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Abstract: We consider a kernel-based online quantile regression algorithm associated with
a sequence of insensitive pinball loss functions. By iteration method and comparison theorem, we
obtain the error bound based on the more general output space.
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1 Introduction

We consider a kernel-based online quantile regression problem when the sampling pro-
cess is unbounded. Let X be an input space, ¥ = R be an output space and denote
Z = X x Y. Learning algorithm is based on samples z = {(z;,y;)}_, € ZT, T is the
sample size, which are drown independently from the Borel measure p. In previous research,
a lot of work was done when the learning scheme is involved with the least square loss
¢1(u) = u®,u € R. The corresponding target function is the regression function f, : X — Y
by

fp(x) = /depL(y),zv € X,

where p,(+) is the conditional distribution of p at each x € X. However, algorithms with the
least square will lose robustness if the distribution of the noise has heavy tail or abnormal
variance. In 1964, Huber proposed the least modulus method instead of the least square,
which weakened the noise condition. For sparsity, Vapnik [5] combined the least modulus

method with the threshold value and introduced the e-insensitive loss ¢°(u) = (Ju| —¢)4,u €
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R. Tt is a special case of the pinball loss ¢,(u) : R — R, with ¢ =0,

¢T(U)—{ (I=7)u, ifu>0,

—Tu, if u <0.

Then the approximation target is a quantile regression function f, (), which is the 7-
quantile of the conditional distribution p, at each x € X. Here a 7-quantile of p, means that
there exists a value W € R satisfying

pr{yeY y<Whz>r p({yeY:y>W}H <1-r7.

Steinwart and Christmann [1] conducted the error analysis of pinball loss under some noise
condition. Furthermore, Xiang et al. [2] investigated the learning ability of e-insensitive
pinball loss
(I=7)(u—e¢), if u>e,
Pi(u) =¢ —7(u+e), if u<—¢,
0, otherwise

in regularization schemes for sparsity and robustness.

In this paper, we shall associate pinball loss with the online algorithm in the reproducing
kernel Hilbert space Hg. Define a Mercer kernel K : X x X — R, which is continuous,
symmetric and semi-definite, H is the completion of linear span of the function set { K, =
K(z,-),x € X} with the inner product (:,-)x satisfying (K,, K,)x = K(x,y). Here we
consider the varying pinball loss ¢® (u) = ¢,, (u), where the quantile parameter 7, changes
with the learning time ¢ and converges to the quantity 7 as ¢ goes to infinity. One point of
the paper is to observe the role of 7 in the following algorithm.

Definition 1 The online quantile regression algorithm is defined by f; = 0 and

Je+1 :ft*nt{@(t))/—(ft(xt)*yt)Kmf, +>\tft}, t=12--, (1.1)

where A\, > 0 is a regularization parameter, 1, > 0 is a step size and (¢)" is the left
(one-side) derivative of ¢(*). From the formula of ¢(*), we see that the learning sequence f,

with the varying quantile can be expressed as

Fooy = (L= fe — (L= m)mde,, i fil@e) —ye >0,
t+1 = .
- (L= Xme) fe + e K o, if  fi(zy) —ye <0.

In error analysis, the parameters \;, 7, are adapted to accelerate the learning rate. The
second point of our paper is to abandon the boundness of the output value y. Following the
framework of [3], the moment hypothesis is exploited.

Moment Hypothesis There exists constants M > 1 and C' > 0 such that

/ lyl'dp, < CI'M', VI € N, z € X.
Y
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From the above, one can find that it’s a generalization of boundness assumption. The main
purpose of this paper is to state the error bound || fr4+1 — f, |, where the learning time 7'

is large enough.

2 Main Result and Error Analysis

From the quantile regression problem, we can estimate the learning performance {f;}
defined in (1.1) by the excess generalization error e(f;) — e(f,,). Here the generalization
error £(f) with a function f: X — Y and the pinball loss ¢, (u) is defined by

) = [ oe(F@) - v)dp.
z
In the following, we denote the generalization error ) (f) with the varying 7, as

CO(f) = / bra (W) (f(2) — y)dp.

The relation between the excess generalization error ¢(f) — (f, ) and the error bound
\f = forll 1y is explained by the following comparison theorem, which was given in [1].

Definition 2 Let 0 < ¢ < oo and £ > 1. Denote r = ¢&/(p + 1) > 0. We say that
p has a T-quantile of p-average type £ if there exist two positive functions w, and b, on X
such that {b,w¢"'}~" € L¥ and for any = € X and w € (0,w,(z)], there hold

px({y« for() <y < frr(2) +w}) > br(2)wt

and
px({y: for(@) —w <y < for(2)}) > br(2)*

In our analysis we shall make use of the following comparison theorem.
Lemmal Let 0 < ¢ < oo and £ > 1. Denote r = p¢/(¢ + 1) > 0. If the measure p

has a 7-quantile of p-average type &, then for any measurable function f on X, we have

