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Abstract: The moment exponential stability for a stochastic delay recurrent neural networks

is discussed by means of a nonnegative semi-martingale convergence theorem and Lyapunov func-

tional method. The new algebraic criteria of the moment exponential stability for a stochastic

delay recurrent neural network is derived, and these algebraic criteria are simple and practical. An

example is also given for illustration.
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1 Introduction

Stability of stochastic differential delay equations was studied widely and reader is re-
ferred, for example, to Arnold [1], Friedman [2], and Mao [3]. However, stability of stochastic
neural network was initiated to study by Liao and Mao [4], [5]. Recently, Hu, Liao and Mao
[6] discussed stability of stochastic Hopfield neural network. Zhang, Xu and Deng [7] studied
the exponential stability of stochastic reaction-diffussion neural network with time-varyings.

Blythe, Mao and Liao [8] studied the almost sure stability of stochastic Hopfield neural
networks as following

dx(t) = (−Dx(t) + Bg(xτ (t)))dt + σ(x(t), xτ (t), t)dW (t).

Zhang and Xu [9] were further to discuss almost sure exponential stability of the stochas-
tic recurrent neural networks with time-varying delays as following (1.1).
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This paper discusses moment exponential stability of stochastic recurrent neural net-
works with time-varying delays as following

dx(t) = (−Dx(t) + Af(x(t))) + Bg(xτ (t)))dt + σ(x(t), xτ (t), t)dW (t),

x(s) = ξ(s) on − τ ≤ s ≤ 0, (1.1)

where D = diag(d1, · · · , dn), A = (aij)n×n, B = (bij)n×n,

f(x) = (f1(x), f2(x), · · · , fn(x))T ,

g(xτ (x)) = (g1(x1(t− τ1)), g2(x2(t− τ2)), · · · , gn(xn(t− τn)))T ,

σ(x(t), xτ (t), t) = (σij(x(t), xτ (t), t))n×m, xτ (t) = (x1(t− τ1), x2(t− τ2), · · · , xn(t− τn))T ,

W (t) = (W1(t), · · · ,Wm(t))T is an m-dimensional Brownian motion which is defined on a
complete probability space (Ω, F, P ) with a natural filtration {Ft}t≥0 (i.e., Ft = σ{W (s) :
0 ≤ s ≤ t}), and ξ(s) (τ ≤ s ≤ 0) is a continuous Rn-valued stochastic process such that
every ξ(s) is F0-measurable and E|ξ(s)|2 < ∞, where n denotes the number of neurons
in a neural network, xi(t) corresponds to the state of the ith neuron at time t, fj(xj(t)),
gj(xj(t)) denote the activation functions of the jth neuron at time t, aij denotes the constant
connection weight of the jth neuron on the ith neuron at time t, bij denotes the constant
connection weight of the jth neuron on the ith neuron at time t − τj , di > 0 represents
the rate with which the ith neuron will rest its potential to the resting state in isolation
when disconnected from the networks and external inputs. σij denotes the intensity of the
stochastic perturbation.

Denote by | · | the Euclidean norm. If A is a vector or matrix, its transpose is denoted
by AT . If A is a matrix, denote by ‖A‖ its operator norm, i.e. ‖A‖ = sup{|Ax| : |x| = 1}.

Assume f , g and σ be locally Lipschitz continuous and satisfy the linear growth condition
as well. So it is known that Eq. (1.1) has a unique global solution on t ≥ 0, which is denoted
by x(t; ξ). Moreover, assume also that f(0) = 0, g(0) = 0 and σ(0, 0, t) ≡ 0 for the stability
purpose of this paper. So Eq. (1.1) admits an equilibrium solution x(t; 0) = 0.

