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Abstract: In this paper, we study submanifolds in Finsler manifold M . By using tangent

curvature and normal curvature, which are introduced in [23, 24], we derive a new second variation

formula for a geodesic γ in Finsler manifold, and then obtain many relation between geometric

invariants and topological invariants of Finsler submanifolds, which are generalizations of the results

described in [4].

Keywords: sur-tangent curvature; normal curvature; second variation formula; compact

2010 MR Subject Classification: 53C60; 53B40

Document code: A Article ID: 0255-7797(2014)03-0432-09

1 Introduction

As is known to all, the theory of hypersurfaces in a Finsler space was first considered
by E. Cartan (see [10]). Henceforth, many geometrists studied different properties of sub-
manifolds of Finsler (see [6, 12, 17, 20, 25]). Recently, by using the Holmes-Thompson
volume form, which appeared once in [3] and [11], analogues such as the mean curvature
and the second fundamental form for Finsler submanifolds were introduced in [13] and co-
incide with the usual notions for the Riemannian case. Q. He and Y. B. Shen in [14] also
studied the properties of Finsler minimal submanifolds and established the Bernstein type
theorems for Finsler minimal graphs in the Minkowski space and the Randers space. Later,
some geometrists proved that totally geodesic submanifolds of Finsler manifolds are minimal
for the Holmes-Thompson volume form (see [7, 16]). On the other hand, Busemann in [9]
argued strongly that the volume of a Finsler manifold should be its Hausdorff measure. His
argument was based on a number of axioms that any natural definition of volume on Finsler
spaces must satisfy. In 1998, Shen in [24] introduced the notions of the mean curvature
and the normal curvature for Finsler submanifolds with Busemann-Hausdorff volume form.
Based on this volume form, minimal surfaces and a Bernstein type theorem on a special Ran-
ders space were considered in [26] and [27]. The main purpose of this paper is to continue
the investigation in this direction. By using tangent curvature and normal curvature, which
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were introduced in [23, 24], we attempt to study the relation between geometric invariants
and topological invariants of Finsler submanifolds. The article is organized as follows.

In Section 2, we review some basic facts of the Finsler manifold and its submanifolds.
In Section 3, we derive the following second variation formula for a geodesic γ.

L′′(0) = gγ̇(t)(DV V, γ̇(t))|ba + Tγ̇(t)(V )|ba
+

∫ b

a

{gγ̇(t)(Dγ̇(t)V
⊥, Dγ̇(t)V

⊥)− gγ̇(t)(Rγ̇(t)(V ⊥), V ⊥)}dt. (1.1)

In Section 4, we study hypersurfaces in Finsler manifold with positive Ricci curvature,
and prove that under suitable hypotheses on the curvatures, the fundamental group of the
manifold is homomorphic with the fundamental group of a component of the complement of
hypersurface.

In Section 5, we study submanifolds in Finsler manifold M with positive flag curvature,
and prove that two compact submanifolds with vanished normal and sur-tangent curvatures
must necessarily intersect if their dimension sum is at least that of M .

In Section 6, we study r -dimensional submanifold N with nonpositive mean normal and
sur-tangent curvatures in complete Finsler manifold. We find that if k -th Ricci curvature
Ric(k)(M) ≥ kc(k ≤ r), then d(p,N) ≤ π

2
√

c
, for any p ∈ M . Furthermore, suppose that N

is compact, then M is compact.

2 Preliminaries

Let M be an n-dimensional complete connected Finsler manifold with Finsler metric F ,
and π : TM → M the natural projection. For each p ∈ M , let

gij(y) =
1
2

∂2F 2(y)
∂yi∂yj

,Cijk(y) =
1
4

∂3F 2(y)
∂yi∂yj∂yk

, (2.1)

where y = yi ∂
∂xi |p ∈ TpM . The fundamental tensors g and the Cartan tensors C on π∗TM

of F are defined by

g(X, Y ) := gij(y)XiY j , C(X, Y, Z) := Cijk(y)XiY jZk, (2.2)

respectively. Define a map

D : TpM × C∞(TM) → TpM, (2.3)

DyV := {dV i(y) + V j(x)
∂Gi

∂yj
(y)} ∂

∂xi
|p, (2.4)

where Gi(y) are geodesic coefficients, given by

Gi(y) :=
1
4
gil(y){2∂gjl

∂xk
(y)− ∂gjk

∂xl
(y)}yjyk. (2.5)

DyV (p) is called the covariant derivative of V at p in the direction y, and the family D :=
{Dy}y∈TM is called the connection of F .
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Extend y to a geodesic field Y in a neighborhood U of p ∈ M . Let D̂ be the Levi-Civita
connection of the induced Riemannian metric gY on U. Define

Ty(v) := gy(D̂vV, y)− gy(DvV, y), v ∈ TpM, (2.6)

where V is a vector field with Vp = v. T = {Ty}y∈TM\{0} is called the tangent curvature
(see [23]).

