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Abstract: In this paper, we study parametric family of sextic Thue equation. By using
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1 Introduction

A Thue equation is a Diophantine equation of the form

F (x, y) = k,

where F ∈ Z[x, y] is an irreducible binary form of degree n ≥ 3 and k is a non-zero rational
integer. In 1909, Thue [1] proved that the thue equation has only finitely many solutions,
however Thue didn’t give a complete method. In 1986 Baker [2] used the theory of linear
form in logarithms of algebraic numbers to solve the problem, in particular, he gave an
effective upper bound for the solutions of Thue equation. In recent years, various families of
Thue equations were studied (see [3–14]).

In 2012, Xia, Chen, Zhang [14] presented a new and simpler method to approximate
certain algebraic numbers. Applying the method, authors derived an effective upper bound
for the solutions (x, y) of the two-parametric family of quartic Thue equation

tx4 − 4sx3y − 6tx2y2 + 4sxy3 + ty4 = N

for s > 32t3. The purpose of this research is to extend the method to solve the two-parametric
family of sextic Thue equation

Fn(x, y) = x6 − 2Anx5y − 5(An + 3)x4y2 − 20x3y3 + 5Anx2y4 + 2(An + 3)xy5 + y6

= ±1, (1.1)
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where An = 54n3 + 81n2 + 54n + 12, n > 6.02 × 106. In 1990, Alan Togbé proved that
equation (1.1) has only trivial solutions, where |n| ≤ 2.03 × 106. We extend the result of
Alan Togbé, and consider n is any integer.

In this paper, we will show
Theorem 1 For any n ∈ Z, equation(1.1) has only trivial solutions,

(x, y) = (1, 0), (−1, 0), (0, 1), (0,−1), (1,−1), (−1, 1).

2 Preliminaries

Before the proof of the theorem, some lemmas are needed.

Lemma 2.1 (see [14]) Let pn(x) =
n∑

k=0

(
n−α
n−k

)(
n+α

k

)
xk, qn(x) =

n∑
k=0

(
n−α

k

)(
n+α
n−k

)
xk and

Rn(x) = xαqn(x)− pn(x), where n is a positive integer and α is a real number, then we have

(i) qn(x) =
n∑

k=0

(−1)k
(
2n−k
n−k

)(
n−α

k

)
(1− x)k;

(ii) Let x = w = si−t
si+t

= eiϕ, 0 < ϕ < π
2
, 0 < α < 1, then |qn(w)| ≤ 4|1 +

√
w|2(n−1);

(iii) Let x = w = si−t
si+t

= eiϕ, 0 < ϕ < π
2
, 0 < α < 1, then |qn(w)| ≤ 4|1 +

√
w|2(n−1).

Lemma 2.2 If α = 1/6, then 12k3bk/2c(n−α
k

)
is rational integer.

Proof Let k! = 2s23s3M with (6,M) = 1. Since

(
n− α

k

)
=

(6n− 1)(6(n− 1)− 1) · · · (6(n− k + 1)− 1)
6kk!

,

then there exists t such that 6t ≡ 1(mod M) and

tk(6n− 1)(6(n− 1)− 1)...(6(n− k + 1)− 1)

≡ (n− t) · · · (n− k + 1− t)

≡
(

n− t

k

)
k! ≡ 0 (mod M).

Since (t,M) = 1, we obtain

M |(6n− 1) · · · (6(n− k + 1)− 1).

While

s2 = bk
2
c+ bk

4
c+ bk

8
c+ · · · < k,

and

s3 = bk
3
c+ b k

32
c+ b k

33
c+ · · · < bk

2
c.

The lemma therefore follows:
Lemma 2.3 (see [11]) Let θ be an algebraic number. Suppose that there exists k0 >

0, l0, Q > 1, E > 1 such that for all n there are rational integers Pn and Qn with |Qn| < k0Q
n
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and |Qnθ−Pn| ≤ l0E
−n and suppose further that PnQn+1 6= QnPn+1. Then, for any rational

integers x and y, y ≥ e/(2l0), we have

|θy − x| > 1
cyλ

, where c = 2k0Q(2l0E)λ, λ =
log Q

log E
.

3 Solutions of Thue Equation

Consider the equation

f(x, y) = x6 − 6A

B
x5y + (

15A

B
− 15)x4y2 + 20x3y3 − 15A

B
x2y4 + (

6A

B
− 6)xy5 + y6

= ±1, (3.1)

where A > 0, A,B ∈ Z. If we set B = −n,A = −AnB/3 = 18n4 + 27n3 + 18n2 + 4n > 0,
we havef(x, y) = Fn(x,−y). Hence the solution of (1.1) could be deduced from the solution
of (3.1).

