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Abstract: In this paper, the preconditioned AOR iterative methods with the preconditioners
P1=F are studied when the coefficient matrix of the linear system is a strictly diagonally dominant
L-matrix. By using the related theories of matrix splitting, the convergence performance of the
preconditioned AOR methods and the comparison theorems about the influence of the parameters
a and k on the rate of convergence are obtained. The results indicate that the preconditioners with
the big k& and « are efficient and competitive for the preconditioned AOR methods. The results
in the paper generalize those about the preconditioned Gauss-Seidel methods given by Li et al.
Numerical examples further verify the results.
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1 Introduction

Consider the large sparse linear system
Ax = b, (1.1)

where z,b € R" and A = (a;;) € R™*" is nonsingular. It is well known that this system often
arises from computational fluid dynamics, thermal, structural and circuit simulator problems
and usually is solved by the iterative methods. Let A = M — N and M be nonsingular, then
the basic iterative method is

$k+1:TZEk+C, k:Oaly"'v

where T'= M~!N is the iterative matrix, c = M ~1b.
Without loss of generality, in this paper, we let A = I — L — U, where [ isa n xn

identity matrix, —L and —U are the strictly lower and the strictly upper triangular parts of
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A respectively. Let M = (I —vL)/w and N = [(1 —w)I + (w—7)L+wU)]/w, then the AOR

iterative matrix is given by
Lyw=I—-~L) "1 -w)I+(w-—v)L+wU], (1.2)

where w,y € [0,2) (w # 0) are relaxation parameters. For the detail, the reader can refer to
[1]. Obviously, when (w,7v) = (w,w) = (1,1) and (1,0), the AOR iterative method will lead
to the SOR method, the Gauss-Seidel method and the Jacobi method, respectively.

In order to improve the convergence performance of the iterative methods, many pre-
conditioned iterative methods were proposed (see [2-14]), that is, considering the iterative

methods for the preconditioned equation
PAx = Pb, (1.3)

where P is the preconditioner, which is nonsingular. For instance, two preconditioners

1 —ap 0 e 0
0 1 —as93 0
P = s
0 0 0 —Qp_1n
0 0 0 1
and
1 —ajaq9 0 0
0 1 —Qa0o3 0
ﬁa _ .
0 0 0 st —Qp_10p_1n
0 0 0 e 1

were proposed in [2] and [3], respectively. Obviously, the preconditioner P, proposed in [3]
generalized the preconditioner P in [2]. And further generalized in [4] and [5]. Usni et al.
(see [4]) provided the preconditioner Py = I+U. Soon after, Kotakemori (see [5]) generalized
the preconditioner Py by adopting P = I +aU, where « is a positive real parameter. They
all studied the preconditioned Gauss-Seidel method and obtained the comparison results on
the convergence performance.

In 2008, Li et al. proposed a class of preconditioners P} =% k=1,2,--- n—1 (see [6])

with the following form P!=! = P, :

1 —1a12 —Q10a13 0 cee 0 0
0 1 —QQ23 —QiQoq4 " 0 0
P(i_)z = Ty
0 0 0 0 e —Op_20n-2n-1 —Q®pn_20n_2n
0 0 0 0 tee 1 —Qp_1Q0p—1.n

0 0 0 0 0 1
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1 —aja2 —aia3 -+ —Q101p
0 1 —Q2023 - —Qia02y,
P(i_’(n_l) = )
0 0 0 “rr —Qp_10p_1n
0 0 0 1
where o = diag{ay, g, - ,,},0 < a; <1, 1 < i < n and there exists an i such that

0 < a; < 1. Obviously, the preconditioners mentioned above are all the special cases of
P17k k= 1,2,--- ;n — 1. In the paper, they proved that the convergence speed of the
preconditioned Gauss-Seidel methods is not slower than that of the standard Gauss-Seidel
method. Moreover, the bigger the parameter k is, the less the spectral radius of the precon-
ditioned Gauss-Seidel iterative matrix is.

Considering the wide applicabilities of the preconditioners P:=* (k = 1,2,--+ ;n — 1)
and the AOR iterative method, in this paper, we apply the preconditioners to the AOR
iterative method when A is a strictly diagonally dominant L-matrix. We study the con-
vergence performance of the preconditioned AOR iterative methods. Especially, we provide
the monotonicity of the spectral radius of the iterative matrices with respect to the param-
eters and some comparison results. Finally, the numerical experiments verify the obtained
results, which shows that these preconditioners yield a considerable improvement in the rate
of convergence.