Proposition 2.1 (see [4]) There is a family of transformations Ry : TpM → TpM, y ∈
TpM\{0}, such that for any geodesic variation Γ of a geodesic γ, the variation vector field
J(t) := ∂Γ

∂u
(0, t) along γ satisfies the following equation

Dγ̇Dγ̇J + Rγ̇(J) = 0. (2.7)

The Riemann curvature, denoted R, is defined by

R := {Ry : TpM → TpM | y ∈ TpM\{0}, p ∈ M}. (2.8)

For a flag (P, y) (or (u, y)), the flag curvature K(P, y) is defined by

K(P, y) = K(u, y) :=
gy(Ry(u), u)

gy(y, y)gy(u, u)− gy(y, u)gy(y, u)
, (2.9)

where u is a tangent vector such that P = span{u, y}. The Ricci curvature and the k-th
Ricci curvature of y are defined as

Ric(y) :=
n∑

i=1

K(ui, y), (2.10)

Ric(k)(y) :=
k∑

j=1

K(uij
, y), (2.11)

respectively, where the indices i1, i2, · · · , ik ∈ {1, · · · , n}, il 6= ij (l 6= j), k ≤ n, and {ui}n
i=1

is the local gY -orthonormal frame.
Proposition 2.2 (see [4]) There is a unique set of local 1-forms ωi

j on TM\{0} such
that

dωi = ωj ∧ ωi
j , (2.12)

dgij = gjkω
k
i + gkjω

k
i + 2Cijkω

n+k, (2.13)

ωn+i = dyi + yjωi
j . (2.14)

Let T be a non-vanishing vector field on an open subset U ⊂ M , then the above 1-forms
admit a linear connection ∇T , which is called Chern connection. For vector fields X, Y, Z

on U, the Chern curvature ΩT (X, Y )Z is given by

ΩT (X, Y )Z = ∇T
X∇T

Y Z −∇T
Y∇T

XZ −∇T
[X,Y ]Z. (2.15)
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Now let N be a smoothly embedded submanifold in Finsler manifold M , and n denote
a unitary normal vector of N at p ∈ N . The normal curvature (see [23, 24]) and sur-tangent
curvature of N at n is given by

Sn(X, Y ) = −gn(DXn, Y ), (2.16)

Tn(X) = Ty(v)|y=n,v=X , (2.17)

respectively, for X, Y ∈ TpN .

3 Second Variation Formula

Proposition 3.1 (see [28]) Let γ : [a, b] → M be a unit speed geodesic in (M, F ).
Consider a piecewise C∞ variation of γ

Γ : (−ε, ε)× [a, b] → M, (3.1)

and let L(s) = LF (γs) be the arc-length of γs, then

L′′(s) =
∫ b

a

{gT̃ (∇T̃
Ṽ
∇T̃

T̃
Ṽ , T̃ ) + gT̃ (∇T̃

T̃
Ṽ ,∇T̃

T̃
Ṽ )

(gT̃ (T̃ , T̃ )) 1
2

− (gT̃ (∇T̃
T̃
Ṽ , T̃ ))2

(gT̃ (T̃ , T̃ )) 3
2
}dt, (3.2)

where T̃ = dΓ(s,t)( ∂
∂t

), Ũ = dΓ(s,t)( ∂
∂s

).
By (2.15) and (3.2), we have

L′′(s)

=
∫ b

a

gT̃ (T̃ , T̃ )−
1
2 gT̃ (∇T̃

T̃
∇T̃

Ṽ
Ṽ , T̃ )dt +

∫ b

a

gT̃ (T̃ , T̃ )−
1
2 gT̃ (ΩT̃ (Ṽ , T̃ )Ṽ , T̃ )dt

+
∫ b

a

gT̃ (T̃ , T̃ )−
1
2 gT̃ (∇T̃

T̃
Ṽ ,∇T̃

T̃
Ṽ )dt−

∫ b

a

gT̃ (T̃ , T̃ )−
3
2 gT̃ (∇T̃

T̃
Ṽ , T̃ )2dt. (3.3)

