
Vol. 34 ( 2014 )
No. 4

数 学 杂 志
J. of Math. (PRC)

DIMENSIONS RELATIVE TO A COTORSION PAIR

SONG Xian-mei, ZHANG Xue
(Department of Mathematics, Anhui Normal University, Wuhu 241000, China)

Abstract: In this paper, let R be a ring and (F , C) a cotorsion pair of right R-modules.

F-dimension (C-dimension) of right R-modules and the global F-dimension (C-dimension) of R

are introduced which unifies some known dimensions of modules and rings. By using homological

methods, some new characterizations of the flat dimension of modules are given. In addition, von

Neumann regular rings and perfect rings are characterized from new aspects.
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1 Introduction

Cotorsion theory, which was introduced by L. Salce in [1], plays an important role in
homological algebra and tilting theory. For instance, it was used to settle the “flat cover
conjecture” by Bican, Bashir and Enochs in [2]. Moreover, Trlifaj [3] related cotorsion theory
to (co)tilting modules which came from the representation theory of algebras. A cotorsion
theory (see definition below) is also called a cotorsion pair by many authors nowadays. We
adopt the later terminology here. In the last decade, many cotorsion pairs were investigated
in the literature (see e.g. [4–8]). Some dimensions relative to certain specific contorsion pairs
were also introduced respectively.

In this paper, we introduce and study F-dimension (C-dimension) of modules and the
global F-dimension (C-dimension) of rings with respect to any (complete) hereditary cotor-
sion pair (F , C) so that some known dimensions of modules and rings can be contained in
this unified framework. For instance, the classical flat dimension of modules can now be
characterized by the functor Ext. In addition, some new characterizations of von Neumann
regular rings and perfect rings are given.

Throughout this paper, R will denote an associative ring with identity and all modules
are unitary right R-modules. Recall that a pair (F , C) of classes of R-modules is called a
cotorsion theory or cotorsion pair if F⊥ = C and ⊥C = F , where

F⊥ = {M | Ext1R(F, M) = 0,∀F ∈ F}
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and
⊥C = {M | Ext1R(M, C) = 0,∀C ∈ C}.

In [9], a cotorsion pair (F , C) is called hereditary provided it satisfies the following equivalent
conditions:

(1) If 0 → F ′ → F → F ′′ → 0 is exact with F, F ′′ ∈ F , then we have F ′ ∈ F .
(2) If 0 → C ′′ → C → C ′ → 0 is exact with C ′′, C ∈ C, then we have C ′ ∈ C.
(3) Exti

R(F, C) = 0 for all F ∈ F , C ∈ C and i ≥ 1.
Given a class C of modules, a homomorphism φ : M → C with C ∈ C is called a C-

preenvelope of M if the induced map Hom(φ,C ′): HomR(C, C ′) → HomR(M, C ′) is surjective
for all C ′ ∈ C. If, in addition, f ◦ φ = φ implies f : C → C is an automorphism of C, then
φ : M → C is called a C-envelope of M . C-(pre)cover is defined dually. We refer the reader
to [10] for more details.

According to [11], by a C-envelope with the unique mapping property we mean a C-
envelope φ : M → C such that Hom(φ,C ′): HomR(C, C ′) → HomR(M, C ′) is injective. A
similar property is defined for C-covers.

Following [7], a monomorphism λ : M → C with C ∈ C is called a special C-preenvelope
of M if Cokerλ ∈ ⊥C. Special C-precover is defined dually. A cotorsion pair (F , C) is called
complete [7] provided that every module has a special F-precover or, equivalently, every
module has a special C-preenvelope (see [10]).

Let us list some known cotorsion pairs as follows:
(1) (P,M) is a complete hereditary cotorsion pair, where P is the class of all projective

modules and M is the class of all modules.
(2) (M, I) is a complete hereditary cotorsion pair, where I is the class of all injective

modules.
(3) (F lat, Cot) is a complete hereditary cotorsion pair, where F lat (Cot) is the class of

all flat (cotorsion) modules.
(4) (PF ,PC) is a complete cotorsion pair, where PF (PC) is the class of all P-flat

(P-cotorsion) modules (see [12, Theorem 2.3]). It is hereditary in case the base ring R is left
generalized morphic (see [4, Proposition 2.6] or [8, Proposition 2.15(2)]).

(5) (PP,PI) is a complete cotorsion pair, where PP (PI) is the class of all P-projective
(P-injective) modules (see [7, Theorem 3.4]). It is hereditary if R is right generalized morphic
(see [8, Proposition 2.15(1)]).