3.1 Research of The Root

Denote by θ as the root of f(x, 1) = 0, straightforward computation shows that θ

satisfies

(
θ + ρ

θ + ρ̄
)6 =

A + Bρ̄

A + Bρ
, (3.2)

where ρ = − 1
2

+
√−3

2
, ρ̄ = − 1

2
−

√−3
2

, and − mean conjugate in Z[
√−3], so that a + bρ =

a + bρ̄. Since−3 ≡ 1( mod 4), we know that {1, 1+
√−3
2

} are integral basis in Z[
√−3].

Therefore, ρ, ρ̄ are algebraic interger in Z[
√−3].

Putting z = A + Bρ̄, u = A + Bρ,w = z/u = eiϕ, we have

θk =
ρ− ρ̄w

1
6 e

2kπ
6

w
1
6 e

2kπ
6 − 1

=
ρe

−kπ
6 − ρ̄w

1
6 e

kπ
6

w
1
6 e

kπ
6 − e

−kπ
6

, k = 0, 1, · · · , 5.

Note that e
−π
6 = iρ̄, e

π
6 = −iρ, e

−π
3 = −ρ, e

π
3 = −ρ̄, one can check that θk satisfies

θk = vk+v̄kw
1
6

rkw
1
6 +r̄k

, where

vk =





ρ̄− 1, k = 0;
1, k = 1;
ρ̄ + 2, k = 2;
ρ, k = 3;
2ρ + 1, k = 4;
ρ + 1, k = 5,

rk =





2ρ + 1, k = 0;
−ρ, k = 1;
ρ̄ + 2, k = 2;
−1, k = 3;
ρ̄− 1, k = 4;
ρ̄, k = 5.

(3.3)

Actually, this property of θ make possible for future proof. Furthermore, one can give explicit
estimation for the roots as the lemma below.
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Lemma 3.1 Denote by θk (k = 0, 1, · · · , 5) as the root of f(x, 1) = 0, then it satisfies

1 +
1

2An

− 5
8A2

n

− 5
16A3

n

+
9

10A4
n

≤ θ0 ≤ 1 +
1

2An

− 5
8A2

n

− 5
16A3

n

+
1

A4
n

,

1
2An

− 7
8A2

n

+
7

16A3
n

+
89

32A4
n

≤ θ1 ≤ 1
2An

− 7
8A2

n

+
7

16A3
n

+
179

64A4
n

,

−1 +
3

2An

− 27
8A2

n

+
69

16A3
n

+
169
8A4

n

≤ θ2 ≤ −1 +
3

2An

− 27
8A2

n

+
69

16A3
n

+
85

4A4
n

,

1
2

+
3

8An

− 9
16A2

n

+
3

128A3
n

+
155

64A4
n

≤ θ3 ≤ 1
2

+
3

8An

− 9
16A2

n

+
3

128A3
n

+
311

128A4
n

,

−2An − 5
2
− 35

8An

− 105
16A2

n

− 65
32A3

n

≤ θ4 ≤ −2An − 5
2
− 35

8An

− 105
16A2

n

− 129
64A3

n

,

2 +
3

2An

− 9
8A2

n

− 39
16A3

n

+
589

64A4
n

≤ θ5 ≤ 2 +
3

2An

− 9
8A2

n

− 39
16A3

n

+
295

32A4
n

.

Proof One can check that f(x, 1) change the sign between two formula in the inequal-
ities.

3.2 Approximation of Roots

Now we will give an effective approximation of θ. Since

θk =
vk + v̄kw

1
6

rkw
1
6 + r̄k

=
vkqn(w) + v̄kw

1
6 qn(w)

rkw
1
6 qn(w) + r̄kqn(w)

=
vkqn(w) + v̄kpn(w) + v̄kRn(w)
rkpn(w) + r̄kqn(w) + rkRn(w)

=
S + v̄kRn(w)
T + rkRn(w)

,

putting S = vkqn(w) + v̄kpn(w), T = rkpn(w) + r̄kqn(w), we have

|Tθk − S| = v̄kRn(w)− θRn(w).

Note that 1− w = 1− A+Bρ̄
A+Bρ

= B
√

3i
u

, from Lemma 2.1, we have

qn(w) =
n∑

k=0

(−1)k

(
2n− k

n− k

)(
n− 1/6

k

)
(
B
√

3i

u
)k. (3.4)

From Lemma 2.2, we get

12k3b
k
2 c

(
n− 1

6

k

)
∈ Z. (3.5)

Hence, if denote Qn = 12nunT and Pn = 12nunS, it’s easy to prove that both are algebraic
integer in Q[

√−3]. Since ū = z, unpn(w) = unqn(w). One can prove Qn = Qn and Pn = Pn.
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Therefore we have Qn, Pn ∈ Z. In another word, we get two arrays of rational integers Qn,
Pn such that

|Qnθk − Pn| = |12nunRn(w)(v̄ − θrk)| = Rn.

