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Abstract: In this paper, we study parametric family of sextic Thue equation. By using
elementary method and simpler method of approximating certain algebraic numbers, we completely
solve the parametric family of sextic Thue equation, which extend the results of Alan Togbé.
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1 Introduction

A Thue equation is a Diophantine equation of the form
F(z,y) =k,

where F' € Z[x,y] is an irreducible binary form of degree n > 3 and k is a non-zero rational
integer. In 1909, Thue [1] proved that the thue equation has only finitely many solutions,
however Thue didn’t give a complete method. In 1986 Baker [2] used the theory of linear
form in logarithms of algebraic numbers to solve the problem, in particular, he gave an
effective upper bound for the solutions of Thue equation. In recent years, various families of
Thue equations were studied (see [3-14]).

In 2012, Xia, Chen, Zhang [14] presented a new and simpler method to approximate
certain algebraic numbers. Applying the method, authors derived an effective upper bound
for the solutions (x,y) of the two-parametric family of quartic Thue equation

tat — dsxdy — 6toy® + dsoy® +tyt = N

for s > 32t3. The purpose of this research is to extend the method to solve the two-parametric
family of sextic Thue equation

F.(z,y) = 2°%—2A4,2% —5(A, +3)z'y* — 202°y> + 5A,2%y* +2(A,, + 3)zy® +4°
= =1, (1.1)
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where A,, = 54n® + 81n? + 54n + 12, n > 6.02 x 10°. In 1990, Alan Togbé proved that
equation (1.1) has only trivial solutions, where |n| < 2.03 x 10°. We extend the result of
Alan Toghé, and consider n is any integer.

In this paper, we will show

Theorem 1 For any n € Z, equation(1.1) has only trivial solutions,

('7:7 y) = (170)7 (_170)7 (07 1)7 (Ov _1)7 (17 _1)a (_17 1)'

2 Preliminaries

Before the proof of the theorem, some lemmas are needed.

Lemma 2.1 (see [14]) Let p,(z) = > ("=2) ("r*)z*, gu(@) = 3 ("7%) ("*2)z* and

R, (x) = 2%g,(x) — pp(x), where n is a positive integer and « is a real namber, then we have

(1) gulo) = 3 (—1)F("5) (") (1 — ks

(i) Letx =w = 2=t =¢e*,0 < ¢ < 5,0 < a < 1, then |g,(w)| < 41 + Vw[*"~;

(iii) Let 2 =w = %=t = ¢, 0 < p < 3,0 < a < 1, then [g,(w)| < 4|1 + w[*" 7).
Lemma 2.2 If o = 1/6, then 12¥3¥/2)(" %) is rational integer.

Proof Let k! = 2%23% M with (6, M) = 1. Since

<n—a> _(6n—-1)(6(n—1)—1)---(6(n—k+1)—1)
k

B 6~ k! ’
then there exists ¢ such that 6¢ = 1(mod M) and

th(6n —1)(6(n —1) —1)...(6(n —k+1) — 1)
(n—t)---(n—k+1-1)

- (”;t>k! = 0 (mod M).

Since (t, M) = 1, we obtain

M|(6n —1)---(6(n —k +1) — 1).

‘While L L L
2 = L§J+L1J+L§J+'”<k7
and k k k k
83 = L§J+L§J+L§J+“‘< L§J-

The lemma therefore follows:
Lemma 2.3 (see [11]) Let 6 be an algebraic number. Suppose that there exists ko >
0,1p,Q > 1, E > 1 such that for all n there are rational integers P,, and Q,, with |Q,| < koQ"
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and |Q,0— P,| < loE~" and suppose further that P,Q, 11 # @, P,1. Then, for any rational
integers = and y, y > e/(2ly), we have