2 Main Results

Let C2,1(Rn×R+;R+) denote the family of all nonnegative functions V (x, t) on Rn×R+

which are continuously twice differentiable in x and once differentiable in t. For each V ∈
C2,1(Rn × R+;R+), define an operator LV , associated with the stochastic delay recurrent
neural network (1.1), from Rn ×Rn ×R+ to R by

LV = Vt(x, t) + Vx(x, t)[−Dx + Af(x) + Bg(y)] +
1
2
[σT (x, y, t)Vxxσ(x, y, t)],

where Vt(x, t) = ∂V (x,t)
∂t

, Vx(x, t) = (∂V (x,t)
∂x1

, · · · , ∂V (x,t)
∂xn

)T , Vxx = (∂2V (x,t)
∂xi∂xj

)n×n.
Let C(Rn, R+) denote the family of all continuous functions from Rn to R+, while

C([−τ , 0], Rn) denote the Rn-valued continuous functions from [−τ , 0] to Rn, and τ =
max{τi : 1 ≤ i ≤ n}.
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In order to prove our results, we need the following semi-martingale convergence theorem
established by Liptser and Shiryayev [10].

Lemma 2.1 Let A(t) and U(t) be two continuous adapted increasing processes on
t ≥ 0 with A(0) = U(0) = 0 a.s.. Let M(t) be a real-valued continuous local martingale
with M(0) = 0 a.s.. Let ζ be a nonnegative F0-measurable random variable with Eζ < ∞.
Define X(t) = ζ + A(t)− U(t) + M(t) for t ≥ 0. If X(t) is nonnegative, then { lim

t→∞
A(t) <

∞} ⊂ { lim
t→∞

X(t) < ∞}∩{ lim
t→∞

U(t) < ∞} a.s., where B ⊂ D a.s. means P (B ∩Dc) = 0. In

particular, if lim
t→∞

A(t) < ∞ a.s., then for almost all ω ∈ Ω

lim
t→∞

X(t, ω) < ∞ and lim
t→∞

U(t, ω) < ∞,

that is both X(t) and U(t) converge to finite random variables.
Lemma 2.2 Let M(t) be a real-valued continuous local martingale with M(0) = 0

a.s.. Let ζ be a nonnegative F0-measurable random variable with Eζ < ∞. Define X(t) =
ζ + M(t) for t ≥ 0. If X(t) is nonnegative, then X(t) is sample bounded a.s., EX(t) ≤ Eζ,
and M(t) is convergence a.s. when t −→∞.

Proof Let τn be infinitely stopping time consequences such that M(t∧tn) is martingale.
By Fatou theorem and controlled converged theorem, one have that

EX(t) = EX( lim
n→∞

t ∧ tn) ≤ limn→∞EX(t ∧ tn) ≤ limn→∞Eζ = Eζ.

The sample bound of X(t) and convergence of M(t) can be derived from Lemma 2.1.
Because each differential equation in stochastic delay neural networks has own charac-

teristic it is desirable to obtain stability criteria that make full use of these characteristics.
Theorem 2.3 Assume that there exist a number of functions V ∈ C2,1(Rn×R+;R+),

φi ∈ C(R;R+), ψi ∈ C(R;R+) (1 ≤ i ≤ n) and 3n constants λi > µi > 0, ρi > 0 (1 ≤ i ≤ n)
such that

LV (x, y, t) ≤
n∑

i=1

(−λiφi(xi) + µiψi(yi)), (x, y, t) ∈ Rn ×Rn ×R+, (2.1)

V (x, t) ≤
n∑

i=1

ρiφi(xi), (x, t) ∈ Rn ×R+, (2.2)

ψi(xi) ≤ φi(xi), x ∈ R. (2.3)

Then, for every ξ ∈ C([−τ , 0];Rn)
⋂

L2
F0

(Ω, C), the solution of eq.(1.1) has the property

lim
t→∞

sup
1
t

log(EV (x(t; ξ), t)) ≤ −γ a.s.,

where γ is the root of the equation

γ = min
1≤i≤n

λi − µie
γτ

ρi

.
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Proof Fix initial data ξ ∈ C([−τ , 0];Rn)
⋂

L2
F0

(Ω, C) arbitrarily and write simply
x(t; ξ) = x(t). Define

U(x, t) = eγtV (x, t) for (x, t) ∈ Rn ×R+,

which is in C2,1(Rn ×R+;R+) obviously. We can compute

LU(x, y, t) = γeγtV (x, t) + eγtVt(x, t) + eγtVx(x, t)[−Dx + Af(x) + Bg(y)]

+
1
2
eγt[σT (x, y, t)Vxxσ(x, y, t)]

= eγt[γV (x, t) + LV (x, y, t)].

