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Abstract: In this paper, from the relation between the sprays of two dually flat and confor-
mally flat («, 3) -metrics, we obtain that locally dually flat and conformally flat Randers metrics
are Minkowskian. Further, we extend the result to the non-Randers type and show that the locally
dually flat and conformally flat («, 5)-metrics of non-Randers type must be Minkowskian under an
extra condition.
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1 Introduction

The notion of dually flat metrics was first introduced by Amari and Nagaoka when they
studied the information geometry on Riemannian space [1, 2]. Later on, the notion of locally
dually flat Finsler metrics was introduced by Shen [3]. A Finsler metric F' = F(z,y) on an
n-dimensional manifold M is called the locally dually flat Finsler metric if at every point
there is a coordinate system (z?) in which the geodesic coefficients are in the following form
G’ = f%ginyj, where H = H(x,y) is a local scalar function on the tangent bundle TM of
M and satisfies H(x, \y) = XN3H(x,y) for all A > 0. Such a coordinate system is called an
adapted coordinate system. It is shown that a Finsler metric on an open subset U C R"
is dually flat if and only if it satisfies the following PDE (F?),k,y" — 2(F?),: = 0. In this
case, H = —%(F 2)my™. Recently, Shen, Zhou and the second author studied locally dually
flat Randers metrics F' = o+ (8 and classified locally dually flat Randers metrics F' = a + 3
with isotropic S -curvature [4]. Later, Xia characterized locally dually flat («, 3)-metrics on
an n-dimensional manifold M (n > 3) [5].

The study on conformal properties has a long history. Two Finsler metrics F and F
on a manifold M are said to be conformally related if there is a scalar function o(z) on
M such that F = @ F. A Finsler metric which is conformally related to a Minkowski

metric is called conformally flat Finsler metric. In 1989, Ichijyo and Hashiguchi defined a
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conformally invariant Finsler connection in a Finsler space with («, #)-metric and gave the
condition for a Randers space to be conformally flat based on their connection (see [6]).
Later, S. Kikuchi found a conformally invariant Finsler connection and gave a necessary
and sufficient condition for a Finsler metric to be conformally flat by a system of partial
differential equations under an extra condition (see [7]). By using Kikuchi’s conformally
invariant Finsler connection, Hojo, Matsumoto and Okubo studied conformally Berwald
Finsler spaces and its applications to («, §)-metrics (see [8]). Recently, Kang proved that
any conformally flat Randers metric of scalar flag curvature is projectively flat and classified
completely conformally flat Randers metrics of scalar flag curvature (see [9]). On the other
hand, Bacso and the second author studied the global conformal transformations on a Finsler
space (M, F). They obtain the relations between some important geometric quantities of
F' and their correspondences respectively, including Riemann curvatures, Ricci curvatures
and S-curvatures (see [10, 11]). The Weyl theorem states that the projective and conformal
properties of a Finsler metric determine the metric properties uniquely. Thus the conformal
properties of a Finsler metric deserve extra attention.

In this paper, we study and classify locally dually flat and conformally flat («, 5)-metrics.
Firstly, we can prove the following theorem.

Theorem 1.1 Let FF = o + 3 be a locally dually flat Randers metric on an n-
dimensional manifold M (n > 3). Assume that F' is conformally flat. Then it must be
Minkowskian.

Further, following Xia’s main result on locally dually flat (o, 5)-metrics in [5], we study
and characterize locally dually flat and conformally flat («, 3)-metrics of non-Randers type.
We get the following theorem.

Theorem 1.2 Let F = a¢(s), s = g, be an («a, #)-metric on an n-dimensional manifold
M (n > 3). Suppose that ¢ satisfies one of the following conditions:

(i) ¢(s) is a polynomial of s with ¢'(0) = 0;

(ii) ¢(s) is an analytic function with ¢’(0) = ¢”(0) =0

(iii) ¢'(0) #0, s(ka — k3s?)(d¢' — 5¢° — 50¢") — (¢/° + ¢¢") + krp(¢ — 5¢') # 0,
where k1, ko and k3 are constants. Then, if F'is locally dually flat with a conformally flat,

F must be Minkowskian.

