-Hadamard product of functions belonging to the class G .(a, b, o), which extends
the earlier corresponding studies in [3, 5-10]. Also, we apply this technique in Peng Zhigang
[11, 12] to obtain the extreme points and support points of some important classes with
G .(a,b,0).

2 The Main Theorem

Theorem 2.1 Let the functions f,; defined by (1.1) be in the class M,(a,b,o) for

every i = 1,2,3,--- ,m; m € N*, and let the functions g, ; defined by (1.1) be in the class
m—+qg—1

Gr(a,b,0) for every j = 1,2,--- ,q,q € N*. If 1:[1 x; = 1 or for any 4, 0 < x; < 1, then

the quasi-Hadamard product fj 1 %y, fp.2 % %yt fpom *Fxm 90,1 Fxmis 99,2 % Fxmia—s Ipoa

belongs to the class G ,,,,,1(a,b,0) C My(a,b,0).

Proof To simplify the notation, we denote by

Hp = Fpa *xa Fp.2 % Fxm 1 Som Fxm 01 Fximir 90,2 % *xoniq 1 Ipogs

the quasi-Hadamard product of the functions fy, 1, fp2, - fom:9p1s > Ipoq-

Clearly,

{ ﬁ i H g }Zp B <mﬁ_l Xi) i { ﬁanmz ﬁ brtp,j } . (21)

=1 Jj=1
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To prove the H, € G, we need to show that

p,2m—+q—1»

m—+q—1

i [ (BERyemta10n(1 4 bo) + (b—a) pa}{

p

m q
Xi H Antp,i H bn+p,;j }]

n=1 i=1 i=1 j=1

< (b_apo{ﬁam]j i}

As f,(2) € My(a,b,0), then for every i =1,2,--- ,m, we have

Z (n ;p){(l +bo)n + (b —a)potanyipi < (b—a)poay;. (22)

n=1

Therefore, the condition @,4,,; = 0 can make sure that

(n +p> {14+bo)n+ (b—a)potanip: < (b—a)poay;,i=1,2,---,m (2.3)
p
or
(b —a)po
An+p,i n+p[(1 + ba)n + (b _ a)pa] ap, ( )
for every i = 1,2,--- ,m. Also, since —1 <a < b < 1,0 <o <1, it implies
(b—a)po < (n—l—p)_l (25)
(14+bo)n+ (b—a)po P ’ '

so the right side of the inequality (2.4) is not greater than (**£)~2a, ;, and we obtain

—2
i < () (2.6)
n
fori=1,2,---,m. Similarly, for g, ;(2) € G;(a,b,0), from Lemma 1.1 we have
> {1 +bo)n+ (b—a)potbniy, < (b—a)pob,; (2.7)
n=1
for every 7 =1,2,--- ,q. Furthermore, we can obtain
n+p\ !
bn+p,j < < p ) bp,j (2'8>

for every j =1,2,--- ,q.

Using (2.6) fori =1,2,--- ,m, (2.8) for j =1,2,--- ,q—1, (2.7) for j = ¢ and following
m—+q—1
II xi=1orforanyi, 0<yx; <1, we have
i=1

> {nﬂ? me
P

m q
Xi H Qntpyi H bn+p,j }}

i=1 i=1 j=1

)2t tn(1+bo) + (b—a pa}{

n=1
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<Y [(n;p)mﬂl{n(l +bo) 4 (b— a)pa}bn+p,q{(n ; Py-zm(® - Pyt [T [T H

n=1 p i=1 =1

oo m g—1 m q—1
= Yo n(1-+00) + 0= apospd TLows TTtws | < 0= oty TTews TT0ns}
i=1 j=1 =

n=1

m q
= (b- a)pa{ Ham pr,j},
=1 j=1

and therefore H, € G} 5, ., 1(a,b,0).

