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Abstract: In this paper, from the relation between the sprays of two dually flat and confor-

mally flat (α, β) -metrics, we obtain that locally dually flat and conformally flat Randers metrics

are Minkowskian. Further, we extend the result to the non-Randers type and show that the locally

dually flat and conformally flat (α, β)-metrics of non-Randers type must be Minkowskian under an

extra condition.
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1 Introduction

The notion of dually flat metrics was first introduced by Amari and Nagaoka when they
studied the information geometry on Riemannian space [1, 2]. Later on, the notion of locally
dually flat Finsler metrics was introduced by Shen [3]. A Finsler metric F = F (x, y) on an
n-dimensional manifold M is called the locally dually flat Finsler metric if at every point
there is a coordinate system (xi) in which the geodesic coefficients are in the following form
Gi = − 1

2
gijHyj , where H = H(x, y) is a local scalar function on the tangent bundle TM of

M and satisfies H(x, λy) = λ3H(x, y) for all λ > 0. Such a coordinate system is called an
adapted coordinate system. It is shown that a Finsler metric on an open subset U ⊂ Rn

is dually flat if and only if it satisfies the following PDE (F 2)xkylyk − 2(F 2)xl = 0. In this
case, H = − 1

6
(F 2)xmym. Recently, Shen, Zhou and the second author studied locally dually

flat Randers metrics F = α + β and classified locally dually flat Randers metrics F = α + β

with isotropic S -curvature [4]. Later, Xia characterized locally dually flat (α, β)-metrics on
an n-dimensional manifold M(n ≥ 3) [5].

The study on conformal properties has a long history. Two Finsler metrics F and F̄

on a manifold M are said to be conformally related if there is a scalar function σ(x) on
M such that F = eσ(x)F̄ . A Finsler metric which is conformally related to a Minkowski
metric is called conformally flat Finsler metric. In 1989, Ichijyō and Hashiguchi defined a
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conformally invariant Finsler connection in a Finsler space with (α, β)-metric and gave the
condition for a Randers space to be conformally flat based on their connection (see [6]).
Later, S. Kikuchi found a conformally invariant Finsler connection and gave a necessary
and sufficient condition for a Finsler metric to be conformally flat by a system of partial
differential equations under an extra condition (see [7]). By using Kikuchi’s conformally
invariant Finsler connection, Hojo, Matsumoto and Okubo studied conformally Berwald
Finsler spaces and its applications to (α, β)-metrics (see [8]). Recently, Kang proved that
any conformally flat Randers metric of scalar flag curvature is projectively flat and classified
completely conformally flat Randers metrics of scalar flag curvature (see [9]). On the other
hand, Bacso and the second author studied the global conformal transformations on a Finsler
space (M, F ). They obtain the relations between some important geometric quantities of
F and their correspondences respectively, including Riemann curvatures, Ricci curvatures
and S-curvatures (see [10, 11]). The Weyl theorem states that the projective and conformal
properties of a Finsler metric determine the metric properties uniquely. Thus the conformal
properties of a Finsler metric deserve extra attention.

In this paper, we study and classify locally dually flat and conformally flat (α, β)-metrics.
Firstly, we can prove the following theorem.

Theorem 1.1 Let F = α + β be a locally dually flat Randers metric on an n-
dimensional manifold M (n ≥ 3). Assume that F is conformally flat. Then it must be
Minkowskian.

Further, following Xia’s main result on locally dually flat (α, β)-metrics in [5], we study
and characterize locally dually flat and conformally flat (α, β)-metrics of non-Randers type.
We get the following theorem.

Theorem 1.2 Let F = αφ(s), s = β
α
, be an (α, β)-metric on an n-dimensional manifold

M (n ≥ 3). Suppose that φ satisfies one of the following conditions:
(i) φ(s) is a polynomial of s with φ′(0) = 0;
(ii) φ(s) is an analytic function with φ′(0) = φ′′(0) = 0;
(iii) φ′(0) 6= 0, s(k2 − k3s

2)(φφ′ − sφ′2 − sφφ′′)− (φ′2 + φφ′′) + k1φ(φ− sφ′) 6= 0,
where k1, k2 and k3 are constants. Then, if F is locally dually flat with α conformally flat,
F must be Minkowskian.