1 A log
|0y — | > e where ¢ = 2koQ(2l0E)", X = g '
3 Solutions of Thue Equation
Consider the equation
6A 15A . 15A 6A
flay) = o= 22aty+ (Fh — 15t + 2000 — 2yt (O = Oy
= 41, (3.1)

where A >0, A,B € Z. If weset B=—n,A=—A,B/3 =18n*+ 27n3 + 18n% + 4n > 0,
we havef(z,y) = F,(x, —y). Hence the solution of (1.1) could be deduced from the solution

of (3.1).
3.1 Research of The Root
Denote by 6 as the root of f(z,1) = 0, straightforward computation shows that 6

satisfies

0+p
0+ p

A+ Bp
A+ Bp’

( )° (3.2)
where p = —l + £ , P = 1 — @, and — mean conjugate in Z[v/—3|, so that a + bp =
a + bp. Smce 3 = 1( mod 4) we know that {1, 1+*ﬁ} are integral basis in Z[v/—3].
Therefore, p, p are algebraic interger in Z[/—3].

Putting z = A+ Bp,u = A+ Bp,w = z/u = €'¥, we have

— 7w%e%Tﬂ e_Tkﬂ — 7wée%f
ek—p 1p2k:7r _p kx P k) k=0,1, ;O
wses — 1 wse e —e 6
Note that e;TW = ip, e5 = —ip, e3 = —p, e5 = —p, one can check that 6, satisfies
0 = T2 S where
w6 +7
p—1, k=0; 20+1, k=0;
L, k=1 —p, k=1,
0+ 2 k=2 p+2, k=2
Vi — P+ ’ T = p+ (33)
2p+1, k=4 p—1, k=4
p+1, k=5, 7, k=5.

\

Actually, this property of 6 make possible for future proof. Furthermore, one can give explicit

estimation for the roots as the lemma below.
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Lemma 3.1 Denote by 6, (k=0,1,---,5) as the root of f(x,1) =0, then it satisfies

NI N SN R PP . A
24, 8A2 1643 ' 1042 =0~ 7 T 24, 8AZ 1643 = AL’
LT T 8 LT T T

24, 8A2 ' 16A3 ' 3244 = ' T 24, 8A2 ' 1643 ' 64A%’

. S 60 169 3 2 698
24, 8A2 ' 16A3 ' 8AL — - 24, 8A2 ' 1643 ' 4A%’
1,8 9 8 1% _, 1.3 9 . 3 381
2 " 8A, 1642 ' 12843 ' 6441 ~ 70~ 2 T 8A, 16A2 ' 12843 ' 128A%’

5 35 105 65 5 35 105 129
245 - 8A, 1642 3243 SOi< =240 =5 8A, 16A2  64A3°
3 9 39 589 3 9 39 295

2+ <6y <2+

24,  8AZ 1643 | G4AZ o4, 8AZ 1643 3241

Proof One can check that f(x,1) change the sign between two formula in the inequal-
ities.
3.2 Approximation of Roots

Now we will give an effective approximation of #. Since

UV + v’kw%
O = -
rRWws + T
qun(w) + Uikw%Qn(w)

rkw%Qn(uO + Fan (w)

_ UGn(w) + Upa (w) + U R (w)
 repn (W) + g (w) + 7Ry (w)
S+ R, (w)

N T+ TkRn(’w) ’

putting S = vygn (w) + Gpn(w), T = rypy (W) + g (w), we have

T8, — S| = Ry, (w) — Ry (w).

Note that 1 —w = 1 — 4£82 — BV3i 151 Lemma 2.1, we have

oz — 5
an(w) = kz:(—w (o (") (3.4)

From Lemma 2.2, we get
_ 1
12+3L5) <” . 6) €z (3.5)

Hence, if denote @,, = 12"u™T and P, = 12"u"S, it’s easy to prove that both are algebraic
integer in Q[v/—3]. Since @ = z, u"p, (w) = u"g,(w). One can prove Q,, = Q,, and P, = P,.
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Therefore we have Q,,, P, € Z. In another word, we get two arrays of rational integers @,
P,, such that
|@nbr — Pn| = [12"u" R, (w)(0 — Or))| = R.,.