Furthermore, since G ,,, ., 1(a,b,0) C G}, o(a,b,0) C -+ C G} ,(a,b,0) =
M,y(a,b, o), which complete the proof of Theorem 2.1.
As G} 5,1 (a,b,0) C Gy, o(ab,0) C oo C G (a,b,0) = My(a,b,0), we can obtain

the following Corollary 2.1 by setting ¢ = 0 in Theorem 2.1.
Corollary 2.1 Let the functions f, ; defined by (1.1) be in the class M, (a, b, o) for every

m—1

i=1,2,3,--- ,m;me N*. If [[ x;s=1or forany i, 0 < x; <1, then the quasi-Hadamard
i=1

product fp1 %y, fp2% - %y, fp.m belongs to the class G (a,b,0) C My(a,b,0).

p,2m—1
As Gy ,_y(a,b,0) C Gy, s(a,bo) C -+ C Gy (a,b,0) = My(a,b,0) C Gy(a,b,0), we

P,q—2
can obtain the following Corollary 2.2 by setting m = 0 in Theorem 2.1.

Corollary 2.2 Let the functions g, ; defined by (1.1) be in the class G} (a, b, o) for every

q—1

j=12,--- q,q € N*. If Xx; = 1 or for any j, 0 < x; < 1, then the quasi-Hadamard
j=1

product g, 1 %y, gp2 * - *y,_, gp,q Delongs to the class Gy . (a,b,0) C My(a,b,0).

Remark 2.1 (I) Puttingp=1l,a=-1,b=a,0 =06, x; =1(i=1,2,--- ,;m+q¢—1) in
Theorem 2.1 , we obtain the Aouf [3, Theorem 1] and Owa [2, Theorem 8§].

(IT) Putting p=1,a=-1,b=a,0 =6, x; = 1(i =1,2,--- ,m — 1) in Corollary 2.1 ,
we obtain the Aouf [3, Corollary 1] and Owa [2, Theorem 7].

(ITI) Putting p=1,a=-1,b=a,0 =6,x; = 1(i=1,2,--- ;¢ — 1) in Corollary 2.2 ,
we obtain the Aouf [3, Corollary 2] and Owa [2, Theorem 6].

(IV) Obviously, J;(a,b,0) C Gy(a,b,0) and Cy(a,b,0) C My(a,b, o), so the correspond-
ing results in Theorem 2.1, Corollaries 2.1, 2.2 with the classes J;(a,b,0) and Cy(a,b,0)
defined by Raina, Nahar [1] are all right.

Theorem 2.2 The class G, .(a,b,0) is compact subset of A.

Proof Montel’s theorem implies that the G} .(a,b, o) contained in A is compact if and
only if G} .(a,b,0) is closed and locally uniformly bounded (see [4, p.39]). We first assume

o0
[p(2) = apz? — Z angpz" P € Gy (a,b,0),

n=1

then (1.6) gives that

. _ (b —a)poa,
ntp S (%p)c[(l +bo)n + (b — a)po]’

n=1,2---.
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Since |z| = r < 1, it follows

oo

15 (2)] < aplzl’ + )~ anpl2"P < apr? +

n=1

(b —a)poa, P
("T“’)C[(l +bo)n + (b—a)po] 1 -1’

which implies that G .(a, b, o) is locally uniformly bounded.
It remains to show that G;,C(a, b, o) is sequentially closed. Suppose that a sequence
{fék)(z)} in G;ﬁc(a, b, o) and {f,gk)(z)} — fp(k — 00), where

o0

k n
f;k)(z) = apz’ — ailpz TP,

n=1

Weierstrass’ theorem asserts that f, € A (see [4, p.38]), so we can take

o0
— P n+p
Jp=apz" — § An+p? 7y
n=1

moreover, aiﬂp — Gpyp(k — 00). We next need to consider the f, € G .(a,b,0). Since

) (2) € G .(a,b,0), (1.6) implies that

S5 (I b+ ] ) _ S (V0 b+ O] )
— (b—a)poa, nps — (b—a)poa, s
for any M € Z*. Thus, as k — 0o, we have
M (”Tj”’)c[(l + bo)n + (b — a)po]
Z an_;,_p < 1.
— (b —a)poa,
Furthermore, taking M — 400, it gives that
i (”T“fp)c[(1+ba)n+ (b — a)po] <1
pip < 1.
— (b —a)poa, r
This completes the proof of Theorem 2.2.
Theorem 2.3 The extreme points of the class G .(a,b,0) are given by
EG;,C(a, b,o)
(b —a)poa, (b—a)poa, 2+p

Z1+p7 apzp _

) { T B bo) + (b e

(b—a)poa, e
(" 2)<[(1 + bo)n + (b — a)po] ' ’

(E£2)<[2(1 + bo) + (b — a)po]

P
. )apz —

where —1 <a<b<1l,0<o<1,neN*
Proof Using similar arguments as given by Xiong et al. [13, Theorem 2.6], we can
easily obtain the extreme points on G;C(a, b,o).
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Theorem 2.4 The support points of the class G .(a,b,0) are given by

SuppG;, .(a,b, o)

(b— o
) {fp(Z) € Opelabyo)  fulz) = a2t = Z (“E2)e](1 + b:))ri) +az()b a)po] (b”*pzn#},

where -1 <a<b<1,0<0 < 1,0, =0, > Gnip < 1,n € N* and ¢y, = 0 for some
n=1
n > 1.

