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Abstract: In this paper, we study the upper bound for the the r-strong edge chromatic num-

ber of regular graph. By probability method, we prove that if 3 ≤ ∆ ≤ 730, then χ′s(G, 2) ≤ 2∆+1

by the general local lemma, which extends some corresponding results in [11, 12].
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1 Introduction

Graph coloring is one of the chief topics in graph research. The graph coloring was
applied to chemistry, biology, VLSI, etc., see [1, 2], It is well known to compute the chromatic
number of graphs is NP-Hard in graphs theory. In the past, the people had some results
about it by combination methods, see [3, 4, 5, 6, 7]. In 1974, Edrös proved r(k, k) ≥ 2

k
2

by probability. At ICM2002, Noga Alon had a report about the method and challenge
of Discrete mathematics. The viewpoint that the problem of graph coloring studied by
probability drew the field of graph attention. For instance, some conclusions was gotten by
probability methods. In [8], Alon proved that α′(G) ≤ ∆+2 for any graph whose girth is at
least 2000∆ log ∆, where ∆ is maximum degree of G. In [9], Rahul Muthu et al. improved
the result of [8]. In [10], Hamed Hatami proved that if ∆ > 1020, then χas(G) < ∆ + 300,
where ∆(G) is maximum degree of G. In 2006, Zhang Zhongfu and Akbaria presented the
concept of the r-strong edge coloring independently, see [11, 12]. When r = 2, the r-strong
edge-chromatic number is denoted by χ′s(G, 2). Let ∆ be the maximum degree of G. In
this paper, we study the upper bound for the the r-strong edge chromatic number of regular
graph by probability method, prove that if 3 ≤ ∆ ≤ 730, then χ′s(G, 2) ≤ 2∆ + 1 by
the general local lemma. All the graphs G = G(V, E) discussed in this paper are finite,
undirected, simple and connected.
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2 Main Results

Definition 2.1 A proper edge coloring of a graph G is a map f : E(G) → C, where
C is a set of colors such that no two edges with the same colors are incident with the same
vertex, see[3].

Definition 2.2 For a graph G(V, E), if a proper k-edge coloring f is satisfied with
S(u) 6= S(v) for uv ∈ E(G), where S(u) = {f(uv)|uv ∈ E}, then f is called k-adjacent
Vertex-distinguishing edge coloring of G, is abbreviated k-ASEC, and

χ′as(G) = min{k|k−ASEC of G}

is called the adjacent Vertex-distinguishing edge chromatic number of G, see [4].
Definition 2.3 For any u, v ∈ V (G), d(u, v) denotes the distance between u and v

and N(v) denotes the set of all vertices adjacent to vertex v. A proper edge coloring of
a graph G is called an r-strong edge coloring if for any two distinct vertices u, v ∈ V (G)
with d(u, v) ≤ r, we have S(u) 6= S(v). The r-strong edge coloring number χ′s(G, r) is the
minimum number of colors required for an r-strong edge coloring of the graph G, see [11,
12].

Obviously, χ′s(G, 1) = χ′aswhen r = 1, χ′s(G, r) = χ′s when r ≥ Diam(G), where
diam(G) is the diameter of the graph.

Definition 2.4 Let A1, A2, . . . , An be events in an arbitrary probability space. A
directed graph D = (V, E) on the set of vertices V = {1, 2, · · · , n} is called a dependency
digraph for the events A1, A2, · · · , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually
independent of all the events {Aj : (i, j)∈E}, see [13, 14].

Lemma 2.2 (the general local lemma) Consider a set ε = {A1, A2, . . . , An} of (typically
bad) events such that each Ai is mutually independent of ε− (Di ∪Ai) for some Di ⊆ ε. If
there exist x1, x2, . . . , xn ∈ [0, 1] such that for each 1 ≤ i ≤ n,

Pr(Ai) ≤ xi

∏
Aj∈Di

(1− xj),

then the probability that none of the events in ε occurs is at least

n∏
i=1

(1− xi) > 0,

see [13, 14]
Theorem 2.3 If G(V, E) has 2 ≤ ∆ ≤ 730, then χ′s(G, 2) ≤ 2∆ + 1.
Proof By Vizing theorem, it is possible to color all edges of G by ∆+1 colors properly,

so we have proper edge coloring f0. And then each of edges in G is recolored randomly and
independently with an equal probability 1

16(∆)
3
2

to one of ∆ new colors, name this edge

coloring of G as g. We will use Lemma 1 to show that a positive probability, g is 2-strong
edge coloring. In order to show that, the following conditions should be satisfied:
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[1] The coloring is proper-no pair of adjacent edges are colored with the same color;

[2] The coloring is adjacent-vertex-distinguishing-no pair of adjacent vertices meet the
same color set;

[3] No pair of vertices whose distance is 2 meet the same color set.