In the following, we give estimation of upper bound for @,,, R

From Lemma 2.1, we have

[pa(w)] = lgn(w)] < 41 + Vw2

and |R,(w)| < £]1 — /w|*". So, for A,, = 54n® 4 81n? 4 54n + 12, and |n| > 2.03 x 10, if
denote e = 2A — B + 2/ A2 — AB + B2, we obtain

@Qnl = [12"u" (rpn(w) + Trgn(w))]
|6Tk|
< 12u(1 +
< o+ Vi
_ Il opa- pyovAT—ABTBY)"
T+ VP
= Cql12¢]",
and
IR, = [12"u"R,(w)(v — 6r)]
T — Orel -
< |Uk gk‘ |4p||12u<1_\/,70)2|n
T — Orel -
_ [ =0l el gk‘ |“0||2A—B—2 A2 — AB + B?|"
€ -n
= Crlggpl
67 U — 07k
where Cg = |14‘r\/ﬁ‘|2’ Cp = ZE=frullel G el
Now we will give estimation of Cg, Cr. From(3.3) we have
B I = ol =3 (30
_ B_ V3B, B_3p; 2
From definition, we have w = ﬁigz = 2 123+;:§1 = (AA2 ABJrgz) Hence we get
A-B_Bp; _B
1+ Vul =1+ 2 2=242 2 .
L+ Vol =] VA2 — AB + B2 | VA? — AB + B?

Note that B = —n, A = 18B* — 27B? + 18B% — 4B and |B| > 2.03 x 10°, straightforward
computation shows that

11+ vaw|* > 3.999. (3.7)

From (3.6) and (3.7), we have

|6’I"]€‘ 18
Co = < < 4.502. 3.8
CT N+ Vul?  3.999 (3:8)
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. _B_V3p; _AB_B?
On the other hand, from definition we have €'Y = w = (AA2§AB{_§2)2 = 122_21;+;22 -
V3B(A—3) So we have
AT_AB+B
3B(A
o] < |tan | = |M| < 0.0236. (3.9)
=
If 0y (k=0,1,---,5) is denoted as in Lemma 3.1, one can get estimation of root 6j:
‘8k|<3, 1fk‘7£4,
10,] < 2.01|4,|, ifk = 4.

Since ¢ = 2A — B+ 2VA? — AB+ B? < 4.1A < 1.367|A,,B|, from (3.6) and (3.9), we can
get estimate of Ckg.
For 0, (k # 4), we have

U — Org| - 34+9
[Ux — Org| |80\< +

Cp = - —— - 0.0236 < 0.0472. (3.10)
For 6, (k =4), we also have
T — Org| - 3+3.014
Cp = [T Orel el 3+ -0.0236 < 0.0357|A,. (3.11)

6 6

Now putting Q = 12¢, E = 3555, ko = 4.502, then for 0y, where k # 4,k = 4, we set
lo =0.0472 or Iy = 0.0357| A,,| separately. From Lemma 2.2, computing

2k0Q (2l E) = 2 - 4.502 - 12¢(2 - 0.0472——)> :108.0485(0.00263%)’\,

36B2
and A
2koQ (21 E)* =2 -4.502 - 12¢(2 - 0. 0357|36n|2) = 108.048¢(0. 00199| o2 ‘8)
we have approximation to algebraic numbers as in followed lemma.
Lemma 3.2 If , (k=0,1,---,5) is the root of
6A 154 154 6A
6 _ 245 (224 3 194 5 b4 _
x 5 +(B 15)2* 4 20z B:B—I—(B 6)x+1=0,

then for any x,y € Z, we have

1
xr — y@k > —F,
| | P
where

Ch=Cp =Cy =C3 =0Cy = 1080486(000263%))‘,

Cy = 108.0486(0,00199%)/\7

A= log(12¢)
" log36B2—loge "

