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THE CLASSIFICATION OF GRADIENT RICCI
ALMOST SOLITONS

ZENG Fan-qi, MA Bing-qing
(Department of Mathematics, Henan Normal University, Xinxiang 453007, Chma)

Abstract: We study the classification of a gradient Ricci almost soliton. Using similar
methods as in [11] for n > 5, we obtain that the Weyl curvature tensor is harmonic or Einstein
under the assumption that the Bach tensor is flat.
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1 Introduction

Let (M™, g) be an n-dimensional Riemannian manifold. If there exist two smooth func-
tions f, A on (M™, g) such that

Rij + fij = Agij» (1.1)

then (M™, g) is called a gradient Ricci almost soliton which was introduced by Pigola, Rigoli,
Rimoldi and Setti in [1], where R;; denotes the Ricci curvature of (M™, g). Clearly, the above
gradient Ricci almost solitons generalize the concept of gradient Ricci solitons which play a
very important role in Hamilton’s Ricci flow as it corresponds to the self-similar solutions
and often arises as singularity models, for a survey in this subject we refer to the work due
to Cao in [2]. When A = pR + p in (1.1) with p, i two real constants, (M", g) is called the
gradient p-Einstein soliton (see [3]) which is a special case of (m, p)-quasi-Einstein manifolds
defined in [4], where R is the scalar curvature of (M",g). For the recent research on this
direction, see [5-10] and the references therein.

In this paper, using a similar idea used in [11-13], we derive some formulas, and establish
a link between the Cotton tensor C;j; and the 3-tensor Dy, that is, Cij, = Djjp — Wijklfly
where W is the Weyl curvature tensor. By virtue of this relationship we give some

classifications of gradient Ricci almost solitons.

2 Preliminaries
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We use moving frames in all calculations and adopt the following index convention:
1<4,5,k,--- <n, 2<a,bc,---<n

throughout this paper.
Lemma 2.1 Let (M",g) be a gradient Ricci almost soliton satisfying (1.1). Then we

have
Af =n\— R, (2.1)
(IVF1?)i = 2\ fi — 2R;; f7, (2.2)
%R,i =(n—1\i+ R, f7, (2.3)

where f7 = g7k f;..
Proof Equations (2.1) and (2.2) are direct consequences of (1.1) and the fact

(IVF1?)i = 2fi fij = 2fi(Mgij — Rij) = 20 fi — 2Ry f;.

By the second Bianchi identity, we get

1
oRi = Rij; =(Agij = fij).g
=X — fijj
=Xi — (Af)i — Rij fj,

where we used the Ricci identity fi;; = (Af): + Rijf;. Insertting (2.1) and (2.2) into the
above equation gives (2.3). We complete the proof of Lemma 2.1.
For n > 3, the Weyl curvature tensor and the Cotton tensor are defined by

1
Wit =Rijr — m(Aikgjl — Augjr + Ajgik — Ajkga)

1
=Rijm — m(Rikgjl — Rugjr + Rjgix — Rjrga) (2.4)

+#( O — O:10s )
(n_ 1)(n _ 2) glkg]l gzlgjk

and
Ciji = Akji — Akij (2.5)
where A;; is called the Schouten tensor given by

R

A =Ry = 50

Gij-

From the definition of the Cotton tensor, we have that C;;;, is skew-symmetric in the

first two indices and trace-free in any two indices:

Cijk = —Cjik, 97 Cijr. = " Cijr, = 0.
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The divergence of the Weyl curvature tensor is related to the Cotton tensor by

n—3
n—2

Ciji = Wijn,"- (2.6)

For n > 4, the Bach tensor is defined by

1 1
B;j = Wika,lk + 1

- pkl
— —5 WarnR". (2.7)

Using (2.6), we may extend the definition of Bach tensor in dimensions including 3 as follows:

1
Bij = m(ckz‘j,k + WigeR¥). (2.8)

As in [11], see also [8, 12, 13|, we define the following 3-tensor D by

1
——————(Rugjx ' — Rjugirf")
(n—1)(n—2) (2.9)

(grj fi = grifs)-

Dij :$<Rkjfi — Ry f;) +
R
(n—1)(n—2)

Then we have that D,j;, is skew-symmetric in the first two indices and trace-free in any two
indices:
Dijk = *Djz'lm gijDijk = gikDijk =0.

Lemma 2.2 Let (M™,g) be a gradient Ricci almost soliton satisfying (1.1). Then the

Cotton tensor, D-tensor and the Weyl curvature tensor are related by
Cijr = Dijr, — Wi f'. (2.10)
proof Using formula (1.1), we have

Rkj,i - Rki,j :(/\gkj - fkj)z - ()\gk:i - fki),j
=Xigkj — NjGri + frij — frji
=Xigkj — NGk — Rijuf'.