The paper is organized as follow. In Section 2, we briefly review some useful notations
and definitions. In Section 3, the preconditioned AOR methods are advised and some com-
parison theorems about the convergence performance for the methods are discussed in detail.

In Section 4, some numerical examples are given. Section 5 presents some conclusions.

2 Preliminaries

For the convenience of later discussions, it is necessary to introduce the following nota-
tions, definitions and lemmas.

For a vector x € R", x > 0(z > 0) denotes that all components of z are nonnegative
(positive). For two vectors x,y € R™,x > y(x > y) means that x —y > 0(x —y > 0). These
definitions carry immediately over to matrices. For any matrix A = (a;;) € R™*", p(A)
denotes the spectral radius of A.

Definition 2.1 A matrix A = (a;;) € R™*" is said to be

(a) an L-matrix if a;; <0 for any i # j and a;; > 0 for i =1,2,--- ,n;

(b) an M-matrix if A =sI — B with B > 0,s > 0 and p(B) < s;

(c) a strictly diagonally dominant matrix if |a;| > > . |a;| for i =1,2,---  n.

J#
It is well known that a strictly diagonally dominant matrix L-matrix A must be an
nonsingular M-matrix, so A~ > 0.
Definition 2.2 Let A be a real matrix. The splitting A = M — N is said to be

(a) regular if M~!' >0 and N > 0;



No. 3 Comparison theorems for a class of preconditioned AOR iterative methods 451

(b) weak regular (weak nonnegative of the first type) if M~1 > 0 and M !N > 0;
(c) weak nonnegative of the second type if M~ >0 and NM~* > 0;
(d) nonnegative splitting if M~*N > 0.

In general, regular splitting = weak nonnegative of either type splitting, but the con-

verse is not true.

Lemma 2.1 [6] Let A be a strictly diagonally dominant L-matrix, then P1~* A is also a
strictly diagonally dominant L-matrix for all o; € [0,1],4 =1,2,--- ;n—1land 1 <k <n-—1.

Lemma 2.2 [6] Let A be a nonsingular matrix with A= > 0.

(a) If A= M — N is a weak nonnegative splitting of either type, then p(M~1N) < 1;

(b) If the splitting A = M — N is weak nonnegative of second type, then there exists
a vector x > 0 such that M~*Nxz = p(M~'N)z and Az > 0 as well as Nz > 0.

Lemma 2.3 [7] Let A;,Ay € R and A; = M; — N;,i = 1,2, be nonnegative

splittings. If the Perron eigenvector z, > 0 (the eigenvector x, corresponding to p(73))

.

satisfies T1zo < Thxs then p(Th) < p(T3), where T; = M[lNi,i =1,2.

Lemma 2.4 [15, 16] Let A be a nonnegative matrix. Then

(a) if ar < Az for some vector x > 0, then o < p(A);

(b) if A is irreducible, ax < Az < Sz for some vector x > 0 and the equalities are not
true, then o < p(A) < § and x > 0;

(c) a > p(A) if and only if af — A is nonsingular and (al — A)~* > 0.

Lemma 2.5 [16] Let A € R"*" be nonnegative, then

(a) p(A) is an eigenvalue of A; If A is also irreducible, then p(A) > 0;

(b) there is an eigenvector x > 0 corresponding to p(A) is called the Perron vector; if

A is also irreducible, then z > 0.

3 Comparison Theorems for a Class of Preconditioned AOR Iterative
Methods

In this section, we will discuss the preconditioned AOR iterative methods with the
preconditioners P1=% k = 1,2,--- 'n — 1, from two aspects, that is for the parameter k
and the parameter «, respectively. Some comparison results for the preconditioned AOR

methods will be stated and proven.

