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Abstract: The moment exponential stability for a stochastic delay recurrent neural networks
is discussed by means of a nonnegative semi-martingale convergence theorem and Lyapunov func-
tional method. The new algebraic criteria of the moment exponential stability for a stochastic
delay recurrent neural network is derived, and these algebraic criteria are simple and practical. An
example is also given for illustration.
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1 Introduction

Stability of stochastic differential delay equations was studied widely and reader is re-
ferred, for example, to Arnold [1], Friedman [2], and Mao [3]. However, stability of stochastic
neural network was initiated to study by Liao and Mao [4], [5]. Recently, Hu, Liao and Mao
[6] discussed stability of stochastic Hopfield neural network. Zhang, Xu and Deng [7] studied
the exponential stability of stochastic reaction-diffussion neural network with time-varyings.

Blythe, Mao and Liao [8] studied the almost sure stability of stochastic Hopfield neural

networks as following
dx(t) = (—Dx(t) + Bg(x.(t)))dt + o(x(t), z.(t), t)dW (t).

Zhang and Xu [9] were further to discuss almost sure exponential stability of the stochas-

tic recurrent neural networks with time-varying delays as following (1.1).
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This paper discusses moment exponential stability of stochastic recurrent neural net-

works with time-varying delays as following

da(t) = (=Dx(t) + Af(2(1)) + By(z-(1)))dt + o (x(t), z-(t), t)dW (1),

z(s) =&(s) on —7 <s<0, (1.1)
where D = diag(dy, - ,dyn), A= (@ij)nxn, B = (bij)nxn,

f(ﬂ?) = (fl(x)an(m)?‘ e afn(x))Tv
9(z-(2)) = (g1(@1(t = 71)), ga(@2(t = 7)), -+ g (wn(t = 70)))7,
o (x(t), 2. (1), 1) = (03 (@ (t), 27 (8), ) mcms @7 (8) = (21.(t = 1), 22(t = T2), - 2t — 7)),

W(t) = (Wi(t), -+, W,(t))T is an m-dimensional Brownian motion which is defined on a
complete probability space (€, F, P) with a natural filtration {F}};>¢ (i.e., F; = o{W(s) :
0 <s <t}),and &(s) (T <s <0)is a continuous R"-valued stochastic process such that
every £(s) is Fp-measurable and E|£(s)|?> < oo, where n denotes the number of neurons
in a neural network, z;(t) corresponds to the state of the ith neuron at time ¢, f;(x;(t)),
gj(z;(t)) denote the activation functions of the jth neuron at time ¢, a;; denotes the constant
connection weight of the jth neuron on the ¢th neuron at time ¢, b;; denotes the constant
connection weight of the jth neuron on the ¢th neuron at time ¢ — 7;, d; > 0 represents
the rate with which the ith neuron will rest its potential to the resting state in isolation
when disconnected from the networks and external inputs. o;; denotes the intensity of the
stochastic perturbation.

Denote by | - | the Euclidean norm. If A is a vector or matrix, its transpose is denoted
by AT. If A is a matrix, denote by ||A|| its operator norm, i.e. ||A| = sup{|Az|: |z| =1}.

Assume f, g and o be locally Lipschitz continuous and satisfy the linear growth condition
as well. So it is known that Eq. (1.1) has a unique global solution on ¢ > 0, which is denoted
by x(t;&). Moreover, assume also that f(0) =0, g(0) = 0 and ¢(0,0,t) = 0 for the stability

purpose of this paper. So Eq. (1.1) admits an equilibrium solution z(¢;0) = 0.