Therefore,
Cijr =Akji — Arij

=Nigkj — Njgri — Rijuif'
1
- W(R,igﬂc - R,j.qik)
1

= — H(Rilgkjfl — Rjgrifi) — Riju f!

!
=Dijr — Wiju f',

where the third equality used equation (2.3). It completes the proof of Lemma 2.2.
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The next lemma links the norm of D;;; to the geometry of the level surfaces of the
function f on (M™,g). The proof can be found in [15, Proposition 2.3] and [11, Proposition
3.1].

Lemma 2.3 Let (M™, g) be a Riemannian manifold and let ¥. = {z|f(z) = ¢} be
the level surface with respect to regular value ¢ of f. Choose local orthonormal frame
{e1,€2, -+ ,e,} on (M", g) such that e; = Vf/|Vf| and {ez,--- ,e,} tangent to X.. Denote
by |D;jk| the norm of the 3-tensor D, and by g, the induced metric on ¥.. We have

2|V 2 ( 2)

(n—1)(n—2)?
where R;; = Ric(e;, €;) are the components of the Ricci curvature on (M", g), R is the scalar
curvature of (M™,g). Note that the indices 2 < a,b,¢,--- < n, then R, denotes the Ricci
tensor of (M", g) restricted to the tangent space of ¥, and R = R — Ri1.

R— Ry

-9 2 — D |Rup —
(TL )ZRla+(n )Rb n—1

a=2

|Dyji|* =

YJab

3 Some Results

With the help of Lemma 2.3, we can obtain the following result.

Proposition 3.1 Let (M",g) be a gradient Ricci almost soliton satisfying (1.1) with
D;jr, = 0. Let . = {z|f(x) = ¢} be the level surface with respect to regular value ¢ of f.
Then for any local orthonormal frame {ey,eq, -+ ,e,} with e; = Vf/|Vf| and {es, -+ ,e,}
tangent to ., we have

(1) |Vf], Af, X and the scalar curvature R of (M™, g) are all constant on X,;

(2) Ry, =0 and e; = Vf/|Vf| is an eigenvector of the Ricci operator;

(3) the second fundamental form he;, of . is of the form hap = —2=gau;

(4) the mean curvature H = %
(5) on X, the Ricci tensor of (M™, g) either has a unique eigenvalue v, or has two distinct

is constant on X.;

eigenvalues v and o of multiplicity 1 and n — 1 respectively. In either case, e; = Vf/|V f| is
an eigenvector of v. Moreover, both v and ¢ are constant on X..

Proof Under this chosen orthonormal frame, we have f; = |[Vf| and fo = f3 = -+ =
fn =0. When D;;;, = 0, we have from Lemma 2.3 that

Rla:O (31)
and R_R
— i1

ab — ———————UGaub- .2

Rap = ——9a (32)

Therefore, we obtain from (2.2) and (2.3)
(IVfP)a=0, Va,
which show that |V f| is constant on ¥.. We derive form (2.2) and (2.3)

Ry =2(n—1)\+2)f; — (V)
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which means that
dR = 2(n — 1)d\ + 2Xdf — d(|V f]?). (3.3)

Taking exterior differential of the both sides of (3.3), we obtain dA A df = 0. Therefore,

according to the well-known Cartan’s lemma, there exists a smooth function ¢ such that
d\ = ¢ df,

which shows that A is also constant on X.. Hence, (1) is proved.
In particular, (2) can be obtained from (3.1) directly.
By the definition of h,,, we have

Vf 1 1 R— Ry
hap = (Ve <7>, :70,:7()\_7)11; 3.4
= Vel ) = g T e\ e e o
where the last equality used (3.2). Hence,

(TL — 1))\ — (R — R11)
IV /]

H=g"ha = (3.5)

and (3) is proved.
By the Codazzi equation

= b
Ricap = vachbc - vb Chac,

we get from tracing over b and ¢

—9
Ria=VEH - Vih, =""2q,
n—1

and (4) follows form Ry, = 0.

Since H is constant on X., we have from (3.5)
Rll,a = 0.
Applying
Ri1,4 = €4(R11) —2R(V.,e1,€1) = €q(R11) — 2hapR1p = €4 (R11)

yields e,(R11) = 0, which shows that v = Ry; is constant on X.. By (3.2) we know that
for distinct a, the eigenvalues of R,, are the same. Hence, we have the eigenvalue o is also
constant. We obtain (5) and complete the proof of Proposition 3.1.