A Comparison Theorems with Respect to Parameter “k” for Precondi-
tioned AOR Methods

Let Ap, A;, and Ay denote the diagonal, strictly lower and upper triangular matrices
of A, respectively, that is A = Ap+ Ay + Ay. And let P1=%F =T+ S =k k=1,2,-.- n—1.
For any positive integers k and k -+ 1 satisfying 1 < k < k+1 < n—1, we consider the AOR
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splittings of P1~*A and P 4

PI7FA = (I+S5"(I—-L-U)
= [ (Sa7" L)p =L = v(Se™ L)) /w = [(1 = w)(I = (S37"L)p)
Hw =L+ (S5 L)) +w(U = S5 + (S, L)y + 8,70 fw
= M'— N, (3.1)

where M = [I — (S.17*L)p —yL — y(SL~*L);]/w and N¥ = Mk — P17k A and

pymtA = I+ Sy I-L-U)
= [[=(S3" " VL)p =L —4(S3~* VL)) fw
—[(1 =w)(I = (857" TV L)p) + (w = )L+ (5,7 "I L))
+w(U = S 4 (5,70, + S FIU)) fw
= Mk NEHL (3.2)

where M*1 = [T — (567%™ L)p — L —4(Sa~ "V L) ] Jw and NEHL = Mi+t - pr— D 4
So the iterative matrices of the AOR methods for P1~*A4 and Pa~*™ 4 are Lok =
(MF)'NEF and L5 = (MET)"INEH!, respectively.

By Lemma 2.1, we know that both the splittings (3.1) and (3.2) are regular splittings.
Furthermore, by Lemma 2.2 (a), they are convergent.

Theorem 3.1 Let A be a strictly diagonally dominant L-matrix, 0 < v < w <
L(w # 0), then p(LYEHY) < p(L3E) < p(Ly.) < 1 for all oy € 0,1],4 =1,2,--- ,n — 1, and
1<k<k+1<n-—1, where szb’j, Lgf}“ and L, are the iterative matrices of the AOR
methods for P1=* A, Pa~*™) 4 and A respectively.

Proof Since A = (I —vL)/w —[(1 —w)I + (w — v)L 4+ wU]/w is regular splitting,
then p(L.,) < 1 and there exists a vector > 0 such that L.,z = p(L,, )2 and Az > 0 by
Lemma 2.2 (b). Thus

Pl7FAx = (I 4+ S7%) Az = Az + SL7FAx > Az > 0.
From S!1=*L > 0, we know
My =[I = (S "L)p = (L + (Sg7 L)) /w < (I = L) Jw.
So (MF)=™! > w(I — L)~ ! since (I — L)~ >0 and (M*)~! > 0. Therefore

(I =L)AL =)+ (w =)L +wUz = p(L, )z
= z—wl—yL) Az >z — (MF) Az
x— (MM)TIPITF Ag = (I — (MF) ' PI=F Az
(MM "'NFz. (3.3)

(63

Vv

It follows from (M})~'N} >0 and Lemma 2.3 that p(L$F) < p(L, ).
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For the vector x,

Pk Ay = (T4 Sy Ay
= (I+S17M)Ax + (SLEHD) _ g1=k Ay
> PIFAx > 0.

Since both S1=FL and (Sa~*™) — §1=F)L are nonnegative, the following inequality
holds

MY = [T —(Sy7"L)p — ((SA~"H) — S07"L)p —~L
—y(SE7RL)p — A ((SL7 Y — SI7RYL) ] fw
< [I—=(SE*L)p —yL —v(SL7FL) ] Jw = ME.

Notice that both M**! and MP* are nonsingular M-matrices, so (M**1)=1 > (M¥)~!. Thus

Y
> - (MSH)_lPi_’(kH)Ax
= (I= (M) P A)e = (M) TN

Then the result p((M*T1)=INkL) < p((MF)=1NF) follows by Rheinboldt and Vandergraft
(see [8]) and Lemma 2.2 in [9]. Therefore the assertion p(LS5+!) < p(LYE) < p(Ly.) <1
is proved.

Remark 3.1 (1) Theorem 3.1 indicates that, for the AOR iteration, the bigger the pa-
rameter k is (i.e., we select the more upper right diagonal elements to be the preconditioner),
the less the spectral radius of the iterative matrix is. Consequently, under the condition of
the same parameter o, the preconditioner I + aU = pyh proposed in [5] is better than
the preconditioner I + S, = P1~! proposed in [3] for the AOR iterative method.