2 Main Results

Let C?*1(R" x Ry; R,) denote the family of all nonnegative functions V (z,t) on R" x R
which are continuously twice differentiable in z and once differentiable in ¢. For each V €
C?1(R™ x R,; R,), define an operator LV, associated with the stochastic delay recurrent
neural network (1.1), from R™ x R™ x R, to R by

LV = Vil 1) + Vi, 0)[-Da + Af(2) + Bo(w)] + 510" (2,9, )Vewor (. ,1)]

x,t L V(@
where V;(z, ) = av{g.:,t), Vi(z,t) = (%j)’ .. 7%2#)?7 Viw = (88;/i(aa£;))nxn'

Let C(R™, R, ) denote the family of all continuous functions from R"™ to R, while

C([-7,0], R™) denote the R"-valued continuous functions from [—7,0] to R", and T =
max{7; : 1 <i<n}.
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In order to prove our results, we need the following semi-martingale convergence theorem
established by Liptser and Shiryayev [10].

Lemma 2.1 Let A(t) and U(t) be two continuous adapted increasing processes on
t > 0 with A(0) = U(0) = 0 a.s.. Let M(t) be a real-valued continuous local martingale
with M(0) = 0 a.s.. Let ¢ be a nonnegative Fy-measurable random variable with E¢ < oo.
Define X (t) = ¢+ A(t) — U(t) + M (t) for t > 0. If X(¢) is nonnegative, then {tlirglo At) <
oo} C {tlirglo X(t) <oo}n {tlirg) U(t) < oo} a.s., where B C D a.s. means P(BN D) =0. In

particular, if tlirn A(t) < o0 a.s., then for almost all w € Q

}H&X(t’w) < oo and tlggo U(t,w) < oo,
that is both X (¢) and U(t) converge to finite random variables.

Lemma 2.2 Let M(t) be a real-valued continuous local martingale with M (0) = 0
a.s.. Let ¢ be a nonnegative Fy-measurable random variable with E¢ < co. Define X (t) =
¢+ M(t) fort > 0.If X(t) is nonnegative, then X (¢) is sample bounded a.s., EX(t) < E(,
and M (t) is convergence a.s. when ¢t — 0.

Proof Let 7, be infinitely stopping time consequences such that M (tAt,,) is martingale.
By Fatou theorem and controlled converged theorem, one have that

EX(t) = EX(r}LHolot ANt,) <lim,  EX(tAt,) <lim, FE¢=EC(.
The sample bound of X (¢) and convergence of M (t) can be derived from Lemma 2.1.

Because each differential equation in stochastic delay neural networks has own charac-
teristic it is desirable to obtain stability criteria that make full use of these characteristics.

Theorem 2.3 Assume that there exist a number of functions V € C*'(R" x R,; R.),
¢; € C(R;Ry), ¥; € C(R;Ry) (1 <i<mn)and 3n constants \; > u; >0, p; >0 (1<i<n)
such that

LV (z,y,t) < Z<_)\i¢i(xi) + pithi(yi)), (z,y,t) € R" x R" X Ry, (2.1)
i—1

V(z,t) <> piti(zi), (x,t) € R" x Ry, (2.2)

Vi) < ¢i_($i), zreR. (2.3)

Then, for every ¢ € C([-7,0]; R") (| LE, (€2, C), the solution of eq.(1.1) has the property

1
tlim sup;log(EV(z(t;ﬁ),t)) < —v as.,
— 00
where v is the root of the equation

A — el
4= min ",
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Proof Fix initial data £ € C([-7,0]; R") (| L%, (Q,C) arbitrarily and write simply
z(t; &) = x(t). Define

U(z,t) = eV (z,t) for (z,t) € R" x Ry,
which is in C*'(R™ x R;; Ry) obviously. We can compute
LU (z,y,t) = ~ve"'V(x,t) +e"'Vi(x,t) + "'V, (z,t)[-Dx + Af(x) + Bg(y)]
+%e”[0T(x,y,t)Vma(w7y,t)]
= "WV (x,t)+ LV (z,y,1)].