2 Preliminary

Let M be an n-dimensional C'* mainfold and T'M denotes the tangent bundle of M.
A Finsler metric on M is a function F': TM — [0, 00) with the following properties:

(a) Fis C* on TM\{0};

(b) At any point x € M, F,(y) := F(x,y) is a Minkowski norm on 7, M,
we call the pair (M, F') an n-dimensional Finsler manifold.

Let (M, F) be a Finsler manifold and g;;(z,y) := 3[F*(%,y)]yiys. For any non-zero
)
Ot

where u = u' 2 € T,M, v = v

vector y = y' 5% € T, M, F induces an inner product g, on T, M as g, (u,v) := gi;(x,y)u'v’,

o)
2 e T,M.
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The geodesic 0 = o(t) of a Finsler metric F' is characterized by the following system of
2nd order ordinary differential equations
d*a'(t)
dt?
where G := 19" {[F?],ry* — [F?],1}, where (¢7) = (g;;)~". G* are called the geodesic
coefficients of F.

; d
+2G*(o(t), —o(t)) =0,
dt
By the definition, an (a, #)-metric is a Finsler metric expressed in the following form

where a = /a;;(z)y'yl is a Riemannian metric and 8 = b;(z)y’ is a 1-form with ||3,[|a <
by, © € M. It is proved (see [12]) that F' = a¢(/a) is a positive definite Finsler metric
if and only if the function ¢ = ¢(s) is a C'™ positive function on an open interval (—by, by)
satisfying

B(s) — 5¢'(5) + (b* — s%)¢"(5) >0, |s| <b< by.

In particular, when ¢ = 1+ s, the metirc F' = a¢(f/«) is just the Randers metric F' = a+ 3.
Let G* and G, denote the geodesic coefficients of F' and «, respectively. Denote

1
rij i= (bijj +bj10),  sij == §(bi|j —bjji)s

l Y ._ i ._ i j
Sij, Si = bjsjh So ‘= SiY, Too ‘= TijY Y,

A )
sj.—a

where (a%7) := (a;;) " and b;|; denote the covariant derivative of 3 with respect to a. Then
we have

Lemma 2.1 (see [12]) The geodesic coefficients of G* are related to G¥, by
G'= Gl + aQs'y + {—2Qasg + 1o }H{ UV + Oa ™y}, (2.1)
where s’ := s';37 and

O o 0O -8 ) ¢ |
656" 2[(6—s¢)+ )] 2[(6—s¢) + (2 - ?)¢")]

In order to prove our theorems, we need some lemmas about locally dually flat («, 3)-

Q=

metrics. Shen, Zhou and the second author first characterized locally dually flat Randers
metrics and obtained the following lemma.
Lemma 2.2 (see [4]) Let F' = a+ [ be a Randers metric on an n-dimensional manifold

M. Then F is locally dually flat if and only if in an adapted coordinate system, 5 and «

satisfy
2 5 2 2 2 m 2
Too = 5(9/8 — gTﬂ + [’T + g(Tb - bme )]OZ ) (22>
1
Sko = —g(‘%k - ﬂek)a (2~3)

an o = %(29 +rB)ym — %(Tbm —o™a2, (2.4)
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where 7 = 7(z) is a scalar function and 6 = ,y* is a 1-form on M and ™ := a0,

Later, Xia characterized locally dually flat («, 3) -metrics.