(6) (FP-proj, FP-inj) is a hereditary cotorsion pair, where FP-proj (FP-inj) is the
class of all FP-projective (FP-injective) modules over a right FC ring.

(7) Every tilting (cotilting) cotorsion pair is complete and hereditary (see [3, Lemma
2.7(1), Lemma 3.9(1)]).

Now, let us present our definition.
Definition 1.1 Let (F , C) be a cotorsion pair of right R-modules and M a right R-

module. If there is a smallest integer n ≥ 0 such that Extn+1
R (M, C) = 0 for all C ∈ C,
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we say that the F-dimension of M is n and write F-dim(M) = n. If no such n exists, set
F-dim(M) = ∞.

Dually, if there is a smallest integer n ≥ 0 such that Extn+1
R (F, M) = 0 for all F ∈ F ,

we call n the C-dimension of M and denote it by C-dim(M). If no such n exists, set C-
dim(M) = ∞.

The right F-dimension and right C-dimension of R are

r.F .D(R) = sup{F-dim(M) | M is a right R-module}

and
r.C.D(R) = sup{C-dim(M) | M is a right R-module},

respectively.

2 F-Dimension and C-Dimension of Modules

Let (F , C) be a hereditary cotorsion pair. In this section, we mainly discuss properties
of F-dimension and C-dimension of modules. Our main results of this section are Theorem
2.1 and Theorem 2.3.

Theorem 2.1 Let R be a ring, (F , C) a hereditary cotorsion pair of right R-modules
and n ≥ 0. Then the following are equivalent for a right R-module M :

(1) F -dim(M) ≤ n.
(2) Extn+1

R (M, N) = 0 for all N ∈ C.
(3) Extn+i

R (M, N) = 0 for all N ∈ C and i ≥ 1.
(4) There exists an exact sequence 0 → Fn → · · · → F1 → F0 → M → 0 with

F0, F1, · · · , Fn ∈ F .
(5) Fn ∈ F whenever there exists an exact sequence

0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0

with F0, F1, · · · , Fn−1 ∈ F .
Proof (3)⇒(1) is obvious by the definition of F-dim(M).
(2)⇒(3) For any N ∈ C, there exists an exact sequence 0 → N → E → L → 0, where E

is an injective right R-module. Then we have L ∈ C since (F , C) is hereditary and N, E ∈ C.
Hence Extn+1

R (M, L) = 0 by (2). Now, in view of the following long exact sequence

Extn+1
R (M, L) → Extn+2

R (M, N) → Extn+2
R (M, E) → · · ·

→ Extn+i−1
R (M, L) → Extn+i

R (M, N) → Extn+i
R (M, E) → · · · ,

it is easy to see (3) by induction.
(1)⇒(2) is similar to (2)⇒(3).

(2)⇒(5) Let 0 → Fn → Fn−1 → Fn−2

dn−2−−→ Fn−3 → · · · → F1
d1−→ F0

d0−→ M → 0 be an
exact sequence with F0, F1, · · · , Fn−1 ∈ F , then

Ext1R(Fn, N) ∼= Ext2R(Kerdn−2, N) ∼= · · · ∼= Extn
R(Kerd0, N) ∼= Extn+1

R (M, N) = 0
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for any N ∈ C. Therefore (5) follows.
(5)⇒(4) It suffices to take a projective resolution of M

· · · → Pm → Pm−1 → · · · → P1 → P0 → M → 0

and put Fn = Ker(Pn−1 → Pn−2).
(4)⇒(2) Note that Extn+1

R (M, N) ∼= Ext1R(Fn, N) = 0 for any N ∈ C.
Let P be the class of all projective right R-modules and M the class of all right R-

modules. It is well known that (P, M) is a hereditary cotorsion pair. Thus, one can obtain
the characterization of the classical projective dimension of modules by substituting (P,
M) for (F , C) in Theorem 2.1. Thus [5, Proposition 3.1] is also a special case of Theorem
2.1. Furthermore, the classes of flat and cotorsion right R-modules constitute a hereditary
cotorsion pair. Consequently, we have

Corollary 2.2 Let M be a right R-module and F the class of all flat right R-modules,
then the following are equivalent:

(1) F-dim(M) ≤ n.
(2) Extn+1

R (M, N) = 0 for any cotorsion right R-module N .
(3) Extn+i

R (M, N) = 0 for any cotorsion right R-module N and i ≥ 1.
(4) There exists an exact sequence 0 → Fn → · · · → F1 → F0 → M → 0, where

F0, F1, · · · , Fn are flat right R-modules.
(5) Fn is flat whenever there exists an exact sequence

0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0,

where F0, F1, · · · , Fn−1 are flat.
From Corollary 2.2 one can see that F-dim(M) coincides with the classical flat dimension

of a right R-module M in case F is the class of all flat right R-modules. Thus Corollary 2.2
provides a new characterization of flat dimension via functor Ext instead of Tor.