Observe that

gT̃ (∇T̃
T̃
∇T̃

Ṽ
Ṽ , T̃ ) = T̃ [gT̃ (∇T̃

Ṽ
T̃ , T̃ )]− gT̃ (∇T̃

Ṽ
Ṽ ,∇T̃

T̃
T̃ ), (3.4)

gT̃ (∇T̃
Ṽ
T̃ , T̃ )|s=0 = gγ̇(t)(DV V, γ̇(t)) + Tγ̇(t)(V ), (3.5)

∇T̃
T̃
T̃ |s=0 = 0. (3.6)

We obtain
∫ b

a

gT̃ (T̃ , T̃ )−
1
2 gT̃ (∇T̃

T̃
∇T̃

Ṽ
Ṽ , T̃ )|s=0dt = gγ̇(t)(DV V, γ̇(t))|ba + Tγ̇(t)(V )|ba. (3.7)

Note that

gT̃ (ΩT̃ (Ṽ , T̃ )Ṽ , T̃ )|s=0 = −gγ̇(t)(Rγ̇(t)(V (t)), V (t)), (3.8)

gT̃ (∇T̃
T̃
Ṽ ,∇T̃

T̃
Ṽ )|s=0 = gγ̇(t)(Dγ̇(t)V (t), Dγ̇(t)V (t)), (3.9)

gT̃ (∇T̃
T̃
Ṽ , T̃ )|s=0 = gγ̇(t)(Dγ̇(t)V (t), γ̇(t)), (3.10)
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and by (3.3) and (3.7), we obtain

L′′(0) = gγ̇(t)(DV V, γ̇(t))|ba + Tγ̇(t)(V )|ba
+

∫ b

a

{gγ̇(t)(Dγ̇(t)V
⊥, Dγ̇(t)V

⊥)− gγ̇(t)(Rγ̇(t)(V ⊥), V ⊥)}dt, (3.11)

where V ⊥ = V − gγ̇(t)(V, γ̇(t))γ̇(t).
Remark 3.1 The second variation formula for variations with fixed endpoints is derived

in [4] in a different way.
Next, the index form, denoted Iγ(t)(X), is defined by

Iγ(t)(X) = gγ̇(t)(DXX, γ̇(t))|ba + Tγ̇(t)(X)|ba
+

∫ b

a

{gγ̇(t)(Dγ̇(t)X, Dγ̇(t)X)− gγ̇(t)(Rγ̇(t)(X), X)}dt, (3.12)

where X is a vector field along γ(t) and normal to it.

4 The Hypersurface and Fundament Group

Suppose the hypersurface N separates the Finsler manifold M . The mean normal
(sur-tangent) curvatures of N is said to be semidefinite if they are nonnegative on one
orientation of N and nonpositive on the other. Call a component U of M − N exterior to
N if the mean normal and sur-tangent curvatures of N are nonpositive on the orientation
of N corresponding to U. γ : [a, b] → M is said to be an N -curve if γ̇(a), γ̇(b) ∈ N⊥ and an
N -geodesic if it is a geodesic parametrized by arc-length. A variation Γ : (−ε, ε)× [a, b] → M

is said to be an N -variation if each Γs given by Γs(t) = Γ(s, t) is an N -curve.
Theorem 4.1 Let M be a Finsler manifold with positive Ricci curvature. Let the

compact connected hypersurface N separate M , and the mean normal and sur-tangent cur-
vatures of N are semidefinite. If U is the component of M − N exterior to N , then the
natural homomorphism π1(U) → π1(M) is surjective.

Proof Since the exactness of the sequence π1(U) → π1(M) → π1(M,U), it remains
only to show that π1(U) → π1(M, Ū) is trivial.

Let γ : [a, b] → M be a minimal N−geodesic such that γ̇(a) points out of U and γ̇(b)
points into U. Let Qγ be the set of vector fields along γ(t), normal to it, autoparallel, and
unitary. If X1, X2, · · · , Xn−1 ∈ Qγ are mutually orthogonal, by (3.12), we have

n−1∑
m=1

Iγ(t)(Xm) =
n−1∑
m=1

Sγ̇(t)(X, X)|ba +
n−1∑
m=1

Tγ̇(t)(X)|ba −
∫ b

a

Ric(γ̇(t))dt. (4.1)

Because of the assumed orientations of γ̇(a) and γ̇(b) and the hypothesis on Ricci curvature,
n−1∑
m=1

Iγ(t)(Xm) < 0. It follows that Iγ(t)(Xm) < 0 for some m, so the N -variation Γ(s, t) is

length-decreasing. Therefore, γ could not be minimal.
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Next, suppose α ∈ π1(M, Ū) and let γ ∈ α. It is easily seen that γ is Ū -homotopic to
a path-product γ1θ1γ2θ2 · · · θk−1γk, where each γi : [ai, bi] → M is a minimal N -geodesic
intersecting N only at its endpoints, while θi : [bi, ai+1] → M lies in N . By the argument
given above, it is impossible that γ̇i(ai) points out of U while γ̇i(bi) points into U, since γi

is to be minimal. Therefore, γ lies in U, α is trivial and so in π1(U) → π1(M, Ū) is trivial,
which completes the proof.