(2) In Theorem 3.1, let (w,7) = (w,w) = (1,1) and (1, 0), then the comparison theorems
for the preconditioned SOR, Gauss-Seidel and Jacobi methods can be reached respectively.
Therefore, Theorem 3.2 and Theorem 3.4 in [6] are the special cases of this theorem (see
Corollary 3.2 and Corollary 3.3).

Corollary 3.1 Let A be a strictly diagonally dominant L-matrix, 0 < w < 1(w # 0),
then

p(LE™H) < p(LE*F) < p(Ly) <1

for all a; € [0,1],i =1,2,--- ,n—1,and 1 <k < k+1<n—1, where L%* L>k*! and L,
are the iterative matrices of the SOR methods for P1=* A, Pa ) 4 and A, respectively.
Corollary 3.2 Let A be a strictly diagonally dominant L-matrix, then

p(GaT) < p(GR) < p(G) <1

forall ; € [0,1],i=1,2,--- ,n—1,and 1 < k < k+1 < n—1, where G*, G¥*! and G are the
iterative matrices of the Gauss-Seidel methods for P1 =% A, P 4 and A, respectively.
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Corollary 3.3 Let A be a strictly diagonally dominant L-matrix, then
p(JT) < p(J5) < p(J) <1

for all a; € [0,1],4=1,2,--- ,n—1,and 1 <k < k+1<n—1, where J*, J* and J are
the iterative matrices of the Jacobi methods for P17*A, P~ A and A, respectively.
Theorem 3.2 Let A € R™*™ be an irreducible strictly diagonally dominant L-matrix,
then P1=% A is also an irreducible strictly diagonally dominant L-matrix for all o; € [0,1),7 =
1,2,---,n—1l,and 1 <k <n-1.
Proof Let Ax = P1=FA = (I4S.7%)A, then A is also a strictly diagonally dominant
L-matrix by Lemma 2.1. And

AE = I+ 8T -L-U)
= [-L-U+8y* =S L—-S~"U (3.4)
= (I—(SX"L)p) — (L+ (SL7"L)L) — (U = SE7* + (SE* L)y + S10).

Let F =U — S;_)k = (fzj>,E =L + (Sé_)kL)L = (6”'), and L = (l”),U = (uij), then

from the definition of P:~* we know that

fij = wij —ogu; for 1 <j—i <k,
fij = wij fork+1<j—i<n-—1,
fij =0 for j <.

Thus if u;; # 0, so does f;; for a; € [0,1),i =1,2,--- ,n—1, and if [;; # 0, so does e;; from
(S1=*L), > 0. With both (SL~*L)y and S1*U are nonnegative, we can conclude that A*
is also an irreducible strictly diagonally dominant L-matrix for o; € [0,1),4=1,2,--- ,n—1,
and 1 <k<n-—1.

Theorem 3.3 Let A be an irreducible strictly diagonally dominant L-matrix, 0 <
v <w< I (w#0,y#1), then

PLSE) < p(L55) < plLsw) <1

for all a; € [0,1),s = 1,2,--- ., n—1(a #0),and 1 < k < k+1 < n—1, where L>k

yiw?
L and L, are the iterative matrices of the AOR methods for P, " A, Py~ % A and
A respectively and Py~ £ pl—k,

Proof From (1.2) and Lemma 2.4 (c), the following equality holds,
Ly,=010-wl+wl—-—v)L+wU+T,

where T' > 0. Since A is irreducible, thus (1 — w)I + w(1 — )L 4+ wU is irreducible when
0<y<w<1(w#0,v#1). So with " > 0, we know that L., is irreducible.

From Theorem 3.2, we also know that fl’; is an irreducible strictly diagonally dominant
L -matrix for o; € [0,1),i = 1,2,--- ,n— 1, and 1 <k < n — 1. So both M**! and M?* are
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nonsingular and both Lf;;f,, and Lﬁ;;u’j“ are well defined. Furthermore, it can be proved that

both Lg:fj, and Lf;;f,“ are irreducible by the similar method as above.

From the proof of Theorem 3.1, we know there exists an x > 0 such that (M*)~'Nkz >
(METY)"IN¥+1g. Therefore, p(LSE+!) < p(L2E) by Lemma 2.4 (b) and Pa~ "+ £ pl=k,
And p(L%}F) < p(Ly.) <1 from (3.3) and a # 0.