The following theorem is dual to Theorem 2.1. The proof is omitted.
Theorem 2.3 Let R be a ring, (F , C) a hereditary cotorsion pair of right R-modules

and n ≥ 0. Then the following are equivalent for a right R-module M :
(1) C-dim (M) ≤ n.
(2) Extn+1

R (N, M) = 0 for all N ∈ F .
(3) Extn+i

R (N, M) = 0 for all N ∈ F and i ≥ 1.
(4) There exists an exact sequence 0 → M → C0 → C1 → · · · → Cn → 0 with

C0, C1, · · · , Cn ∈ C.
(5) Cn ∈ C whenever there exists an exact sequence

0 → M → C0 → C1 → · · · → Cn → 0

with C0, C1, · · · , Cn−1 ∈ C.
Let PF be the class of right R-modules M such that TorR

1 (M, R/Ra) = 0 for all a ∈ R.
Modules in PF are called torsion-free, (1, 1)-flat, or P-flat in the literature(see [8, 13, 14]).
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In [4], a right R-module N is called P-cotorsion in case Ext1R(F, N) = 0 for all F ∈ PF .
The class of P-cotorsion right R-modules is denoted by PC. It is well known that (PF ,PC)
is a (perfect) cotorsion pair [12, Theorem 2.3]. Thus, P-cotorsion dimension defined in
[4] coincides with C-dimension in case C = PC. By [4, Proposition 2.6] or [8, Proposition
2.15(2)], (PF ,PC) is hereditary if R is left generalized morphic [8], i.e., for each a ∈ R, there
exists b ∈ R such that the left annihilator l(a) ∼= R/Rb. So, the equivalence of (1) through
(5) of [4, Proposition 3.1] is a special case of Theorem 2.3.

Moreover, (PP,PI) is a (complete) cotorsion pair [7, Theorem 3.4], where PP (PI) is
the class of P-projective (P-injective) right R-modules. By [8, Proposition 2.15(1)], (PP,PI)
is hereditary if R is right generalized morphic. In this case, P-injective dimension defined in
[8] coincides with C-dimension when C = PI (see [8, Lemma 3.6] which contains a special
case of our Theorem 2.3).

The following propositions will be used in the next section.
Proposition 2.4 Let (F , C) be a hereditary cotorsion pair and 0 → A → B → C → 0

an exact sequence of right R-modules. Then
(1) F-dim(B) ≤ max{F-dim(A), F-dim(C)}.
(2) F-dim(A) ≤ max{F-dim(B), F-dim(C)− 1}.
(3) F-dim(C) ≤ max{F-dim(A) + 1, F-dim(B)}.
(4) F-dim(A) = F-dim(C)− 1 in case B ∈ F and C /∈ F .
(5) C-dim(B) ≤ max{C-dim(A), C-dim(C)}.
(6) C-dim(A) ≤ max{C-dim(B), C-dim(C) + 1}.
(7) C-dim(C) ≤ max{C-dim(A)− 1, C-dim(B)}.
(8) C-dim(C) = C-dim(A)− 1 in case B ∈ C and A /∈ C.
Proof Note that 0 → A → B → C → 0 induces a long exact sequence

· · · → Ext1R(C, N) → Ext1R(B,N) → Ext1R(A,N)

→ Ext2R(C, N) → Ext2R(B,N) → Ext2R(A,N) → · · ·

for each N ∈ C. Then (1) through (4) are followed easily by Theorem 2.1.
(5) Through (8) can be proved dually.
Proposition 2.5 Let (F , C) be a hereditary cotorsion pair and {Mi | i ∈ I} a family

of right R-modules, then
(1) F-dim(

∐
i∈I Mi) = sup{F-dim(Mi)}.

(2) C-dim(
∏

i∈I Mi) = sup{C-dim(Mi)}.
Proof (1) is an immediate consequence of Theorem 2.1 by virtue of the well known

isomorphism Extn
R(

∐
i∈I Mi, N) ∼= ∏

i∈IExtn
R(Mi, N). (2) is dual to (1).