Step 1 The following bad events are defined in order to satisfy above:

(1) For each pair of adjacent edges e, f , let Ae,f be the event that both e and f are
colored with the same color;

(2) For each edge e = uw, such that deg(u) = deg(w), let Be be the set of all edges
which are connected u or w, then EBe

be the event that the edges which are adjacent to u

and w are colored properly, and S(u) = S(w);

(3) For each path whose length is 2 , Puv = uewfv, 令such that deg(u) =deg(v), let
Puv be the set of all edges which are incident with u or v, then EPuv

is the event that the
edgs which are incident with u and v are colored properly, and S(u) = S(v).

It remains to show that with positive probability none of these events happen, then G

has a 2 -strong edge-coloring. To prove this we apply the local lemma. Let us construct
dependency graph H whose nodes are all the events of two nodes EX and EY (where each
of X and Y is either a pair of incident edges, or the set of all edges that are adjacent to an
edge together with that edge itself, or the set of all edges incident to two vertices u and v

which distance is 2) are adjacent if and only if X and Y contain at least one common edge.
Since the occurrence of each event EX depends only on the edges of X, H is dependency
graph for our events. In order to apply the general local lemma, we need estimates for the
probability of each event and the number of nodes of each type in H which are adjacent to
any give node. These estimates are given in the two steps below.

Step 2 Estimate the probability of each event: If Ae,f occurs, then e, f in Ae,f are
recolored with the same color. So

Pr(Ae,f ) =
(

∆
1

)
(

1
16∆ 3

2
)2 =

1
162∆2

,

Pr(EPuv
) = [

(
∆
1

)
(

1
16∆ 3

2
)∆ +

(
∆
2

)
(

1
2 · 16∆ 3

2
)∆ + · · ·+

(
∆

∆− 1

)
(

1
(∆− 1)16∆ 3

2
)∆]2

≤ [
(

∆
1

)
+

(
∆
2

)
+ · · ·+

(
∆

∆− 1

)
]2[(

1
16∆ 3

2
)∆]2

≤ [2∆(
1

16∆ 3
2
)∆]2 =

1
(64∆3)∆

.

Let e = uv, deg(u) = deg(v) = ∆, if EBe
occurs, then edges in Be are colored properly

and S(u) = S(v), namely, S(u)−{f(e)} = S(v)−{f(e)} = S. Assume S is a fixed set which
has i member of the new colors and ∆ − i members of the old colors. With probability
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(1− 1
8
∆) preserves its previous color. This event happens with the probability of

[i!(1− 1
8
∆)∆−i(

1
16∆ 3

2
)i]2 ≤ [ii exp(

8
∆

(i−∆))(
1

16∆ 3
2
)i]2

= i2i exp(
16
∆

(i)) exp(
16
∆

(−∆))(
1

16∆ 3
2
)2i = (

i2 exp( 16
∆

)
162∆2

)i exp(−16),

P r(EBe
) ≤

∆∑
i=0

(
∆
i

)(
∆
i

)
(
i2 exp( 16

∆
)

162∆2
)i exp(−16)

≤
∆∑

i=0

(
e∆
i

e∆
i

i2 exp( 16
∆

)
162∆2

)i exp(−16) ≤ exp(−16).

Step 3 Estimate the dependency events number, in the following table:

Ae,f EBe
EPuv

Ae,f 4∆− 5 3∆− 2 ∆(∆− 1) + 2(∆− 1)2

EBe
(2∆− 1)(2∆− 2) (2∆− 2)∆ + 1 (2∆− 1)∆(∆− 1)

EPuv
2∆(2∆− 1) + 1 + 2(∆− 2) 2∆2 + ∆− 2 2(∆− 1)3 + ∆(∆− 1)

For the dependency events numbers in the table, we have some explanations. For each
event Ae,f of Type 〈1〉, the corresponding vertex of Ae,f in H is adjacent to at most 4∆− 5
events of type 〈1〉. This is because that each edge e and f is adjacent to at most 2∆ − 2
(except for e itself) edge, there are two edge e and f in event of type 〈1〉, e, f are adjacent
to at most 2 · (2∆ − 2) = 4∆ − 4, the edge adjacent to e (or f) contains f (or e), the set
{e, f} is compute twice, so the result is 2 · (2∆−2)−1 = 4∆−5. For each event Ae,f of type
〈2〉, the corresponding vertex of Ae,f in H is adjacent to at most 3∆− 2 events of type 〈2〉.
This is because that each vertex is adjacent to at most ∆ vertices, there are three vertices
in type 〈2〉, except the common vertex u of e and f , another terminate vertex u1 of e and
another terminate vertex u2 of f are compute twice, so the result is 3 ·∆− 2 = 3∆− 2. The
others can be explained similarly.