The proof is completed.

Remark 3.2 (1) Theorem 3.3 can be seen as a further improvement for Theorem 3.1.
If the matrix in Theorem 3.1 is irreducible, then the inequality of the result can become
strict.

(2) From Theorem 3.3, we can easily obtained the following comparison results for the
preconditioned SOR and Jacobi methods. Consequently, the result for the preconditioned
Jacobi method improves that in Theorem 3.4 in [6] (see Corollary 3.5).

Corollary 3.4 Let A be an irreducible strictly diagonally dominant L-matrix, 0 <
w < 1, then p(L2F 1) < p(L2*) < p(L,) < 1 for all a; € [0,1),i=1,2,--- ,n —1(a # 0),
and 1 <k <k+1<n—1, where L¥* L**+1 and L, are the iterative matrices of the SOR
methods for P1=F A, PA~*™ 4 and A, respectively, and Pa~ T £ pl—k,

Corollary 3.5 Let A be an irreducible strictly diagonally dominant L-matrix, then
p(Jah) < p(J) < p(J) <1

forall a; € [0,1),i=1,2,--- ,n—1(a#0),and 1 <k < k+1 < n—1, where J* JE1 and J
are the iterative matrices of the Jacobi methods for P1=*A, P 4 and A, respectively,
and P;—’(l-i-k) 4 pl=k,

B Comparison Theorems with Respect to Parameter “a” for Precondi-
tioned AOR Methods

Let ﬂ = diag{ﬂl,ﬁ2,~~ ,,8“},0 S ﬂz S 1, Z: 1,2,"' , M. Let Mg = [I* (Sé_)kL)D —
~L — W(Sé*kL)L]/w and assume a; < ;1 =1,2,--- ,n, then we have

M} = [I—(Sy""L)p —~vL —~y(Sy7*L)L]/w
> [I—(S57"L)p —~vL —~(Sy~"L)L]/w = M},

thus (M%)~' < (Mf)~" from (M}F)~' > 0 and (MJ)~' > 0. So the proof of the follow-
ing monotone result with respect to the parameter « is completely similar to the proof of
Theorem 3.1.

Theorem 3.4 Let A be a strictly diagonally dominant L -matrix, 0 < v < w < 1(w #
0), then p(L2F) < p(LSF) < p(Lyw) < 1forany 0 <a; < B <1,i=1,2,---,n— 1, where
L2k, Lk and L., are the iterative matrices of the AOR methods for P;~*A, P1~*A and
A, respectively.

Remark 3.3 Theorem 3.4 indicates the spectral radius of the preconditioned AOR

methods is monotone with respect to the parameter o. And so do for the the preconditioned
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SOR, Gauss-Seidel and Jacobi methods from this theorem, which shows Theorem 3.3 and
Theorem 3.5 in [6] are the special cases of our results (see Corollary 3.7 and Corollary 3.8).

Corollary 3.6 Let A be a strictly diagonally dominant L-matrix, 0 < w < 1, then
p(LEY) < p(L3*) < p(Lu) < 1

for any 0 < a; < 3 < 1,4 = 1,2,---,n — 1, where L?* L%k and L, are the iterative
matrices of the SOR methods for Pj~*A, P)~*A and A respectively.
Corollary 3.7 Let A be a strictly diagonally dominant L-matrix, then

p(Gj) < p(Gg) < p(G) <1

forany 0 < o; < 3; <1,i=1,2,--- ,n— 1, where G%, G* and G are the iterative matrices
of the Gauss-Seidel methods for Py~*A, P,~*A and A respectively.
Corollary 3.8 Let A be a strictly diagonally dominant L-matrix, then

p(J5) < p(J3) < p(J) <1

for any 0 < a; <3 <1,i=1,2,--- ,n— 1, where J§, J} and J are the iterative matrices
of the Jacobi methods for P; %A, Pl7*A and A respectively.

For the irreducible strictly diagonally dominant L-matrix, the strict monotone result
with respect to the parameter o can be reached similar to the proof of Theorem 3.3.

Theorem 3.5 Let A be an irreducible strictly diagonally dominant L -matrix, 0 <
¥ <w < L(w# 0,7 #1), then p(LFE) < p(L3%) < p(Lyw) <1 forany 0 <o < 3; < 1,0 =
1,2, ,n—1(a # 0,a # ), where ijff}, L,‘;‘_jf and L., are the iterative matrices of the
AOR methods for Py~*A, P}~*A and A respectively.