Lemma 2.3 (see [5]) Let FF = a¢(B/a) be an (a, 3) -metric on an n -dimensional
manifold M (n > 3). Suppose F' is not Riemannian and ¢ satisfies one of the following:

(i) ¢(s) is a polynomial of s with ¢'(0) = 0;

(ii) ¢(s) is an analytic function with ¢/(0) = ¢”(0) = 0;

(i) /(0) # 0, s(ks — kss2)(66' — s¢° — 566") — (¢ + 66") + k(6 — 5¢) # 0,
where ki, ko and k3 are constants. Then F' is locally dually flat on M if and only if o and

0 satisfy
1
s, = 5(591 — 0by), (2.5)
2
Too = 5[95 - (elbl)az]a (2.6)
Gl = %(QHyl +6'a?), (2.7)

where 0 := 0;(x)y’ is a 1-form on M and 6' := a'*0),.
3 Proof of Theorems

Now we are in the position to prove the theorems. First, we prove Theorem 1.1.
Proof of Theorem 1.1 Let F' = a¢(B/a) and F = a¢(5/a) be two (o, 3) -metrics.
If F and F are conformally related, that is F = ¢?(*) F', then we have the following relations:

a = e "@q, B=e®p, a;; = 6720@)%]" b, = e @,
biy = e “(biy; +bjoi —b.o"aij), (3.1)
ry o= e 7Oy + %Uibj + %Ujbi = bro"ag), (32)
5y = e 7 (siy+ %Uibj - %Ujbi)a (3.3)
where 0, := £%, ¢' :=a";, and “||” denotes the covariant derivative with respect to a.

Let F = a+ 3 and F = @ + 3 be two Randers metrics and F = e’@F. Then the
above relations still hold. Assume F' is conformally flat, then F is Minkowskian. In this
case, b;; = 0 and (3.1), (3.2), (3.3) are reduced to:

bi\j = bTO'T(Iij - bjO'i, (34)
1
Tij = braraij — §O'Z'bj — igjbiy (35)
1 1
Sij = 50']'[)2' — iaibj. (36)

For any Finsler metric F, the geodesic coefficients G* can be expressed as:

G = igﬂ{(ﬂ)wyk —(F?)0) (3.7)
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In particular, for @ and a, by (3.7), their geodesic coefficients G, and G?, have the relation

) . ) 1 .
G = Gl — ooy’ + 50%0", (3.8)
where ¢ := oy* and o' := a'o;.
If F is locally dually flat, then Lemma 2.2 holds for F'. Note that « is also conformally
flat since F is conformally flat, then @ is Euclidean and G% = 0. Combining (2.4) and (3.8)

yields
1 ) 1 ) ) 1 .
{5(29 +706) — ooty = {g(TbZ —6") — 50”}042.
For the dimension of manifold M satisfies n > 3 and «? is not divisible in this circumstances,

we immediately have o' = 2(7b' —6"), 0y = £(20+470). Comparing the above two equations,

one easily has
1
Combining (2.2), (3.5) and (3.9) we get
3 1
(575 —09)f=(t+T7+ 57‘1)2)042, (3.10)

where t := b;0".
When n > 3, o? is indivisible, then from (3.10) we have

g; = %Tbi, (311)
1
t+7+ §Tb2 =0. (3.12)

Plugging (3.11) into (3.12) yields 7(1 + 2b?) = 0. Considering that 1 + 2b? # 0, one has
7 =0. Then g; =0, i.e., o is a constant. In this case, F' is Minkowskian.

In the end, we are going to prove Theorem 1.2.

Proof of Theorem 1.2 Assume that F' = a¢(8/«) is an («, 3) -metric satisfying the
conditions in Theorem 1.2, o = e® @& and « is conformally flat. Then & is Euclidean and
(2.5), (2.6), (2.7) in Lemma 2.3 hold. By (2.7) and (3.8) we have

2 ‘ 1. 1.
(59 — Uo)yl = (—50'1 - 59’)042. (313)
Then by (3.13) and the fact that o? is indivisible when n > 3 again, naturally we get
9 = —gai. (3.15)
We use a;; to lower the index of (3.15) and obtain

Comparing (3.14) with (3.16), instantly we conclude o; = 0 and #; = 0. Then ¢ is a constant
and obviously « is Euclidean. According to (2.5) and (2.6), we get s;; = 0 and r;; = 0, which

implies that ( is parallel with respect to a. Therefore, F' is Minkowskian.
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