Using conditions (2.1) and (2.2), we have

LU(x, y, t) ≤ eγt[−
n∑

i=1

(λi − ρiγ)φi(xi) +
n∑

i=1

µiψi(yi)].

The Itô formula shows that for any t ≥ 0

eγtV (x, t) = V (x(0), 0) +
∫ t

0

LU(x(s), xτ (s), s)ds

+
∫ t

0

eγsVx(x(s), s)σ(x(s), xτ (s), s)dW (s)

≤ V (ξ(0), 0)−
n∑

i=1

(λi − ρiγ)
∫ t

0

eγsφi(xi(s))ds

+
n∑

i=1

µi

∫ t

0

eγsψi(xi(s− τi))ds +
∫ t

0

eγsVx(x(s), s)σ(x(s), xτ (s), s)dW (s). (2.4)

On the other hand, we have
∫ t

t−τi

eγsψi(xi(s))ds =
∫ t

−τi

eγsψi(xi(s))ds−
∫ t

0

eγ(s−τi)ψi(xi(s− τi))ds

≤
∫ t

−τ̄

eγsψi(xi(s))ds− e−γτi

∫ t

0

eγsψi(xi(s− τi))ds

≤
∫ t

−τ̄

eγsψi(xi(s))ds− e−γτ̄

∫ t

0

eγsψi(xi(s− τi))ds.

This implies
∫ t

0

eγsψi(xi(s− τi))ds ≤
∫ t

−τ̄

eγsψi(xi(s))ds− eγτ̄

∫ t

t−τi

eγsψi(xi(s))ds. (2.5)

It then follows from (2.4) and (2.5) that

eγtV (x, t) ≤ V (ξ(0), 0)−
n∑

i=1

(λi − γρi − µie
γτ̄ )

∫ t

0

eγsφi(xi(s))ds + eγτ̄

n∑
i=1

µi

∫ 0

−τ̄

ψi(ξi(s))ds

−eγτ̄

n∑
i=1

µi

∫ t

t−τi

eγsψi(xi(s))ds +
∫ t

0

eγsVx(x(s), s)σ(x(s), xτ (s), s)dW (s).
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Furthermore, we have that

eγtV (x(t), t) + eγτ̄

n∑
i=1

µi

∫ t

t−τi

eγsψi(xi(s))ds ≤ X(t), (2.6)

where

X(t) = ζ +
∫ t

0

eγsVx(x(s), s)σ(x(s), xτ (s), s)dW (s),

ζ = V (ξ(0), 0) + eγτ̄

n∑
i=1

µi

∫ 0

−τ̄

eγsψi(ξi(s))ds,

which is a nonnegative semi-martingale, and Lemma 2.2 shows EX(t) ≤ Eζ. It therefore
follows from (2.6) that

E[eγtV (x, t)] = eγtEV (x, t) ≤ Eζ,

which implies

lim
t→∞

sup
1
t

log(EV (x(t; ξ), t)) ≤ −γ a.s.