3.3 The Proof of Theorem
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Now we can prove the theorem. First, from Lemma 3.1, we have

T116; = 6o] < 1.1 x 2.1 % 0.6 x 2.01|A,| x 1.1 < 3.065|A,,],

Jj#0

[T16; — 61 < 1.1 x 1.1 % 0.6 x 2.01|A,| x 2.1 < 3.065|A,|,
Jj#0

[T16; — 62 < 2.1 x 1.1 % 1.6 x 2.01|A,| x 3.1 < 23.03|4,,
Jj#0

[116; — 651 < 0.6 x 0.6 x 1.6 x 2.01|A,,| x 1.6 < 1.853|4,,],
J#0

[T 16; — 64l < (2.01]4,])° < 32.81/4, %,

Jj#0

[T165 — 6] < 1.1 x 2.1 x 3.1 x 2.01|A,| x 1.6 < 23.03|A,,|. (3.12)
#0

Second, computation shows that when n = |B| > 2.03 x 10°, we get A < 2.18. It’s easy

to get
25
|z — yb| < |
Y17 110 107 = Ol
Hence
25
74 o=yl < 3T -
25
Itk =4, [z -yl < N

32.81| A4, °|y|>"
So we get an upper bound of |x — 6y|. From Lemma 3.2 and (3.13), for 6, (k # 4), we have

1 2
<|lr—yOk| < 55—+
108.0482(0.00263 2 )y [* & =90l < S GaTAL T

Note that ¢ < 4.14 < 1.367|A,, B|, so if (x,y) is type k solution of (3.1), where (k # 4), we

have
ly| < 0.0125%| A, |7 |B|5=> < 0.01|A,|*7735| B|~0-4185, (3.15)

For 6, we have

1 25
<o —yby| < gror—
108.0482(0.00199 1421 )2 | 32.81[A, Pyl

So if (z,y) is type 4 solution of (3.1), we have

ly| < 0.0125%| A4, |5% |B|5> < 0.0606|A,,|°12766| B| 119149, (3.16)
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This is an upper bound for |y|. From well-known result in number theory, we know that
when |y| > 1, z,y is partial quotient of 8. In the following, we only need to verify whether
(P, qn) is solution of (3.1) or not.

From Lemma 3.1, computation shows the continued fraction expansion of 8 (k # 4),

the result is listed as below:

HOIUﬂAn+ZL1¢%?L~d,{Z}Z{;gﬁ:igii213w~h

6 =10.-24, =31, L 15 o) (B) = g )
2= 0.1 1,28, L L] (Y= (1.5 15 b

6 = (2,28, L1, 15, ) {8) = (. 55 T,

where B,, = % = 18n3 +27n?% 4+ 18n + 4.
One can observe that g; or g4 has exceeded the upper bound of |y|, 0.01]A,, |*-7735| B| 704185,
Straight forward computation shows that it only exists trivial solution £+(z,y) = (0,1), (1, —1).

One can also get the continued fraction expansion of 6, (k # 4) as below

2A
01 =[-24, — 3,2, "], ],
1= 240 = 3,2, [ 51 ]

—2A, —3 —4A, -5 —|%=|(4A, +5)—24, -3

Di
{—=}=A{ ; ; oA,
Qi 1 2 2L¥J +1

Y

One can observe that go has exceeded the upper bound of |y|, 0.0606|A,, |0-12766| B|~1-19149,

Computation shows that it doesn’t exist type 4 solution.

Therefore, we know that (3.1) only has trivial solutions
:t(.CU, y) = (17 0)7 (07 1)(17 _1)

Since F,(z,y) = f(z,—y), so we proved that when n > 2.03 x 10%, (2) only has trivial
solutions. From the theorem developed by Alan Togbé [15], we prove the theorem.
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