Step 4 Find the real constant xi(0 ≤ xi ≤ 1) for applying Lemma 3. Let 2
162∆2 , 1

8∆2 , 2
(64∆3)∆

be the constants associated with events of types (1), (2), (3).
Step 5 Conclude that with positive probability no events of type (1), (2), (3), provided

that
1

162∆2
≤ 2

162∆2
(1− 2

162∆2
)4∆−5 (1− 2

(64∆3)∆
)∆(∆−1)+2(∆−1)2 (1− 1

8∆2
)3∆−2, (2.1)

exp(−16) ≤ 1
8∆2

(1− 2
162∆2

)(2∆−1)(2∆−2) (1− 1
8∆2

)(2∆−2)∆+1 (1− 2
(64∆3)∆

)(2∆−1)∆(∆−1),

(2.2)
1

(64∆3)∆
≤ 2

(64∆3)∆
(1− 2

162∆2
)2∆(2∆−1)+1+2(∆−2) (1− 1

8∆2
)2∆

2+∆−2

(1− 2
(64∆3)∆

)2(∆−1)3+∆(∆−1). (2.3)
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Now since (1− 1
z
)z ≥ 1

4
, to prove (2.1), it suffices to prove the following inequality:

1
2
≤ (

1
2
)(4∆−5)+ 3∆−2

4∆2 +
4[∆(∆−1)+2(∆−1)2]

(64∆3)∆ . (2.1∗)
In order to proof (2.1∗), it is only to prove

1 ≥ (4∆− 5)
64∆2

+
3∆− 2
4∆2

+
4(∆− 1)(3∆− 2)

(64∆3)∆
, (2.1 ∗ ∗)

when ∆ > 2, inequality (2.1 ∗ ∗) is true, thus the inequality is hold (2.1), in order to prove
(2.2), it is only need to prove

exp(−16) ≤ exp(− ln(8∆2)) exp(
−4(2∆− 1)(2∆− 2)

162∆2
)

exp(
−2[(2∆− 2)∆ + 1]

8∆2
) exp(

−4(2∆− 1)∆(∆− 1)
(64∆3)∆

),
(2.2∗)

in order to prove (2∗), it is only need to prove

−16 ≤ − ln(8∆2)− −4(2∆− 1)(2∆− 2)
162∆2

− −2[(2∆− 2)∆ + 1]
8∆2

− −4(2∆− 1)∆(∆− 1)
(64∆3)∆

,

(2.2 ∗ ∗)
when ∆ ≤ 730, inequality (2.2 ∗ ∗) is true, thus inequality (2.2) is hold.

Now since (1− 1
z
)z ≥ 1

4
, to prove (2.3), it suffices to prove the following inequality.

In order to prove (2.3), it is only need to prove

1
2
≤ (

1
2
)

(4∆2−3)
162∆2 + 2∆2+∆−2

4∆2 +
4(∆−1)(2∆2−3∆+2)

(64∆3)∆ . (2.3∗)

In order to prove (2.3∗), it is only need to prove

1 ≥ (4∆2 − 3)
162∆2

+
2∆2 + ∆− 2

4∆2
+

4(∆− 1)(2∆2 − 3∆ + 2)
(64∆3)∆

, (2.3 ∗ ∗)

when ∆ ≥ 2, inequality (2.3 ∗ ∗)is true, thus inequality (2.3) is hold.
Above all, G has 2∆ + 1− χ′s(G, 2). This complete the proof
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图的2-强边色数的上界

田京京1 ,聂玉峰1, 王力工1, 常 建2

(1. 西北工业大学应用数学系, 陕西西安 710129)
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摘要: 本文研究了图的2-强边色数的上界. 利用图染色的概率方法中的一般局部引理, 得到了3 ≤
∆ ≤ 730时, χ′s(G, 2) ≤ 2∆ + 1, 推广了参考文献[11, 12]中的结果

关键词: 2-强边染色; 2-强边色数; 一般局部引理.
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