Now let M be a 3 -dimensional compact Finsler manifold with positive Ricci curvature
and suppose π1(M) cannot be generated by less than r elements. Suppose M = B1∪B2, N =
B1∩B2, B1 and B2 are bounded by the smooth surface N of genus f . If B1 is a homeomorph
of a standard solid torus, then π1(B1) is a free group on f generators. Applying Theorem
4.1, we obtain

Corollary 4.2 Let M be a 3 -dimensional compact Finsler manifold with positive
Ricci curvature, whose fundamental group cannot be generated by less than r elements, and
let B be a standard solid torus of genus f . If r > f , there is no smooth embedding of B
into M such that the boundary of B becomes a surface with semidefinite mean normal and
sur-tangent curvatures and the interior of B goes onto the exterior of that surface.

5 The Intersection of Submanifolds in Finsler Manifold

Theorem 5.1 Let Mn be a n -dimensional complete connected Finsler manifold with
positive flag curvature and let Vr and Ws be compact submanifolds with vanished normal
and sur-tangent curvatures. If r + s ≥ n, then Vr ∩Ws 6= ∅.

Proof Let Vr and Ws be any compact submanifolds with r + s ≥ n. Suppose that
Vr ∩ Ws = ∅. Let γ : [a, b] → M be a minimal geodesic parametrized by arc-length,
γ(a) = p ∈ Vr, γ(b) = q ∈ Ws, and it strikes Vr and Ws orthogonally. Let Va be the
tangent space of Vr at p. By parallel translation along γ(t), we get a submanifold Vb of
U, that is the tangent space to Mn at q. Since Va is orthogonal to γ(t) at p, Vb is also
orthogonal to γ(t) at q. Let W be the tangent space to Ws at q. Then Vb and W are two
submanifolds of the linear space U. Moreover, both Vb and W are orthogonal to γ at q.
Thus the dimension of their intersection is

dim(Vb ∩W) ≥ r + s− (n− 1) ≥ 1, (5.1)

then there is at least a 1-dimensional submanifold in common between Vb and W. But this
simply means that there is a unit vector Xa tangent to Vr at p whose parallel translate is tan-
gent toWs at q. Let X be the parallel translate of Xa along γ. The term − ∫ b

a
K(P (t), γ̇(t))dt

of the second variation formula is strictly negative by the flag curvature assumption, where
P (t) = span{γ̇(t), X(t)} is a family of tangent planes along γ(t).

Since Vr andWs are compact submanifolds with vanished normal and sur-tangent curva-
tures, we have Iγ(t)(X) < 0, thus γ(t) cannot be minimizing, which leads to a contradiction.

6 k-th Ricci Curvature and Submanifolds in Finsler Manifold
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Let M be an n-dimensional Finsler manifold. For any point p ∈ M , let Hm ⊂ TpM be a
m-plane spanned by m -mutually orthogonal unit tangent vectors X1, · · · , Xm ∈ TpM , and
X ∈ TpM be a tangent vector orthogonal to Hm. Then the Hm-X flag curvature of M is
defined by

K(Hm, X) :=
m∑

i=1

K(Pi, X), (6.1)

where Pi = span(Xi, X). Obviously, K(Hm, X) is independent of the choice of X1, · · · , Xm.
If γ : [0, d] → M is a geodesic and Hm

0 ⊂ Tγ(0)M is a plane through γ(0), we denote
by Hm

t the parallel translate of Hm
0 to γ(d) along γ(t). Now, we can state our theorem as

follows:
Theorem 6.1 Let M be an n -dimensional complete connected Finsler manifold and N

be a r -dimensional submanifold with nonpositive mean normal and sur-tangent curvatures.
Let p ∈ M , assume that along each minimizing geodesic γ : [0, d] → M starting from p,
we have for all m-plane (m ≤ r) Hm

0 ⊂ γ̇(0)⊥, K(Hm
t , γ̇(t)) ≥ mc > 0, where γ̇(0)⊥ is the

orthogonal complement of γ̇(0) in Tγ(0)M . Then the distance d(p,N) ≤ π
2
√

c
.