as required. The proof is complete.
To obtain our results, we give the following assumption:
H1: there exist positive constants αi such that |f(xi)| ≤ αi|xi|, i = 1, 2, · · · , n.
H2: there exist positive constants βi such that |g(xi)| ≤ βi|xi|, i = 1, 2, · · · , n.
Theorem 2.4 Let (H2) hold. Assume there exist symmetric nonnegative-definite

matrices C1, C2, C3 = diag(δ1, · · · , δn) and C4 such that

trace[σT (x, y, t)σ(x, y, t)] ≤ xT C1x + gT (y)C2g(y) + yT C3y, (2.7)

xT Af(x) + fT (x)AT x ≤ xT C4x (2.8)

for all (x, y, t) ∈ Rn × Rn × R+. Assume also that there exists a positive-definite diagonal
matrix G = diag(g1, · · · , gn) such that the symmetric matrix

H :=

(
−2D + C1 + C3 + C4 + D̄ B

BT −G + C2

)

is negative-definite, where D̄ = diag(g1β
2
1 , · · · , gnβ2

n). Let −λ = λmax(H), the biggest
eigenvalue of H. So λ > 0. Then, for every ξ ∈ C([−τ , 0];Rn)

⋂
L2

F0
(Ω, C), the moment

Lyapunov-exponent of the solution of eq.(1.1) can be estimated as

lim
t→∞

sup
1
t

log(E|x(t; ξ)|) ≤ −γ

2
a.s., (2.9)

where γ > 0 is the root of the equation

γ = min
1≤i≤n

{(λ + δi + giβ
2
i )− (δi + giβ

2
i − λβ2

i )eγτ̄}. (2.10)
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Proof Let V (x, t) = |x|2. Then the operator LV has the form

LV = 2xT [−2D + Af(x) + Bg(y)] + trace[σT (x, y, t)σ(x, y, t)].

Compute, by the hypotheses,

LV (x, y, t) ≤ −2xT Dx + xT C4x + xT Bg(x) + gT (x)BT x + xT C1x + gT (y)C2g(y) + yT C3y

= (xT gT (y))H

(
x

f(x)

)
− xT (C3 + D̄)x + yT C3y + gT (y)Gg(y)

≤ −λ(|x|2 + |g(y)|2)− xT (C3 + D̄)x + yT C3y + gT (y)Gg(y)

= −
n∑

i=1

(λ + δi + giβ
2
i )x2

i +
n∑

i=1

(δiy
2
i + (gi − λ)g2

i (y)).

It is easy to see from the construction of H that λ ≤ gi for all 1 ≤ i ≤ n. Using H2 one can
then derive that

LV (x, y, t) ≤
n∑

i=1

(−(λ + δi + giβ
2
i )x2

i + (δiy
2
i + (gi − λ)β2

i y2
i )).

In order to apply Theorem 2.3, define φi, ψi ∈ C(R;R+) by

φi(xi) = x2
i , ψi(yi) = y2

i , λi = λ + δi + giβ
2
i , µi = δi + (gi − λ)β2

i .

It is obvious that

V (x, t) = |x|2 =
n∑

i=1

φi(xi) =
n∑

i=1

ψi(yi), λi > µi.

Moreover,

LV (x, y, t) ≤
n∑

i=1

(−λiφi(xi) + µiψi(yi)).

By Theorem 2.3, for every ξ ∈ C([−τ , 0];Rn)
⋂

L2
F0

(Ω, C), the solution of eq.(1.1) has the
property

lim
t→∞

sup
1
t

log(E|x(t; ξ)|2) ≤ −γ a.s.

and the required assertion (2.9) follows. The proof is completed.
In the following, we shall make use of the characteristics of recurrent networks to obtain

further results.
Corollary 2.5 Let (2.8) and (H2) hold. Assume that there exist nonnegative numbers

θi and δi such that

trace[σT (x, y, t)σ(x, y, t)] ≤
n∑

i=1

[θix
2
i + δiy

2
i ] (2.11)
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for all (x, y, t) ∈ Rn × Rn × R+. Assume also that there exists a positive-definite diagonal
matrix G = diag(g1, · · · , gn) such that the symmetric matrix

H̄ :=

(
−2D + C4 + D̄ B

BT −G

)

is negative-definite, where D̄ = diag(g1β1, · · · , g1β1). Let −λ̄ = λmax(H̄), the biggest eigen-
value of H̄. So λ̄ > 0. If