Theorem 3.2 Let (M",g) be a gradient Ricci almost soliton satisfying (1.1). Then

n—3
(TL — 2)BU = Dkij7k + n— 2ijifk. (36)
If (M™, g) is compact, then for p > 0,
o 1
[ Busisias, =5 [ #iDPas, (3.7)
M'n, Mﬂ,
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In particular, if B;; = 0, we obtain from (3.7) the 3-tensor D;;; = 0.
Proof By virtue of (2.8) and (2.10), we have
(n —2)Bij =Chijx + Wi Ri
=(Drij — Wiijif1) & + Winji R
=Drije — Whiji,e i — Whiiji fer + Wirji Ria
=Dyijr — Whijir fi

n—3
=Drijr + mcljifl-

If (M™, g) is compact, we obtain using integrating by parts

(n — 2) / prijfifj dUg

M’IL
n—3
= / f? (Dkij,k + n_Zijz‘fk> fifjdvg
M’Vl
:/prkij,kfifjdvg
M’n.
:—/prmjfifkjdvg
M’V'L
n—2

== /fp|D|2dvg.
Mn

Therefore, we obtain (3.7) and complete the proof of Theorem 3.2.

Proposition 3.3 Let (M™,g) be a compact gradient Ricci almost soliton satisfying
(1.1) with B;; = 0. If n > 4, then the Cotton tensor C;;; = 0 at all points where V f # 0.
Proof From Lemma 2.2 and Theorem 3.2, we conclude that C;;;, = —Wjjii fi. Under

the orthonormal frame as in Lemma 2.3, we have
Cijk = —Wiji |V f].

In particular, we obtain from (3.8)

Cijl = 0.
From Theorem 3.2, we get
n—3
—CYj; =0.
n — 2 1j |vf‘
Hence, If n > 4, then
Crji = Cj1i = 0.

(3.8)

(3.10)

Moreover, from (3.8) we also have that Cyp. = —Wape1|V f|. Using (2.4) and Proposition

3.1, we obtain
Wabcl = Rabcl = Rlcba = Vi hac - vfa hbc =0.
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Therefore, we obtain
Cape = 0. (3.11)

Combining (3.9) with (3.10) and (3.11), we arrive at the conclusion of Proposition 3.3.

Proposition 3.4 Let (M*, g) be a compact gradient Ricci almost soliton satisfying
(1.1). If B;; = 0, then the Weyl curvature tensor W;;i; = 0 at all points where V f # 0.

Proof Since B;; = 0, we have D,;;, = C;x = 0. Hence, Lemma 2.2 shows that
Wijkr = 0 for 1 <4,5,k < 4. It remains to show that Wypeq = 0 for 2 < a,b,c,d < 4. This
essentially reduces to show the Weyl curvature tensor is equal to zero in 3 dimensions (see
[14, p.276-277] or [11, p.13]). Therefore, we have Wz = 0.

Theorem 3.5 Let (M™,g) be a compact gradient Ricci almost soliton satisfying (1.1)
with B;; = 0.

(1) If n > 5, then the Weyl curvature tensor is harmonic or Einstein.

(2) If n = 4 and it has positive sectional curvature, then (M?, g) is rotational symmetric
or Einstein.

Proof (1) If (M™,g) is not Einstein, then from the set {p|V f(p) = 0} is of measure
zero we have Cj;, = 0 on Q = {z|V f # 0} everywhere according to Proposition 3.3 and the
continuity. Hence, the Weyl curvature tensor is harmonic.

(2) Under the assumption of Theorem 3.1, Proposition 3.4 shows that (M*,g) has
vanishing Weyl curvature tensor at all points where V f # 0. So if the set Q = {z|V f # 0} is
dense, by continuity of the Weyl curvature tensor we have W, = 0 everywhere and (M*, g)
is locally conformally flat. Recall that in any neighborhood of the level surface 3., where

Vf # 0, we can express the metric ds? by

1

ds® = ——
IVfI?

(f,0)df* + gan(f,0)d0°6", (3.12)

where 0 = (62,---,0") denote the intrinsic coordinates on Y. Since (M, g) has vanishing

Weyl curvature tensor and positive sectional curvature, the Gauss equation

R>¢

abc

d — Rabcd + haahbb - hzb

and Proposition 3.1 tells us that (X, g.) is a space form with constant positive sectional

curvature and W—lfl(f, 0) = ﬁ(f) Hence on Q we have
1
ds* = df? + p* L 3.13
IVf|2(f) f* +¢°(f)9.. (3.13)

where ggn—1 denotes the standard metric on unit sphere S"~'. We conclude that (M?, g) is
rotationally symmetric.
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