Corollary 3.9 Let A be an irreducible strictly diagonally dominant L -matrix, 0 <
w <1, then

p(L2*) < p(LE*) < p(Ly) <1

forany 0 <o; <3, <1,i=1,2,--- ,n—1(a#0,a# 3), where L* LP* and L, are the
iterative matrices of the SOR methods for P1~* A, Pé*kA and A respectively.
Corollary 3.10 Let A be an irreducible strictly diagonally dominant L -matrix, then

p(TE) < p(IE) < pl]) <1

for any 0 < a; < 8; < 1,4 =1,2,---,n— 1(a # 0,a # B3), where J%, J; and J are the
iterative matrices of the Jacobi methods for P,~*A, P}~*A and A respectively.

Remark 3.4 (1) Obviously, Theorem 3.5 is an improvement for Theorem 3.4. If the
matrix A in Theorem 3.4 is irreducible, the inequality will become strict. Consequently,
Corollary 3.10 improves the the result of Theorem 3.5 in [6].

(2) The preconditioners P}=* k = 1,2,..- ,n — 1 are defined by upper triangular,
nonnegative matrices. Symmetrically, if we define the corresponding lower triangular, non-
negative matrices as the dual preconditioners, then we can get the parallel theorems to above

theorems and corollaries.
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4 Numerical Experiments

In this section, some experiments are provided to illustrate the convergence behavior of
the preconditioned AOR/SOR iterative methods.

The spectral radius of the iterative matrices for the methods is illustrated and analyzed
in detail.

Example 4.1 The coefficient matrix A (see [7]) is given by

r 1 t t t t 7

2x2041 3x2041 4x2041 nx20+1
ot 1 ot ot Lt
2x204-2 3x204-2 4x204-2 nx20+2
ot ot 1 ot Lt
3x20+3 2x20+3 4x204-3 nx20+3
A= "+ _ ot 1 U S I
4x20+4 3x2044 2x2044 nx20+4
ot _ t _ t _ t o 1
L nx20+n (n—1)x20+n (n—2)x20+n (n—3)x20+n _

where t = 2.5, n = 200.

Obviously, the matrix A satisfies all the conditions of theorems in our paper. By simple
computing, we have p(L.,) = 0.3955 when v = 0.7,w = 0.9 for the AOR method and
p(L,) = 0.3261 when w = 0.9 for the SOR method.

Table 1 and Table 2 report the spectral radius of the iterative matrices of the precon-
ditioned AOR/SOR methods when the parameters k and « are varying.

Table 1 Spectral radius of iterative matrices for the preconditioned AOR methods

k 1 ) 10 20 50 100 150 180

a 1.0 0.3896 0.3753 0.3639 0.3488 0.3240 0.3055 0.2967 0.2941
0.8 0.3908 0.3791 0.3698 0.3576 0.3381 0.3241 0.3180 0.3163
0.6 0.3919 0.3830 0.3759 0.3667 0.3524 0.3425 0.3384 0.3374
0.4 0.3931 0.3870 0.3823 0.3761 0.3668 0.3606 0.3581 0.3575
0.2 0.3943 0.3912 0.3888 0.3857 0.3812 0.3782 0.3771 0.3769
0.1 0.3949 0.3933 0.3921 0.3906 0.3883 0.3869 0.3864 0.3863

Table 2 Spectral radius of iterative matrices for the preconditioned SOR methods

k 1 5 10 20 a0 100 150 180

a 1.0 0.3181 0.2997 0.2860 0.2688 0.2434 0.2282 0.2226 0.2213
0.8 0.3196 0.3046 0.2935 0.2797 0.2599 0.2483 0.2443 0.2435
0.6 0.3212 0.3097 0.3013 0.2909 0.2765 0.2683 0.2656 0.2650
0.4 0.3228 0.3150 0.3093 0.3024 0.2931 0.2879 0.2862 0.2859
0.2 03245 0.3205 0.3176 0.3142 0.3097 0.3072 0.3064 0.3063
0.1 0.3253 0.3233 0.3218 0.3201 0.3179 0.3167 0.3163 0.3163
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First, from Tables 1 and 2, the preconditioners can greatly accelerate the convergence
rate of the method whenever for the fixed parameter « or k. Second, it is observed that
the spectral radius of the iterative matrices for the preconditioned AOR/SOR methods is
monotonically decreasing with k increasing when « is fixed, which shows that the more
upper right diagonal elements are selected to be the preconditioner, the less the spectral
radius of iterative matrix is when « is fixed. Third, it can be also seen that the spectral
radius of the iterative matrices for the preconditioned AOR/SOR methods is monotonically
decreasing with « increasing when k is fixed, which indicates that the spectral radius of