It is easy to see that F-dim(M) ≤ pd(M) and C-dim(M) ≤ id(M), where pd(M)
(id(M)) stands for the projective (injective) dimension of M . The next proposition provides
a condition under which the equality holds.

Proposition 2.6 Let (F , C) be a hereditary cotorsion pair of right R-modules and M

a right R-module.
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(1) If pd(M) < ∞ and every right R-module N is an epimorphic image of some C ∈ C,
then F-dim(M) = pd(M).

(2) If id(M) < ∞ and every right R-module N is isomorphic to a submodule of some
F ∈ F , then C-dim(M) = id(M).

Proof (1) Suppose pd(M) = n < ∞ and Extn
R(M, N) 6= 0. By hypothesis, there is

an exact sequence 0 → K → C → N → 0 with C ∈ C. Then we have an exact sequence
Extn

R(M, C) → Extn
R(M, N) → Extn+1

R (M, K) = 0. Hence Extn
R(M, C) 6= 0. By Theorem

2.1, F-dim(M) > n− 1 and the result follows.
(2) can be proved in a similar way.
Example 2.7 (1) If R is a right FC ring (i.e., R is right FP-injective and right

coherent) then (FP-proj, FP-inj) is a hereditary cotorsion pair and P ⊆ FP-inj, where
FP-proj, FP-inj and P are the classes of all FP-projective, FP-injective and projective
right R-modules, respectively. By Proposition 2.6(1), the FP-projective dimension fpd(M)
of a right R-module (see [5]) coincides with pd(M) in case pd(M) < ∞.

(2) Suppose that R is a right IF ring (i.e., every injective right R-module is flat) and
id(MR) = n < ∞. By Proposition (2), we have cd(M) = id(M), where cd(M) denotes the
cotorsion dimension of M (see [6]).

3 Global F-Dimension and C-Dimension of Rings

In this section, we discuss the global F-dimension and C-dimension of rings, where
(F , C) is a complete hereditary cotorsion pair. We first simplify the calculation of r.F .D(R)
and r.C.D(R).

Theorem 3.1 Let (F , C) be a complete hereditary cotorsion pair of right R-modules.
Then

(1) r.F .D(R) = sup{F- dim(M) | M is a finitely generated right R-module}
= sup{F- dim(M) | M is a cyclic right R-module}
= sup{id(C) | C ∈ C}
= sup{F- dim(C) | C ∈ C}.

(2) If r.F .D(R) < ∞, then
r.F .D(R) = sup{id(M) | M ∈ F ∩ C}

= sup{F- dim(M) | M is an injective right R-module}.
(3) r.C.D(R) = sup{pd(F ) | F ∈ F} = sup{C- dim(F ) | F ∈ F}.
(4) If r.C.D(R) < ∞, then
r.C.D(R) = sup{pd(M) | M ∈ F ∩ C}

= sup{C- dim(M) | M is a projective right R-module}.
Proof (1) It is obvious that

r.F .D(R) ≥ sup{F-dim(M) | M is a finitely generated right R-module}
≥ sup{F-dim(M) | M is a cyclic right R-module}

and r.F .D(R) ≥ sup{F- dim(C) | C ∈ C}.
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Now, suppose that sup{F-dim(M) | M is a cyclic right R-module} = n < ∞. Then we
have Extn+1

R (R/I,C) = 0 for all right ideal I of R and C ∈ C. Hence n ≥ sup{id(C) | C ∈ C}.
Next, let sup{id(C) | C ∈ C} = n < ∞. It follows that Extn+1

R (M, C) = 0 for all right
R-module M and C ∈ C. Thus F-dim(M) ≤ n for all right R-module M , i.e., r.F .D(R) ≤ n.

Finally, suppose that sup{F- dim(C) | C ∈ C} = n < ∞. For any right R-module M ,
we have an exact sequence 0 → M → C → F → 0 with C ∈ C and F ∈ F since (F , C)
is a complete cotorsion pair. By Proposition 2.4(2), we have F-dimM ≤ F-dim(C) ≤ n.
Therefore r.F .D(R) ≤ sup{F- dim(C) | C ∈ C}.

(2) It will suffices to show r.F .D(R) ≤ sup{id(M) | M ∈ F ∩ C} and r.F .D(R) ≤
sup{F- dim(C) | M is an injective right R-module}.