Proof Let the distance d(p,N) := d. Then let γ(s), s ∈ [0, d] be a minimal geodesic
in M parametrized by arc-length from p to p0 ∈ N which realizes the minimum distance
from p to N . Since γ(t) is the minimal geodesic, it strikes N orthogonally. Take a unit
orthogonal basis X1, · · · , Xr of Tp0N and let Ei(t) be the parallel translate of Xi along γ(t)
and define Wi(t) = sin πt

2d
Ei(t), i = 1, · · · , r. Each vector field Wi(t) gives rise to a variation

of the variational curves of the geodesic γ(t) by keeping one end point p fixed and other end
points on N . By the second variation formula of arc-length, for i = 1, · · · , r, we have

Iγ(t)(Wi) = gγ̇(t)(DWi
Wi, γ̇(t))(d) + Tγ̇(t)(Wi)(d)

+
∫ d

0

{gγ̇(t)(Dγ̇(t)Wi, Dγ̇(t)Wi)− gγ̇(t)(Rγ̇(t)(Wi),Wi)}dt. (6.2)

Since N is a r -dimensional compact submanifold with nonpositive mean normal and sur-
tangent curvatures, we have

r∑
i=1

Iγ(t)(Wi) ≤
∫ d

0

{r( π

2d
cos

πt

2d
)2 − (sin

πt

2d
)2

r∑
i=1

gγ̇(t)(Rγ̇(t)(Ei), Ei)}dt. (6.3)

By the assumption on the curvature of M , we know that
m∑

j=1

gγ̇(t)(Rγ̇(t)(Eij
), Eij

) ≥ mc (6.4)

for indices i1, i2, · · · , im ∈ {1, · · · , r}, ij 6= il (j 6= l),m ≤ r, we have
r∑

i=1

gγ̇(t)(Rγ̇(t)(Ei), Ei) =
r

mCm
r

∑
1≤i1<i2<···<im≤r

m∑
j=1

gγ̇(t)(Rγ̇(t)(Eij
), Eij

)

≥ r

mCm
r

∑
1≤i1<i2<···<im≤r

mc

= rc. (6.5)
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Substituting (6.5) into (6.3), we find

r∑
i=1

Iγ(t)(Wi) ≤
∫ d

0

{r( π

2d
cos

πt

2d
)2 − rc(sin

πt

2d
)2}dt. (6.6)

Suppose that d(p,N) > π
2
√

c
, then

r∑
i=1

Iγ(t)(Wi) ≤
∫ d

0

{rc(cos
πt

2d
)2 − rc(sin

πt

2d
)2}dt = 0. (6.7)

Hence Iγ(t)(Wi) < 0, for some i, this leads to a contradiction that γ(t) is the minimal length
from p to N . Thus, we must have d(p,N) ≤ π

2
√

c
.

The following Corollary 6.2 is an immediate consequence of Theorem 6.1.
Corollary 6.2 Let M be an n -dimensional complete connected Finsler manifold and N

be a r -dimensional submanifold with nonpositive mean normal and sur-tangent curvatures.
If the k-th Ricci curvature Ric(k)(M) ≥ kc(k ≤ r), then d(p,N) ≤ π

2
√

c
, for any p ∈ M .

Let N be a compact submanifold and d0 be its diameter. For any point p, q ∈ M , there
are p0, q0 ∈ N , such that d(p, p0) = d(p,N) and d(q, q0) = d(q, N), then

d(p, q) ≤ d(p, p0) + d(p0, q0) + d(q0, q) ≤ π

2
√

c
+ d0 +

π

2
√

c
=

π√
c

+ d0.

Note that M is complete, then M is compact. Hence we obtain
Corollary 6.3 Let M be an n-dimensional complete connected Finsler manifold and

N be a r-dimensional compact submanifold with nonpositive mean normal and sur-tangent
curvatures. If the k-th Ricci curvature Ric(k)(M) ≥ kc(k ≤ r), then M is compact.
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Finsler 流形中弧长第二变分与子流形

朱业成

(安徽工业大学应用数学系, 安徽马鞍山 243002)

摘要: 本文研究了Finsler 流形中的子流形的相关问题. 利用文[23, 24]中引入的Finsler 流形中的切曲

率和法曲率的概念, 计算出Finsler 流形中测地线的一个新的第二变分公式, 获得了关于Finsler子流形中几

何不变量和拓扑不变量的一些新的关系, 推广了文[4]的许多结果.
关键词: 超切曲率; 法曲率; 第二变分公式; 紧致性
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