1f = Forlliy, < 2171/561“”{@0}571}71||1L/gi {e(f) —e(fp) e (2.1)
For the error analysis, we need the approximate error D(A) with (p, K, 7) is defined by
. A
D) = inf {=() ~ <) + 1 HA >0, (22

A minimization fy of (2.2) is called the regularization function. Throughout the paper, we

assume that the error bound of D(\) satisfies
D(X) < DoAYV A >0 (2.3)

with the constant Dy > 0 and the index power 0 < v < 1. Now we can present our main

theorem.
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Theorem 1 Assume the measure p has a 7-quantile of ¢-average type £ and the

approximate error (2.3) holds. Take the parameters 7;, \; as the form

’I']t = nlt_a, )\t = )\1'15_6, 771,)\1 > 0

with
2 2-308+ 08y
0 — _. 2.4
<ﬂ<5_7,ﬂ<a< 5 (2.4)
Then we get
Ezl7...7zT||fT+1 - fp,THLL‘X = O(T_A), (25)

where A is given by

}>0.

_ Py a—=B 240y —30 -2«
A—mln{?, 2% 2

3 Proof of Main Theorem

We are in a position to present the key analysis in our study. We shall consider the
sample error || fry1 — forllx-

Lemma 2 Define the squence f; by (1.1). Let the parameters 7;, A; be the same form
in Theorem 1 and the error bound (2.3) holds. Then

Ezl,“' 2T ||fT+1 - f)\T ||§( S C/T_g*y (31)

where 0* = min{a — 3,24 3y — 33 — 2a} and C’ is a constant independent of T'.

Proof By induction, we assume that | fl|x < -, t € Nand 0 <7, <1, ¢ € N. From
the definition of f;, we see that
K

At

K KR
+mk =+ <

I feaillxe < (1= Xm)ll fellx +ner < (1= Aemy) < .
At T A

Denote B, = (¢M)"_(fi(x¢)—ye) Ky, +Ai fr. Then || B||x < 2 by the fact that ||(¢®) [|o < 1.
From definition (1.1), we see by inner products that

[ ferr = Pallie = Ife = Pl + 2mefx, = fo, Be)x + i || Bell (3-2)

For the second term, the reproducing property and the convexity of the loss function ¢; tell
us that

(f. = f: Bk = (8 (felwe) = ye) {n () = (@)} + el fr, — fo i) i
< ¢(t) (fa(@e) —ye) — ¢(t) (fe(we) =we) + Mlfas = fo, fk
)\t 2 )\t 2
< @Y (fa (@) = ye) — 6 (fulme) — ) + ?Hf)\tHK - 5“ftHK
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Thus, taking expectation with respect to z;, we find

A A
E.(f, = foBox < [E9(H)+ Sk = [V + SIAE]
A
< =Sl = Al
Therefore, together with the bound for B, and (3.2), we have
]EZtHftJrl - f>\tH§{ < (1 - )‘t77t)||ft - f/\tH%( + 4K:277t2' (33>

We decompose || fi — fa, llx as || ft — f,_, ||k and the drift error d; = || fx,_, — fa,||x- On one
hand,

L Ay
de < 5 (5= = DA Nx + 1A lx)

by the lemma in [4]. Noting the fact that ||fi]|x < D()‘ for each A > 0. Then d; <

dot=(0=5+%), where dy = 2841 /2DgA] /N1.  Using the elementary inequality 2ab <
Aa*b? + b*71/A with 0 < ¢ < 2,A > 0 to the case of a = | fy — fa, 1llk,b0 = diy, we
obtain

1fe = Pl < W fe = Pallie + Allfe = Frlledd + di™ /A + d3.
By the above estimats, we get

2—q
t

d
E.. || fisr — Pl < (L4 Adf — M)l fe — ok + ) +d} + 475

We take the constant A = 27;1;\1 and ¢ = %7 the restriction of the index power «, (3

implies that

A
Bl = Sl < (1= 25202 ) I e+ O, (3.4)

where § = min{2 + fy — 23 — o, 2a} and C = d3""/A + d2 + 4K>n? > 0.
Applying relation (3.4) iteratively for t =1,--- , T, we have that

T T
A —— —
Ezla'“aZTHfT-‘rl - f>\T||§( Z H < M ﬁ) t 9~ (35)

Applying the following elementary inequality [4] with 0 < a; <1, ¢,as > 0 and t € N,

t—1 t (14a2)/(14a1)

Z Z 201 taz 1+ as
F—az s —ay a1 —az
! eXp{ ¢ J } = { c (ec(l — 2a1—1) t

i=1 j=i+1

to the case of s =a+ 8 <1, a2 =60 and c = ’71’\1 , we get the desired result (3.1).
Proof of Theorem 1 By the decomposmon in [6],

e(fri1) —e(for) < e(frir) —e(far) + D(Ar).
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Since ¢ is uniformly continuous, then

le(fre1) —e(fne)l < I frv1 = Farlloo < 1 — frzll &

The above bound together with the comparison theorem (2.1) and Lemma 2 give our con-
clusion (2.5).
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