Proof First, let a function

b —a)poa, ntp
fp’ = apz Z (n+p 1 + ba)n + (b — a)pa] Prtpz™ ™,

o0

where > ¢nip < 1,dnyp = 0,6, = 0 for some ¢ > 1+ p. In fact, (1.7) implies that
n=1
fro(2) € Gy .(a,b,0). Now, we need to take

0, n=>1,n+p#i,
bnip = .
nzl,n+p=:.

Obviously, we have lim (|bn+p|)%ﬂﬂ < 1. Furthermore, we define a functional J on A by

T(fp(2) =D (=anip)bnip, [o(2) = 0p2" =D ansp2™™ C A, gy(2) = bp2" =Y bpip2" ™ C A,
n=0 n=1 n=1

It is clearly that the J is a continuous linear functional on A (see [4, p.42]). Moreover, we

note that J(f,0(2)) = —ayb, — @y -[(1(ib:)):ia§ — ¢ib; = —apb, — 0 = —ayb,. However, for

any function

Fol2) = 4p2" =Y a1,2" 7 € Gy (a,b,0), (2.9)

we can note that
J(fp(2)) = —apb, — aib; < —ayb, (i = p+1).
So we have

ReJ(fpo) = max{ReJ(f,(2)) : fp(2) € G;C(a,b,a)}

and ReJ(f,(2)) are not constant on G, .(a,b, o). Hence f, ¢ is a support point of G}, .(a,b, 7).
Conversely, suppose that f,, o(2) is a support point of G, .(a,b,o), and J is a continuous
linear functional on A. Note that Re.J is also a continuous linear and is non-constant on

G .(a,b,0), consequently, we have

Red(fpo) = max{ReJ(f,(2)) : fo(2) € G, (a,b,0)}.
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Let
M =TReJ(fpo0)

and
Gr={f(2) € G, .(a,b,0) : ReJ(fy(2)) = M}.
On the one hand, suppose that

Re‘](fp,l) = ReJ(fp,2) = M,
where f,1 € G, fp2 € G;,0 <t < 1. Then
Red[tfp1+ (1 —1t)fpo] =tReJ(fp1) + (1 —t)ReJ(fp2) =tM+ (1 —t)M = M

and so tf, 1+ (1 —1t)fp2 € Gy, which gives the convexity of G ;.
On the other hand, suppose that ReJ(f,(,k)(z)) = M and fék)(z) —  fp(2), where
ék)(z) € Gy. Then ReJ( ,gk)(z)) — ReJ(fp(2)) and so ReJ(f,(z)) = M, which implies that
the G is closed. Furthermore, Theorem 2.2 makes sure that the class G; C G}, .(a,b,0) is lo-
cally uniformly bounded. Therefore, the class G; is a convex compact subset of G}, .(a,b, o).
Thus, EG; is not empty (see [ Lemma 1.3]). Now, suppose that g, ¢(z) €EG; and g, 0(z) =
tgp1(2) + (1 —t)gpa(2), where 0 <t < 1,9,.(2) € G, .(a,b,0),9p2(2) € G}, .(a,b,0). Then

since
ReJ(gp1) < M, Red(gp2) < M, tReJ(gp1) + (1 —t)ReJ(gp2) = Red(gp0) = M,

it follows that
ReJ(gp1) = Red(gp2) = M,

which implies g,1 € Gs,0p2 € G;s. Again, because g, o €EG;, s0 g,1 = gp2 = gpo. Thus
gpo €EG), (a,b,0). This shows that EG; CEG}, .(a,b,0). Suppose

(b~ o, "
_ Pl — P _ D .
H o) { (S byt 6 —appe]” " Zl}’

where Z; is a subset of Zy = {1,2,---}. We assert that Z; is a proper subset of Z,. In fact,
if it is not the case, then