Using conditions (2.1) and (2.2), we have

LU(z,y,t) < e[ Z()\i — piv)¢i(w;) + Z piti(yi)]-

i=1 i=1

The It6 formula shows that for any ¢t > 0

"'V (x,t) = V(2(0),0) +/0 LU (z(s),z.(s), s)ds
—|—/O eV, (x(s), s)o(x(s), x(s),s)dW (s)

n

SRGOE SER) | e otatnas

+Z“l/ e, xz(s—n))ds—i—/o eV, (x(s), s)o(x(s), x-(s),s)dW (s). (2.4)

On the other hand, we have
t

/ eV (x;(s))ds = / eV (x;(s))ds — / e”(sfﬂ)wi(xi(s —7;))ds
t—Ti —Ti 0
< / e (xi(s))ds — e 7T / eV (xi(s — 71;))ds

t t
< / eV (w(s))ds — ew/ e Yi(xi(s — 1))ds.
s 0
This implies

/0 t eV (wi(s — 7;))ds < /_ tT 7 (zi(s))ds — €77 /: e (zi(s))ds.  (2.5)

It then follows from (2.4) and (2.5) that

V)  VIE),0) = Yo~ g ) [ etontanlsds +7 Yo m [ ueilsds

0
t

—e”Zu/ e (x (s))ds—l—/ eV (x(s), s)o(x(s), x(s), s)dW (s).

0

Ti
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Furthermore, we have that

"V (x(t),t) +eﬁz 11 /t O Yi(wi(s))ds < X(1), (2.6)

t
—7;

where
X(t)=¢ +/O eV (x(s), 8)o(x(s), x-(s), s)dW (s),
C=VEL0+ 7w [ Otul(sas

which is a nonnegative semi-martingale, and Lemma 2.2 shows EX(t) < E(. It therefore
follows from (2.6) that
E["V(z,t)] = " EV (z,t) < E(,
which implies
1
tlim sup;log(EV(m(t;f),t)) < —v as.

as required. The proof is complete.

To obtain our results, we give the following assumption:

H1: there exist positive constants «; such that |f(x;)| < ay|z;], i =1,2,--- ,n.

H2: there exist positive constants (3; such that |g(x;)| < Gi|xi], i =1,2,---  n.

Theorem 2.4 Let (H2) hold. Assume there exist symmetric nonnegative-definite
matrices Cy, Cs, C3 = diag(dy,--- ,0,) and Cy such that

tracelo” (z,y, t)o (x,y,1)] < 2" Crz + g7 (y)Cag(y) +y" Cay, (2.7)
2T Af(x) 4+ ff(2)ATe < 27 Cyx (2.8)

for all (x,y,t) € R™ x R" x R,. Assume also that there exists a positive-definite diagonal

matrix G = diag(gy,- -, gn) such that the symmetric matrix

g 2P+Ci+C+Cit D B
o BT —G+Cy

is negative-definite, where D = diag(g13?, - ,9,0%). Let —\ = Anax(H), the biggest
eigenvalue of H. So A > 0. Then, for every £ € C([-7,0]; R") () L%, (€2, C), the moment
Lyapunov-exponent of the solution of eq.(1.1) can be estimated as

1
Jim sup - log(Ble(t: §))) < —% a.s., (2.9)

where v > 0 is the root of the equation

v = min {(A+ 3+ gi62) — (8 + i — AB)ET). (2.10)
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Proof Let V(z,t) = |z|?. Then the operator £V has the form
LV =22T[-2D + Af(z) + Bg(y)] + trace[o” (z,y,t)o(x,y,t)].
Compute, by the hypotheses,
LV (z,y,t) < —22"Dzx+a2"Chz+ 2" Bg(x) + ¢" (2)BTx + 27 Ciz + ¢ (y)Cag(y) + y" Csy
= (@' g"(W)H ( fzcx) > — 2" (Cs+ D)z +y" Csy + 9" (y)Gy(y)
< =Mz +1gw)1?) -« (Cs + D)z +y" Cay + g" (y)Go(y)

= =Y (A8 +a:8)2 + Y (Gl + (95— Vgl ).