θi + δi < λ̄, 1 ≤ i ≤ n, (2.12)

then the stochastic delay recurrent neural network (1.1) is moment exponentially stable.
Moreover, for every ξ ∈ C([−τ , 0];Rn)

⋂
L2

F0
(Ω, C), the moment Lyapunov-exponent of the

solution of eq.(1.1) can be estimated as

lim
t→∞

sup
1
t

log(E|x(t; ξ)|) ≤ −γ

2
a.s., (2.13)

where γ > 0 is the root of the equation (2.10), as long as the λ in (2.10) is determined by

λ = min
1≤i≤n

[λ̄− (θi + δi)]. (2.14)

Proof Set C1 = diag(θ1, θ2, · · · , θn), C2 = 0, C3 = diag(δ1, δ2, · · · , δn). Then (12) can
be written as

trace[σT (x, y, t)σ(x, y, t)] ≤ xT C1x + gT (y)C2g(y) + yT C3y.

In view of Theorem 2.4, it is sufficient to verify that the matrix H defined there is negative-
definite. To do so, for any x, y ∈ Rn, compute

(xT yT )H

(
x

y

)
= (xT yT )

(
−2D + C1 + C3 + C4 + D̄ B

BT −G + C2

)(
x

y

)

= (xT yT )H̄

(
x

y

)
+ (xT yT )

(
C1 + C3 0

0 C2

)(
x

y

)

≤ −λ̄(|x|2 + |y|2) +
n∑

i=1

(θi + δi)x2
i

≤ −λ(|x|2 + |y|2),

where λ is defined by (2.14) and is positive due to (2.12). The proof is therefore completed.
Lemma 2.6 (see [9]) Let P be a invertible matrix then

2xT Ay ≤ xT PP T x + yT (P−1A)T (P−1A)y. (2.15)
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Corollary 2.7 Let H1, H2 and (2.11) hold. Assume there exist a invertible matrix P

and positive-definite diagonal matrix G = diag(g1, · · · , gn) such that

H1 :=

(
−2D + PP T + (P−1AL)T (P−1AL) + D̄ B

BT −G

)

is negative-definite, where D̄ = diag(g1β
2
1 , · · · , g1β

2
n), L = diag(α1, · · · , αn). Let −µ̄ =

λmax(H1), the biggest eigenvalue of H1, so µ̄ > 0. If

θi + δi < µ̄ (1 ≤ i ≤ n), (2.16)

then the stochastic delay recurrent neural networks (1.1) is moment exponentially stable.
Moreover, the moment Lyapunov exponent can be estimated by (2.13), as long as the λ in
(2.10) is determined by

λ = min
1≤i≤n

[µ̄− (θi + δi)]. (2.17)

Proof Choose C4 = PP T + (P−1AL)T (P−1AL). The conclusion of this corollary
follows from Corollary 2.5. The proof is completed.

Corollary 2.8 Let H1, H2 and (2.11) hold. Assume there exist two positive-definite
diagonal matrixes P = diag(ε1, · · · , εn) and G = diag(g1, · · · , gn) such that

H2 :=

(
−2D + PP T + (AL)T P−1(AL) + D̄ B

BT −G

)

is negative-definite, where D̄ = diag(g1β
2
1 , · · · , g1β

2
n), L = diag(α1, · · · , αn). Let −ν̄ =

λmax(H2), the biggest eigenvalue of H2, so ν̄ > 0. If

θi + δi < ν̄ (1 ≤ i ≤ n), (2.18)

then the stochastic delay recurrent neural networks (1.1) is moment exponentially stable.
Moreover, the moment Lyapunov exponent can be estimated by (2.13), as long as the λ in
(2.10) is determined by

λ = min
1≤i≤n

[ν̄ − (θi + δi)]. (2.19)

Proof Choose P = diag(
√

ε1, · · · ,
√

εn). The conclusion of this corollary follows from
Corollary 2.7. The proof is completed.