MU (b —a)poa, R
Egj{“””‘{” )+ bont (b—ap] EZO}'

Since EG; C G, it follows that

p_ (b —a)poay, SNFP) —
ReJ(a,z (n}#)c[(l ooyt (b a)po] )= M (2.10)

for all n € Z,. Hence,

(b —a)poa,
("T“)C[(l +bo)n+ (b—a)po]

Red(a,z¥) — ReJ(2"1P) = M (2.11)
P
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for all n € Zy. Let n — +oco. Since z2"? — 0 in the metric of A and J is a continuous
linear functional on A, it follows that ReJ(z""?) — 0. Thus, By (2.10) and (2.11) we have
Red(a,z?) = M and we also find that ReJ(z"?) = 0 for all n € Z,. Furthermore, for any
f(2) = apz? — 3 anip2"? € G (a,b,0), since J is continuous on A and ReJ(2"*?) = 0

n=1
for n € Zy, it follows that

ReJ(f,) = Red(ayz) — Z anipReJ(2"P) = Red(ay2P) = M,
n=1
which contradicts the fact that Re.J is not constant on Gy .(a,b,o). This shows that there

is an integer (i > 1) not belonging to Z;. In other words,

(b—a)poay, Si+p

(”p”)c[(l +bo)i + (b — a)po]

P _
apZ

is not belonging to EG;. Because G is a convex compact set, so G; = HEG; (see [Lemma
1.3]). Following Theorem 2.3, since f,0(2) € G, it gives that

fp,O(z) = ¢1apzp + Z ¢n+pfn+p(z)a (2'12)

n=1

where ¢1 > 0, ¢4, = 0 and ¢1 + > dnip =1, frip(2) € EGy.
n=1

Because
R (b— a)?ooap it
(Z2)e[(1+ bo)i + (b — a)po]
is not belonging to EG;. So
) == S o - g O]
' " nTp\c _
——— (2)e[(1 4+ bo)n + (b — a)po]
S (b — a)paap
— a2 — -~
e n_;# Pro (HTTP)C[(l +bo)n+ (b — a)po] :

We can obtain the following Corollary 2.3 and Corollary 2.4 by setting ¢ = 0 and ¢ =1 in
Theorem 2.4, respectively.

Corollary 2.3 The support points of the class G;(a, b, o) are given by

SuppG,(a, b, o)

= b—a)poa
B {f(Z) : G;‘,(a, b0): fz) = apz” = Z (1+ lga)n +)12b pa)pa¢”+pzn+p}’

where —1 < a<b<1,0<0 < 1L,¢n1p 20, dnip < 1,n € N*and ¢4, = 0 for some
n=1
n > 1.
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Corollary 2.4 The support points of the class M, (a,b, o) are given by

SuppM,(a,b, o)

oo

= f(z)eMp(a,b,U)if(Z):apzp_Z

n=1

(b—a)p*oa,
(n+p)[(1 +bo)n+ (b —a)po

where -1 <a<b<1,0<0 < 1,0, =0, i Onip < 1,n € N* and ¢,y = 0 for some
n > 1. e

Remark 2.2 (I) Putting p = 1,a = —1,b = a,0 = [ in Theorem 2.3 and Theorem 2.4,
respectively, we obtain the extreme points and support points for class S.(a, 3) defined by
Aouf [3].

(IT) Putting a, =1, c = 0 in Theorem 2.3 and Theorem 2.4, respectively, we obtain the
extreme points and support points for class .J;(a, b, o) defined by Raina, Nahar [1].

(III) Putting a, = 1,¢ = 1 in Theorem 2.3 and Theorem 2.4, respectively, we obtain
the extreme points and support points for class Cy(a,b, o) defined by Raina, Nahar [1].

(IV) Putting p = 1,a = —1,b = a,0 = ,¢ = 0 in Theorem 2.3 and Theorem 2.4,
respectively, we obtain the extreme points and support points for class So(«, 3) defined by
Owa [2].

(VI) Putting p = 1,a = —1,b = a,0 = ,¢ = 1 in Theorem 2.3 and Theorem 2.4,
respectively, we obtain the extreme points and support points for class Cy(cv, 3) defined by

Owa [2].
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