First, let sup{id(M) | M ∈ F ∩ C} = n < ∞. Then for any C ∈ C, we may assume
that F-dim(C) = m < ∞ since r.F .D(R) < ∞. In view of the completeness of (F , C) and
Theorem 2.1, one can construct an exact sequence

0 → Fm → Fm−1

dm−1−−→ Fm−2 → · · · → F1
d1−→ F0

d0−→ C → 0

with each Fi ∈ F ∩ C. Thus, Extn+1
R (−, Fi) = Extn+2

R (−, Fi) = 0 for each i by hypothesis.
Let Ki = Kerdi for i = 0, 1, · · · ,m − 1. For any right R-module N and each i, we have an
exact sequence

Extn+1
R (N, Fi) → Extn+1

R (N, Ki−1) → Extn+2
R (N, Ki)

where Extn+2
R (N, Km−1) = Extn+2

R (N, Fm) = 0 and K−1 = C. It is easy to check in turn that
Extn+1

R (−,Km−2) = 0, · · · , Extn+1
R (−,K0) = 0 and Extn+1

R (−, C) = 0. Hence id(C) ≤ n.
Consequently, r.F .D(R) = sup{id(C) | C ∈ C} ≤ n. This proves the first desired inequality.

Now suppose that sup{F- dim(C) | M is an injective right R-module} = n < ∞. For
any C ∈ C, we may assume id(C) = m < ∞ since sup{id(C) | C ∈ C} = r.F .D(R) ≤ ∞.
Then there is an injective resolution

0 → C → E0 → E1 → · · · → Em−1 → Em → 0

of C. Consequently, the second desired inequality follows by a process similar to the proof
of the previous one.

We omit the proof of (3) and (4) to avoid repeating.
By Theorem 2.1, Theorem 2.3 and Theorem 3.1(1) and (3), we have
Corollary 3.2 Let (F , C) be a complete hereditary cotorsion pair of right R-modules.

Then
(1) r.F .D(R) ≤ n if and only if Extn+1

R (M, N) = 0 for all M, N ∈ C if and only if
Extm

R (M, N) = 0 for all M, N ∈ C and m > n.
(2) r.C.D(R) ≤ n if and only if Extn+1

R (M, N) = 0 for all M, N ∈ F if and only if
Extm

R (M, N) = 0 for all M, N ∈ F and m > n.
Whenever a kind of global dimension of rings is studied, it is of special interest to

characterize a ring R with such dimension zero. As far as r.F .D(R) and r.C.D(R) are
concerned, we have
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Theorem 3.3 Let (F , C) be a complete hereditary cotorsion pair of right R-modules.
The following are equivalent.

(1) r.F .D(R) = 0.
(2) Every module in C is injective.
(3) C ⊆ F .
(4) Ext1R(M, N) = 0 for all M, N ∈ C.
(5) Extn

R(M, N) = 0 for all M, N ∈ C and n ≥ 1.
(6) Every module in C has an injective envelope with the unique mapping property.
(7) Every module in C has an F-cover with the unique mapping property.
Proof (1)⇔(2)⇔(3) follows from Theorem 3.1 (1).
(1)⇔(4)⇔(5) follows from Corollary 3.2.
(2)⇒(6) and (3)⇒(7) are clear.
(6)⇒(2) For any C ∈ C, we have an exact sequence 0 → C

ϕ−→ E1
ψ−→ E2, where E1

and E2 are injective and ϕ is an injective envelope of C with the unique mapping property.
Note that ψ ◦ ϕ = 0 = 0 ◦ ϕ. It follows that ψ = 0. Hence C is isomorphic to E1 under ϕ.

(7)⇒(3) Given C ∈ C, one can construct by hypothesis an exact sequence F2
ψ−→ F1

ϕ−→
C → 0, where F1, F2 ∈ F and ϕ is an F-cover of C with the unique mapping property. Then
it is easy to see C ∼= F1 ∈ F .

It is well known that R is von Neumann regular if and only if its weak global dimension
WD(R) = 0. But WD(R) = r.F .D(R) in case F is the class of flat right R-modules. So we
have the following corollary as a special case of Theorem 3.3.

Corollary 3.4 The following are equivalent for a ring R.
(1) R is von Neumann regular.
(2) Every cotorsion right R-module is injective.
(3) Every cotorsion right R-module is flat.
(4) Ext1R(M, N) = 0 for all cotorsion right R-modules M and N .
(5) Extn

R(M, N) = 0 for all cotorsion right R-modules M, N and n = 1, 2, · · · .
(6) Every cotorsion right R-module has an injective envelope with the unique mapping

property.
(7) Every cotorsion right R-module has a flat cover with the unique mapping property.
Dual to Theorem 3.3, we have
Theorem 3.5 Let (F , C) be a complete hereditary cotorsion pair of right R-modules.