In the following, we give estimation of upper bound for Qn, Rn.
From Lemma 2.1, we have

|pn(w)| = |qn(w)| ≤ 4|1 +
√

w|2n−2

and |Rn(w)| ≤ ϕ
3
|1 −√w|2n. So, for An = 54n3 + 81n2 + 54n + 12, and |n| ≥ 2.03 × 106, if

denote ε = 2A−B + 2
√

A2 −AB + B2, we obtain

|Qn| = |12nun(rkpn(w) + rkqn(w))|
≤ |6rk|

|1 +
√

w|2 |12u(1 +
√

w)2|n

=
|6rk|

|1 +
√

w|2 |12(2A−B + 2
√

A2 −AB + B2)|n

= CQ|12ε|n,

and

|Rn| = |12nunRn(w)(v̄ − θr)|
≤ |vk − θrk| · |ϕ|

6
|12u(1−√w)2|n

=
|vk − θrk| · |ϕ|

6
|2A−B − 2

√
A2 −AB + B2|n

= CR| ε

36B2
|−n,

where CQ = |6rk|
|1+√w|2 , CR = |vk−θrk|·|ϕ|

6
.

Now we will give estimation of CQ, CR. From(3.3) we have

max
k=0,1,··· ,5

|rk| = max
k=0,1,··· ,5

|vk| = 3. (3.6)

From definition, we have w = A+Bρ̄
A+Bρ

= A−B
2 −

√
3

2 Bi

A−B
2 +

√
3

2 Bi
= (A−B

2 −
√

3
2 Bi)2

A2−AB+B2 . Hence we get

|1 +
√

w|2 = |1 +
A− B

2
−

√
3

2
Bi√

A2 −AB + B2
|2 = 2 + 2

A− B
2√

A2 −AB + B2
.

Note that B = −n, A = 18B4 − 27B3 + 18B2 − 4B and |B| > 2.03 × 106, straightforward
computation shows that

|1 +
√

w|2 > 3.999. (3.7)

From (3.6) and (3.7), we have

CQ =
|6rk|

|1 +
√

w|2 <
18

3.999
< 4.502. (3.8)
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On the other hand, from definition we have eiϕ = w = (A−B
2 −

√
3

2 Bi)2

A2−AB+B2 = A2−AB−B2
2

A2−AB+B2 −√
3B(A−B

2 )

A2−AB+B2 . So we have

|ϕ| ≤ | tanϕ| = |
√

3B(A− B
2
)

B2

2

| < 0.0236. (3.9)

If θk (k = 0, 1, · · · , 5) is denoted as in Lemma 3.1, one can get estimation of root θk:
{
|θk| < 3, if k 6= 4,

|θk| < 2.01|An|, if k = 4.

Since ε = 2A − B + 2
√

A2 −AB + B2 < 4.1A < 1.367|AnB|, from (3.6) and (3.9), we can
get estimate of CR.

For θk (k 6= 4), we have

CR =
|vk − θrk| · |ϕ|

6
<

3 + 9
6

· 0.0236 < 0.0472. (3.10)

For θk (k = 4), we also have

CR =
|vk − θrk| · |ϕ|

6
<

3 + 3.01A

6
· 0.0236 < 0.0357|An|. (3.11)

Now putting Q = 12ε, E = ε
36B2 , k0 = 4.502, then for θk, where k 6= 4, k = 4, we set

l0 = 0.0472 or l0 = 0.0357|An| separately. From Lemma 2.2, computing

2k0Q(2l0E)λ = 2 · 4.502 · 12ε(2 · 0.0472
ε

36B2
)λ = 108.048ε(0.00263

ε

B2
)λ,

and
2k0Q(2l0E)λ = 2 · 4.502 · 12ε(2 · 0.0357

|An|ε
36B2

) = 108.048ε(0.00199
|An|ε
B2

),

we have approximation to algebraic numbers as in followed lemma.
Lemma 3.2 If θk (k = 0, 1, · · · , 5) is the root of

x6 − 6A

B
x5 + (

15A

B
− 15)x4 + 20x3 − 15A

B
x2 + (

6A

B
− 6)x + 1 = 0,

then for any x, y ∈ Z, we have

|x− yθk| > 1
ckyλ

,

where




c0 = c1 = c2 = c3 = c5 = 108.048ε(0.00263 ε
B2 )λ,

c4 = 108.048ε(0.00199 |An|ε
B2 )λ,

λ = log(12ε)
log 36B2−log ε

.