2 Preliminary

Let M be an n-dimensional C∞ mainfold and TM denotes the tangent bundle of M .
A Finsler metric on M is a function F : TM → [0,∞) with the following properties:

(a) F is C∞ on TM\{0};
(b) At any point x ∈ M, Fx(y) := F (x, y) is a Minkowski norm on TxM ,

we call the pair (M, F ) an n-dimensional Finsler manifold.
Let (M, F ) be a Finsler manifold and gij(x, y) := 1

2
[F 2(x, y)]yiyj . For any non-zero

vector y = yi ∂
∂xi ∈ TxM , F induces an inner product gy on TxM as gy(u, v) := gij(x, y)uivj ,

where u = ui ∂
∂xi ∈ TxM , v = vi ∂

∂xi ∈ TxM .
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The geodesic σ = σ(t) of a Finsler metric F is characterized by the following system of
2nd order ordinary differential equations

d2σi(t)
dt2

+ 2Gi(σ(t),
d

dt
σ(t)) = 0,

where Gi := 1
4
gil{[F 2]xkylyk − [F 2]xl}, where (gij) = (gij)−1. Gi are called the geodesic

coefficients of F .
By the definition, an (α, β)-metric is a Finsler metric expressed in the following form

F = αφ(s), s =
β

α
,

where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form with ‖βx‖α <

b0, x ∈ M . It is proved (see [12]) that F = αφ(β/α) is a positive definite Finsler metric
if and only if the function φ = φ(s) is a C∞ positive function on an open interval (−b0, b0)
satisfying

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0.

In particular, when φ = 1+s, the metirc F = αφ(β/α) is just the Randers metric F = α+β.
Let Gi and Gi

α denote the geodesic coefficients of F and α, respectively. Denote

rij := (bi|j + bj|i), sij :=
1
2
(bi|j − bj|i),

si
j := ailslj , si := bjsji, s0 := siy

i, r00 := rijy
iyj ,

where (aij) := (aij)−1 and bi|j denote the covariant derivative of β with respect to α. Then
we have

Lemma 2.1 (see [12]) The geodesic coefficients of Gi are related to Gi
α by

Gi = Gi
α + αQsi

0 + {−2Qαs0 + r00}{Ψbi + Θα−1yi}, (2.1)

where si
0 := si

jy
j and

Q :=
φ′

φ− sφ′
,Θ :=

φφ′ − s(φφ′′ + φ′φ′)
2φ

[
(φ− sφ′) + (b2 − s2)φ′′

] ,Ψ :=
φ′′

2
[
(φ− sφ′) + (b2 − s2)φ′′)

] .

In order to prove our theorems, we need some lemmas about locally dually flat (α, β)-
metrics. Shen, Zhou and the second author first characterized locally dually flat Randers
metrics and obtained the following lemma.

Lemma 2.2 (see [4]) Let F = α+β be a Randers metric on an n-dimensional manifold
M . Then F is locally dually flat if and only if in an adapted coordinate system, β and α

satisfy

r00 =
2
3
θβ − 5

3
τβ2 + [τ +

2
3
(τb2 − bmθm)]α2, (2.2)

sk0 = −1
3
(θbk − βθk), (2.3)

Gm
α =

1
3
(2θ + τβ)ym − 1

3
(τbm − θm)α2, (2.4)
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where τ = τ(x) is a scalar function and θ = θky
k is a 1-form on M and θm := amkθk.

Later, Xia characterized locally dually flat (α, β) -metrics.
Lemma 2.3 (see [5]) Let F = αφ(β/α) be an (α, β) -metric on an n -dimensional

manifold M (n ≥ 3). Suppose F is not Riemannian and φ satisfies one of the following:
(i) φ(s) is a polynomial of s with φ′(0) = 0;
(ii) φ(s) is an analytic function with φ′(0) = φ′′(0) = 0;
(iii) φ′(0) 6= 0, s(k2 − k3s

2)(φφ′ − sφ′2 − sφφ′′)− (φ′2 + φφ′′) + k1φ(φ− sφ′) 6= 0,
where k1, k2 and k3 are constants. Then F is locally dually flat on M if and only if α and
β satisfy

sl0 =
1
3
(βθl − θbl), (2.5)

r00 =
2
3
[θβ − (θlb

l)α2], (2.6)

Gl
α =

1
3
(2θyl + θlα2), (2.7)

where θ := θi(x)yi is a 1-form on M and θl := alkθk.

3 Proof of Theorems

Now we are in the position to prove the theorems. First, we prove Theorem 1.1.
Proof of Theorem 1.1 Let F = αφ(β/α) and F̄ = ᾱφ(β̄/ᾱ) be two (α, β) -metrics.