The following are equivalent.
(1) r.C.D(R) = 0.
(2) Every module in F is projective.
(3) F ⊆ C.
(4) Ext1R(M, N) = 0 for all M, N ∈ F .
(5) Extn

R(M, N) = 0 for all M, N ∈ F and n ≥ 1.
(6) Every module in F has a projective cover with the unique mapping property.
(7) Every module in F has a C-envelope with the unique mapping property.
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In Theorem 3.5, if we let F (C) be the class of flat (cotorsion) right R-modules, then
we have the following corollary, where (1)⇔(2)⇔(3)⇔(4) is well known and (1)⇔(8) is also
established in [15, Theorem 2.18].

Corollary 3.6 The following are equivalent for a ring R.

(1) R is right perfect.

(2) Every right R-module is cotorsion.

(3) Every flat right R-module is projective.

(4) Every flat right R-module is cotorsion.

(5) Ext1R(M, N) = 0 for all flat right R-modules M and N .

(6) Extn
R(M, N) = 0 for all flat right R-modules M, N and n = 1, 2, · · · .

(7) Every flat right R-module has a projective cover with the unique mapping property.

(8) Every flat right R-module has a cotorsion envelope with the unique mapping prop-
erty.

When R is right generalized morphic we may substitute (PP,PI) for (F , C) in Theorem
3.5, where PP (PI) is the class of P-projective (P-injective) right R-modules. Consequently,
we have the following corollary in view of the fact that a ring R is von Neumann regular if
and only if every right R-module is P-injective.

Corollary 3.7 The following are equivalent for a right generalized morphic ring R.

(1) R is a von Neumann regular ring.

(2) Every P-projective right R-module is projective.

(3) Every P-projective right R-module is P-injective.

(4) Ext1R(M, N) = 0 for all P-projective right R-modules M and N .

(5) Extn
R(M, N) = 0 for all P-projective right R-modules M , N and n ≥ 1.

(6) Every P-projective right R-module has a projective cover with the unique mapping
property.

(7) Every P-projective right R-module has a P-injective envelope with the unique map-
ping property.

Finally, we estimate the classical right global dimension r.D(R) of a ring R with r.F .D(R)
and r.C.D(R).

Theorem 3.8 Let (F , C) be a complete hereditary cotorsion pair of right R-modules.
Then r.D(R) ≤ r.F .D(R) + r.C.D(R).

Proof Suppose r.F .D(R) = m < ∞ and r.C.D(R) = n < ∞. Then for any right
R-module M there is an exact sequence

0 → Fm → Fm−1 → · · · → F1 → F0 → M → 0

with each Fi ∈ F . By Theorem 3.1 (3), we have pd(Fi) ≤ n, i = 0, 1, · · · ,m. Now, break
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the above long exact sequence in the following short exact sequences

0 → Fm → Fm−1 → Km−2 → 0

0 → Km−1 → Fm−2 → Km−3 → 0

· · ·
0 → K0 → F0 → M → 0

from which we can obtain

pd(Km−2) ≤ sup{pd(Fm−1), pd(Fm) + 1} ≤ n + 1

and pd(Km−3) ≤ n + 2, · · · , pd(K0) ≤ n + m − 1, pd(M) ≤ n + m. Therefore, the result
follows.

Corollary 3.9 (1) (see [4]) If R is left generalized morphic ring, then

r.D(R) ≤ WD(R) + r.P-cD(R),

where r.P-cD(R) is the right P-cotorsion dimension of R.
(2) (see [15]) r.D(R) ≤ WD(R)+r.CD(R), where r.CD(R) is the right cotorsion dimen-

sion of R.
(3) (see [5]) If R is right coherent ring, then r.D(R) ≤ WD(R) + r.fpD(R), where

r.fpD(R) is the right FP-projective dimension of R.
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相对于余挠对的维数

宋贤梅,张 雪

(安徽师范大学数学系,　安徽芜湖 241000)

摘要: 本文介绍了右R -模的F -维数(C -维数)以及环R上整体F -维数(C -维数). 利用同调方法, 给出

了平坦模维数的新刻画. 另外, 得到了von Neumann正则环和完全环的新刻画.
关键词: F -维数; C -维数; 余挠对
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