It is easy to see from the construction of H that A < g; for all 1 <i <n. Using H2 one can
then derive that

V(z,y,t) <D (=M + 8+ g:80)27 + (0} + (g1 — NBH2)).

In order to apply Theorem 2.3, define ¢;, ¥; € C(R; Ry) by
Gi(z:) = a7, Vi(yi) =i, Ni = A+ 06+ 987, i =0+ (9 — NP

It is obvious that

Vi, t) = |2 =D dilwi) =D wilys), A > i
i=1 i=1

Moreover,

LV (z,y,t) < Z(—)\z‘@(xi) + 1t (yi)-
By Theorem 2.3, for every £ € C([— ") L3, , the solution of eq.(1.1) has the
property

1
tlim supglog(E|x(t;£)|2) < —v as.

and the required assertion (2.9) follows. The proof is completed.

In the following, we shall make use of the characteristics of recurrent networks to obtain
further results.

Corollary 2.5 Let (2.8) and (H2) hold. Assume that there exist nonnegative numbers
0; and ¢; such that

trace[o” (z,y,t)o(z,y,t)] < Z (022 + 6,57 (2.11)
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for all (z,y,t) € R™ x R" x R,. Assume also that there exists a positive-definite diagonal

matrix G = diag(gy,- -, gn) such that the symmetric matrix
_ —-2D+Cy+D B
H =
BT -G

is negative-definite, where D = diag(g11, - ,g131). Let =X = Aoz (H), the biggest eigen-
value of H. So A > 0. If

0, +6; <\ 1<i<n, (2.12)

then the stochastic delay recurrent neural network (1.1) is moment exponentially stable.
Moreover, for every £ € C([—7,0]; R") () L%, (2, C), the moment Lyapunov-exponent of the

solution of eq.(1.1) can be estimated as

2

1
tlim sup log(Elz(t;€)]) < —5 a8, (2.13)

where v > 0 is the root of the equation (2.10), as long as the A in (2.10) is determined by

1<i<n

Proof Set Cy = diag(#,60s,--- ,0,), Co =0, C3 = diag(dy,02, -+ ,0,). Then (12) can

be written as
tracelo” (z,y,t)o(z,y,1)] < 2" Crz + g7 (y)Cag(y) + y" Csy.

In view of Theorem 2.4, it is sufficient to verify that the matrix H defined there is negative-

definite. To do so, for any z,y € R™, compute
—2D D B
(:ET yT)H x _ (:BT yT) +Ci + gg + Cy + x
Yy B -G+ 02 Yy

T T\ 17 z T T Cl+03 0 X
=m0 2 ) ()

< =AMy + D0+ 6:)a?
=1
< =A(l2P + [y,

where A is defined by (2.14) and is positive due to (2.12). The proof is therefore completed.

Lemma 2.6 (see [9]) Let P be a invertible matrix then

207 Ay < 2" PPz + 4T (P AT (P71 A)y. (2.15)
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Corollary 2.7 Let H1, H2 and (2.11) hold. Assume there exist a invertible matrix P
and positive-definite diagonal matrix G = diag(gy,- - , g.) such that

. —2D + PPT + (P7'AL)'(P7'AL)+D B
= BT e,

is negative-definite, where D = diag(¢:4?,---,g13?), L = diag(ay,---,a,). Let —fi =
Amax(H1), the biggest eigenvalue of Hy, so i > 0. If

0, +0i<pi (1<i<n), (2.16)

then the stochastic delay recurrent neural networks (1.1) is moment exponentially stable.
Moreover, the moment Lyapunov exponent can be estimated by (2.13), as long as the A in
(2.10) is determined by

A= min [i— (6 + ). (2.17)

1<i<n

Proof Choose Cy = PPT + (P7'AL)T(P~'AL). The conclusion of this corollary
follows from Corollary 2.5. The proof is completed.