If F and F̄ are conformally related, that is F = eσ(x)F̄ , then we have the following relations:

ᾱ = e−σ(x)α, β̄ = e−σ(x)β, āij = e−2σ(x)aij , b̄i = e−σ(x)bi,

b̄i‖j = e−σ(bi|j + bjσi − brσ
raij), (3.1)

r̄ij = e−σ(x)(rij +
1
2
σibj +

1
2
σjbi − brσ

raij), (3.2)

s̄ij = e−σ(x)(sij +
1
2
σibj − 1

2
σjbi), (3.3)

where σi := ∂σ
∂xi , σi := aijσj , and“‖”denotes the covariant derivative with respect to ᾱ.

Let F = α + β and F̄ = ᾱ + β̄ be two Randers metrics and F = eσ(x)F̄ . Then the
above relations still hold. Assume F is conformally flat, then F̄ is Minkowskian. In this
case, b̄i‖j = 0 and (3.1), (3.2), (3.3) are reduced to:

bi|j = brσ
raij − bjσi, (3.4)

rij = brσ
raij − 1

2
σibj − 1

2
σjbi, (3.5)

sij =
1
2
σjbi − 1

2
σibj . (3.6)

For any Finsler metric F , the geodesic coefficients Gi can be expressed as:

Gi =
1
4
gil{(F 2)xkylyk − (F 2)xl}. (3.7)
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In particular, for ᾱ and α, by (3.7), their geodesic coefficients Gi
ᾱ and Gi

α have the relation

Gi
ᾱ = Gi

α − σ0y
i +

1
2
α2σi, (3.8)

where σ0 := σky
k and σi := ailσl.

If F is locally dually flat, then Lemma 2.2 holds for F . Note that α is also conformally
flat since F is conformally flat, then ᾱ is Euclidean and Gi

ᾱ = 0. Combining (2.4) and (3.8)
yields

{1
3
(2θ + τβ)− σ0}yi = {1

3
(τbi − θi)− 1

2
σi}α2.

For the dimension of manifold M satisfies n ≥ 3 and α2 is not divisible in this circumstances,
we immediately have σi = 2

3
(τbi−θi), σ0 = 1

3
(2θ+τβ). Comparing the above two equations,

one easily has

θi =
1
4
τbi. (3.9)

Combining (2.2), (3.5) and (3.9) we get

(
3
2
τβ − σ0)β = (t + τ +

1
2
τb2)α2, (3.10)

where t := biσ
i.

When n ≥ 3, α2 is indivisible, then from (3.10) we have

σi =
3
2
τbi, (3.11)

t + τ +
1
2
τb2 = 0. (3.12)

Plugging (3.11) into (3.12) yields τ(1 + 2b2) = 0. Considering that 1 + 2b2 6= 0, one has
τ = 0. Then σi = 0, i.e., σ is a constant. In this case, F is Minkowskian.

In the end, we are going to prove Theorem 1.2.
Proof of Theorem 1.2 Assume that F = αφ(β/α) is an (α, β) -metric satisfying the

conditions in Theorem 1.2, α = eσ(x)ᾱ and α is conformally flat. Then ᾱ is Euclidean and
(2.5), (2.6), (2.7) in Lemma 2.3 hold. By (2.7) and (3.8) we have

(
2
3
θ − σ0)yi = (−1

2
σi − 1

3
θi)α2. (3.13)

Then by (3.13) and the fact that α2 is indivisible when n ≥ 3 again, naturally we get

θi =
3
2
σi, (3.14)

θi = −3
2
σi. (3.15)

We use aij to lower the index of (3.15) and obtain

θi = −3
2
σi. (3.16)

Comparing (3.14) with (3.16), instantly we conclude σi = 0 and θi = 0. Then σ is a constant
and obviously α is Euclidean. According to (2.5) and (2.6), we get sij = 0 and rij = 0, which
implies that β is parallel with respect to α. Therefore, F is Minkowskian.
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对偶平坦和共形平坦的(α, β)-度量

程新跃, 张 婷, 袁敏高

(重庆理工大学数学与统计学院, 重庆 400054)

摘要: 本文主要研究了对偶平坦和共形平坦的(α, β) -度量. 利用对偶平坦和共形平坦与其测地

线的关系, 得到了局部对偶平坦和共形平坦的Randers度量是Minkowskian度量的结论. 进一步, 推广到

非Randers型的情形, 我们证明了局部对偶平坦和共形平坦的非Randers型的(α, β) -度量在附加的条件下一

定是Minkowskian度量.
关键词: (α, β)度量; 对偶平坦的Finsler度量; 共形平坦的Finsler度量; Minkowskian度量
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