3 Example

Example 1 Consider a two-dimensional stochastic delay recurrent neural network

dx(t) = [−Dx(t) + Af(x(t)) + Bg(xτ (t))]dt + B1g(xτ (t))dW (t), (3.1)
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where W (t) is a real-valued scalar Brownian motion, τ1 and τ2 both positive numbers,

A =

(
0.1 −0.1
0.1 0.1

)
, B =

(
2 −2
1 1

)
, D =

(
4 0
0 2

)
, σ(x, y, t) = (0.2y2, 0.5y1)T ,

while

fi(xi) = (αixi ∧ 1) ∨ (−1) with α1 = 0.4, α2 = 0.3, gi(yi) =
1− e−yi

1 + e−yi
, i = 1, 2.

It is easily shown that H1 is satisfied with α1 = 0.4, α2 = 0.3 and H2 is satisfied with
β1 = β2 = 1, respectively. To apply Theorem 2.4, note in this example such that

C1 = C2 = 0, C3 = diag(0.25, 0.04), L = diag(0.4, 0.3), σT (x, y, t)σ(x, y, t) = 0.25y2
1 + 0.04y2

2 .

Choosing P = diag(0.2, 0.2) in Corollary 2.6, then P−1 = diag(5, 5), we have

xT Af(x) + fT (x)Ax ≤ xT (PP T + (P−1AL)T (P−1AL))x,

C4 = PP T + (P−1AL)T (P−1AL) = diag(0.12, 0.085), D̄ = G,

−2D + C1 + C3 + C4 = diag(−7.63,−3.875).

Now, choose D = diag(3.815, 1.9375). The matrix H defined in Theorem 2.4 becomes

H =




−3.815 0 2 −2
0 −1.9375 1 1
2 1 −3.815 0
−2 1 0 −1.9375


 .

Compute λmax(H) = −0.1512 which means that H is negative-definite. By Theorem 2.4, the
stochastic delay recurrent neural network (3.1) is moment exponentially stable. To estimate
the moment Lyapunov-exponent, compute, by (2.10), γ satisfied

γ = 4.2162− 3.9138eτ̄γ . (3.2)

If both τ1 and τ2 are 0.1 then τ̄ = 0.1 and (3.1) has a unique root γ = 0.2166. Therefore,
Theorem 2.4 shows that the moment Lyapunov-exponent of the solution of network (3.1)
should not be greater than −0.1033.

If A = 0 in (3.1), the model (3.1) changes into the Hopfield neural network. Choosing
G = diag(3.875, 1.98), we have

H =




−3.875 0 2 −2
0 −1.98 1 1
2 1 −3.875 0
−2 1 0 −1.98


 .
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Compute λmax(H) = −0.1957 which means that H is negative-definite. By Theorem 2.4,
the the stochastic delay Hopfield neural network (3.1) is moment exponentially stable. To
estimate the moment Lyapunov exponent, compute, by (2.10), γ satisfied

γ = 4.3207− 3.9293eτ̄γ . (3.3)

If both τ1 and τ2 are 0.1 then τ̄ = 0.1 and (3.3) has a unique root γ = 0.2798. Therefore,
Theorem 2.4 shows that the moment Lyapunov-exponent of the solution of stochastic delay
Hopfield neural network (3.1) should not be greater than −0.1399.
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一类随机时滞递归神经网络的指数稳定性

潘青飞 1 ,张子芳 2

(1. 三明学院土木工程学院, 福建三明 365004)

(2. 淮海工学院理学院, 江苏连云港 222005)

摘要: 本文研究了一类随机时滞递归神经网络的指数稳定性问题. 利用非负鞅收敛定理

和Lyapunov泛函的方法, 获得了这类神经网络矩指数稳定性的新的代数准则，所给代数准则简单易用.

一个具体实例用来说明稳定性判别准则的应用.
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