Corollary 2.8 Let H1, H2 and (2.11) hold. Assume there exist two positive-definite
diagonal matrixes P = diag(ey, -+ ,&,) and G = diag(g1,-- - , gn) such that

—2D + PPT + (AL)"P~Y(AL)+D B
H2 = BT _G

is negative-definite, where D = diag(¢13%,---,9:18%), L = diag(a, -+ ,a,). Let —v =
Amax(H2), the biggest eigenvalue of Hs, so v > 0. If

0,+6, < (1<i<n), (2.18)

then the stochastic delay recurrent neural networks (1.1) is moment exponentially stable.
Moreover, the moment Lyapunov exponent can be estimated by (2.13), as long as the A in
(2.10) is determined by

1<i<n

Proof Choose P = diag(,/1, -+ ,+/€n). The conclusion of this corollary follows from
Corollary 2.7. The proof is completed.

3 Example

Example 1 Consider a two-dimensional stochastic delay recurrent neural network

dx(t) = [-Dx(t) + Af(xz(t)) + Bg(x,(t))]dt + B1g(x.(t))dW (t), (3.1)
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where W(t) is a real-valued scalar Brownian motion, 71 and 75 both positive numbers,

0.1 —0.1 2 -2 40
A= , B= , D= , Ly, 1) = (0.295,0.5 T’
<0.1 0.1 ) (1 1 ) (0 2) o(x,y,t) = (0.2y2,0.541)

while

1—e ¥
filw:) = (auws A1)V (=1) with oy = 0.4, ap = 0.3, gi(y:) = Hiefy i=1,2.
e k2

It is easily shown that H1 is satisfied with oy = 0.4, as = 0.3 and H2 is satisfied with
01 = P2 = 1, respectively. To apply Theorem 2.4, note in this example such that

C; = Cy =0, Cs = diag(0.25,0.04), L = diag(0.4,0.3), o”(z,y,t)o(z,y,t) = 0.25y7 + 0.04y3.
Choosing P = diag(0.2,0.2) in Corollary 2.6, then P~! = diag(5,5), we have

2T Af(z) + [ (x)Ax < 2T (PP + (P'AL)" (P AL))x,
Cy=PPT +(P'AL)T(P'AL) = diag(0.12,0.085), D = G,
—2D + C) + Cs + Cy = diag(—7.63, —3.875).

Now, choose D = diag(3.815,1.9375). The matrix H defined in Theorem 2.4 becomes

—3.815 0 2 -2
— 0 —1.9375 1 1
2 1 —3.815 0

-2 1 0 —1.9375

Compute Apax(H) = —0.1512 which means that H is negative-definite. By Theorem 2.4, the
stochastic delay recurrent neural network (3.1) is moment exponentially stable. To estimate

the moment Lyapunov-exponent, compute, by (2.10), v satisfied
v =4.2162 — 3.9138¢77. (3.2)

If both 7 and 75 are 0.1 then 7 = 0.1 and (3.1) has a unique root v = 0.2166. Therefore,
Theorem 2.4 shows that the moment Lyapunov-exponent of the solution of network (3.1)
should not be greater than —0.1033.

If A=01in (3.1), the model (3.1) changes into the Hopfield neural network. Choosing
G = diag(3.875,1.98), we have

—3.875 0 2 -2
I— 0 —1.98 1 1
2 1 —3.875 0

-2 1 0 —1.98
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Compute A\pax(H) = —0.1957 which means that H is negative-definite. By Theorem 2.4,
the the stochastic delay Hopfield neural network (3.1) is moment exponentially stable. To

estimate the moment Lyapunov exponent, compute, by (2.10), - satisfied
v = 4.3207 — 3.9293¢e7". (3.3)

If both 71 and 75 are 0.1 then 7 = 0.1 and (3.3) has a unique root v = 0.2798. Therefore,
Theorem 2.4 shows that the moment Lyapunov-exponent of the solution of stochastic delay
Hopfield neural network (3.1) should not be greater than —0.1399.
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