3.3 The Proof of Theorem
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Now we can prove the theorem. First, from Lemma 3.1, we have

∏
j 6=0

|θj − θ0| < 1.1× 2.1× 0.6× 2.01|An| × 1.1 < 3.065|An|,
∏
j 6=0

|θj − θ1| < 1.1× 1.1× 0.6× 2.01|An| × 2.1 < 3.065|An|,
∏
j 6=0

|θj − θ2| < 2.1× 1.1× 1.6× 2.01|An| × 3.1 < 23.03|An|,
∏
j 6=0

|θj − θ3| < 0.6× 0.6× 1.6× 2.01|An| × 1.6 < 1.853|An|,
∏
j 6=0

|θj − θ4| < (2.01|An|)5 < 32.81|An|5,
∏
j 6=0

|θj − θ5| < 1.1× 2.1× 3.1× 2.01|An| × 1.6 < 23.03|An|. (3.12)

Second, computation shows that when n = |B| > 2.03× 106, we get λ < 2.18. It’s easy
to get

|x− yθk| < 25

|y|5 ∏
j 6=k |θj − θk| .

Hence

If k 6= 4, |x− yθk| < 25

23.03|An||y|5 , (3.13)

If k = 4, |x− yθk| < 25

32.81|An|5|y|5 . (3.14)

So we get an upper bound of |x− θy|. From Lemma 3.2 and (3.13), for θk (k 6= 4), we have

1
108.048ε(0.00263 ε

B2 )λ|y|λ < |x− yθk| < 25

23.03|An||y|5 .

Note that ε < 4.1A < 1.367|AnB|, so if (x, y) is type k solution of (3.1), where (k 6= 4), we
have

|y| < 0.012
1

5−λ |An| λ
5−λ |B| 1−λ

5−λ < 0.01|An|0.7735|B|−0.4185. (3.15)

For θ4, we have

1

108.048ε(0.00199 |An|ε
B2 )λ

< |x− yθk| < 25

32.81|An|5|y|5 .

So if (x, y) is type 4 solution of (3.1), we have

|y| < 0.012
1

5−λ |An| λ
5−λ |B| 1−λ

5−λ < 0.0606|An|0.12766|B|−1.19149. (3.16)
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This is an upper bound for |y|. From well-known result in number theory, we know that
when |y| > 1, x, y is partial quotient of θ. In the following, we only need to verify whether
(pn, qn) is solution of (3.1) or not.

From Lemma 3.1, computation shows the continued fraction expansion of θk (k 6= 4),
the result is listed as below:

θ0 = [1, 2An + 2, 1, 1, b2An

25
c, · · · ], {pi

qi

} = {1
1
,
2An + 3
2An + 2

,
2An + 4
2An + 3

, · · · },

θ1 = [0,−2An − 3, 1, 1, b4An

70
c, · · · ], {pi

qi

} = {0
1
,

1
−2An + 3

,
1

−2An − 2
, · · · },

θ2 = [−1, 2Bn + 1, 1, 1, bBn

2
c, · · · ], {pi

qi

} = {−1
1

,
−2Bn

2Bn + 1
,
−2Bn − 1
2Bn + 2

, · · · },

θ3 = [0, 1, 1, 2Bn, 1, 1, bBn

2
c, · · · ], {pi

qi

} = {0
1
,
1
1
,
1
2
,
2Bn + 1
4Bn + 1

· · · },

θ5 = [2, 2Bn, 1, 1, bBn

2
c, · · · ], {pi

qi

} = {2
1
,
4Bn + 1

2Bn

,
4Bn + 3
2Bn + 1

, · · · },

where Bn = An

3
= 18n3 + 27n2 + 18n + 4.

One can observe that q2 or q4 has exceeded the upper bound of |y|, 0.01|An|0.7735|B|−0.4185.
Straight forward computation shows that it only exists trivial solution±(x, y) = (0, 1), (1,−1).

One can also get the continued fraction expansion of θk (k 6= 4) as below

θ4 = [−2An − 3, 2, b2An

35
c, · · · ],

{pi

qi

} = {−2An − 3
1

,
−4An − 5

2
,
−b 2An

35
c(4An + 5)− 2An − 3

2b 2An

35
c+ 1

, · · · }.

One can observe that q2 has exceeded the upper bound of |y|, 0.0606|An|0.12766|B|−1.19149.
Computation shows that it doesn’t exist type 4 solution.

Therefore, we know that (3.1) only has trivial solutions

±(x, y) = (1, 0), (0, 1)(1,−1).

Since Fn(x, y) = f(x,−y), so we proved that when n > 2.03 × 106, (2) only has trivial
solutions. From the theorem developed by Alan Togbé [15], we prove the theorem.
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六次含参Thue方程的解

张四兰1,2 ,夏静波1 ，陈建华2 ，艾小川2

(1.华中农业大学理学院,湖北武汉 430070)

(2.武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了含参的六次Thue方程. 利用初等方法和简单的代数数有理逼近方法彻底求解了该

方程, 从而推广了Alan Togbé的结果.
关键词: 六次Thue方程; padè逼近; 连分数
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