iterative matrices is monotone with respect to the parameter a.

Example 4.2 Consider a nonsingular Z-matrix A (see [7]) given by

1 C1 Co C3 C1

C3 1 Cq Co - Cq
02 C3 . . i . x . C3

A=
c1 e T 1 c1 Co
C3 Co C3 1 Cq
L C3 C1 Co C3 1 ]
_ T _ 7 _ 7 _ : .
where ¢; = —35-,c0 = TonF 1 %3 = ~Toniz and n = 200. It is easy to verify that A

is an irreducible strictly diagonally dominant L-matrix. By simple computing, we have
p(L ) = 0.6317 when v = 0.7,w = 0.9 for the AOR method and p(L,) = 0.5849 when
w = 0.9 for the SOR method.

Table 3 and Table 4 report the spectral radius of the iterative matrices of the precon-

ditioned AOR/SOR methods when the parameters k and « are varying.

Table 3 Spectral radius of iterative matrices for the preconditioned AOR methods

k 1 5 10 20 50 100 150 180

a 1.0 0.6300 0.6230 0.6146 0.5987 0.5584 0.5145 0.4880 0.4797
0.8 0.6303 0.6248 0.6181 0.6054 0.5736 0.5390 0.5192 0.5135
0.6 0.6307 0.6265 0.6215 0.6121 0.5885 0.5631 0.5492 0.5456
0.4 0.6310 0.6283 0.6249 0.6187 0.6032 0.5866 0.5780 0.5760
0.2 0.6314 0.6300 0.6284 0.6253 0.6176 0.6095 0.6056 0.6047
0.1 0.6316 0.6309 0.6301 0.6285 0.6247 0.6207 0.6188 0.6184
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Table 4 Spectral radius of iterative matrices for the preconditioned SOR methods

k 1 5) 10 20 50 100 150 180

a 1.0 0.5825 0.5734 0.5623 0.5413 0.4891 0.4380 0.4142 0.4087
0.8 0.5830 0.5757 0.5669 0.5503 0.5096 0.4695 0.4514 0.4476
0.6 0.5835 0.5780 0.5714 0.5591 0.5293 0.5000 0.4872 0.4847
0.4 0.5839 0.5803 0.5759 0.5679 0.5484 0.5294 0.5214 0.5200
0.2 0.5844 0.5826 0.5804 0.5764 0.5669 0.5577 0.5540 0.5534
0.1 0.5846 0.5837 0.5826 0.5807 0.5760 0.5714 0.5696 0.5693

From Tables 3 and 4, we can see that the preconditioners can greatly accelerate the
convergence rate for the method. It can be observed that the spectral radius of the iterative
matrices for the preconditioned AOR/SOR methods is monotonically decreasing with k
increasing when the parameter « is fixed. So, the more upper right diagonal elements
are selected to be the preconditioner, the less the spectral radius of iterative matrix is.
Furthermore, we also see that the convergence speed for the preconditioned AOR/SOR
methods become considerate fast with « increasing, which shows that the spectral radius of
iterative matrices is monotone with respect to the parameter a.

In a word, the above tables show that the preconditioners P}~* with the big k and «

are more efficient for accelerating the convergence speed of the AOR/SOR method.

5 Conclusion

In this paper, the preconditioners P1~* are applied to the AOR iterative method.
The convergence performance of the preconditioned AOR methods is analyzed when the
coefficient matrix is a strictly diagonally dominant L-matrix. Some comparison theorems
about the influence of the parameters o and k on the convergence rate for the preconditioned
methods are given. The numerical examples further verified the results, which showed the

preconditioners P1~* with the big k and « are efficient and competitive.
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