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Abstract: We study the classification of a gradient Ricci almost soliton. Using similar

methods as in [11] for n ≥ 5, we obtain that the Weyl curvature tensor is harmonic or Einstein

under the assumption that the Bach tensor is flat.
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1 Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold. If there exist two smooth func-
tions f , λ on (Mn, g) such that

Rij + fij = λgij , (1.1)

then (Mn, g) is called a gradient Ricci almost soliton which was introduced by Pigola, Rigoli,
Rimoldi and Setti in [1], where Rij denotes the Ricci curvature of (Mn, g). Clearly, the above
gradient Ricci almost solitons generalize the concept of gradient Ricci solitons which play a
very important role in Hamilton’s Ricci flow as it corresponds to the self-similar solutions
and often arises as singularity models, for a survey in this subject we refer to the work due
to Cao in [2]. When λ = ρR + µ in (1.1) with ρ, µ two real constants, (Mn, g) is called the
gradient ρ-Einstein soliton (see [3]) which is a special case of (m, ρ)-quasi-Einstein manifolds
defined in [4], where R is the scalar curvature of (Mn, g). For the recent research on this
direction, see [5–10] and the references therein.

In this paper, using a similar idea used in [11–13], we derive some formulas, and establish
a link between the Cotton tensor Cijk and the 3-tensor Dijk, that is, Cijk = Dijk −Wijklf

l,
where Wijkl is the Weyl curvature tensor. By virtue of this relationship we give some
classifications of gradient Ricci almost solitons.

2 Preliminaries
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We use moving frames in all calculations and adopt the following index convention:

1 ≤ i, j, k, · · · ≤ n, 2 ≤ a, b, c, · · · ≤ n

throughout this paper.
Lemma 2.1 Let (Mn, g) be a gradient Ricci almost soliton satisfying (1.1). Then we

have

∆f = nλ−R, (2.1)

(|∇f |2)i = 2λfi − 2Rijf
j , (2.2)

1
2
R,i = (n− 1)λi + Rijf

j , (2.3)

where f j = gjkfk.
Proof Equations (2.1) and (2.2) are direct consequences of (1.1) and the fact

(|∇f |2)i = 2fjfij = 2fj(λgij −Rij) = 2λfi − 2Rijfj .

By the second Bianchi identity, we get

1
2
R,i = Rij,j =(λgij − fij),j

=λi − fijj

=λi − (∆f)i −Rijfj ,

where we used the Ricci identity fijj = (∆f)i + Rijfj . Insertting (2.1) and (2.2) into the
above equation gives (2.3). We complete the proof of Lemma 2.1.

For n ≥ 3, the Weyl curvature tensor and the Cotton tensor are defined by

Wijkl =Rijkl − 1
n− 2

(Aikgjl −Ailgjk + Ajlgik −Ajkgil)

=Rijkl − 1
n− 2

(Rikgjl −Rilgjk + Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

(2.4)

and
Cijk = Akj,i −Aki,j , (2.5)

where Aij is called the Schouten tensor given by

Aij = Rij − R

2(n− 1)
gij .

From the definition of the Cotton tensor, we have that Cijk is skew-symmetric in the
first two indices and trace-free in any two indices:

Cijk = −Cjik, gijCijk = gikCijk = 0.
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The divergence of the Weyl curvature tensor is related to the Cotton tensor by

−n− 3
n− 2

Cijk = Wijkl,
l. (2.6)

For n ≥ 4, the Bach tensor is defined by

Bij =
1

n− 3
Wikjl,

lk +
1

n− 2
WikjlR

kl. (2.7)

Using (2.6), we may extend the definition of Bach tensor in dimensions including 3 as follows:

Bij =
1

n− 2
(Ckij,

k + WikjlR
kl). (2.8)

As in [11], see also [8, 12, 13], we define the following 3-tensor D by

Dijk =
1

n− 2
(Rkjfi −Rkifj) +

1
(n− 1)(n− 2)

(Rilgjkf
l −Rjlgikf

l)

− R

(n− 1)(n− 2)
(gkjfi − gkifj).

(2.9)

Then we have that Dijk is skew-symmetric in the first two indices and trace-free in any two
indices:

Dijk = −Djik, gijDijk = gikDijk = 0.

Lemma 2.2 Let (Mn, g) be a gradient Ricci almost soliton satisfying (1.1). Then the
Cotton tensor, D-tensor and the Weyl curvature tensor are related by

Cijk = Dijk −Wijklf
l. (2.10)

proof Using formula (1.1), we have

Rkj,i −Rki,j =(λgkj − fkj),i − (λgki − fki),j

=λigkj − λjgki + fkij − fkji

=λigkj − λjgki −Rijklf
l.

Therefore,
Cijk =Akj,i −Aki,j

=λigkj − λjgki −Rijklf
l

− 1
2(n− 1)

(R,igjk −R,jgik)

=− 1
(n− 1)

(Rilgkjfl −Rjlgkifl)−Rijklf
l

=Dijk −Wijklf
l,

where the third equality used equation (2.3). It completes the proof of Lemma 2.2.
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The next lemma links the norm of Dijk to the geometry of the level surfaces of the
function f on (Mn, g). The proof can be found in [15, Proposition 2.3] and [11, Proposition
3.1].

Lemma 2.3 Let (Mn, g) be a Riemannian manifold and let Σc = {x|f(x) = c} be
the level surface with respect to regular value c of f . Choose local orthonormal frame
{e1, e2, · · · , en} on (Mn, g) such that e1 = ∇f/|∇f | and {e2, · · · , en} tangent to Σc. Denote
by |Dijk| the norm of the 3-tensor D, and by gab the induced metric on Σc. We have

|Dijk|2 =
2|∇f |2

(n− 1)(n− 2)2

(
(n− 2)

n∑
a=2

R2
1a + (n− 1)

∣∣∣Rab − R−R11

n− 1
gab

∣∣∣
2
)

,

where Rij = Ric(ei, ej) are the components of the Ricci curvature on (Mn, g), R is the scalar
curvature of (Mn, g). Note that the indices 2 ≤ a, b, c, · · · ≤ n, then Rab denotes the Ricci
tensor of (Mn, g) restricted to the tangent space of Σc and gabRab = R−R11.

3 Some Results

With the help of Lemma 2.3, we can obtain the following result.
Proposition 3.1 Let (Mn, g) be a gradient Ricci almost soliton satisfying (1.1) with

Dijk = 0. Let Σc = {x|f(x) = c} be the level surface with respect to regular value c of f .
Then for any local orthonormal frame {e1, e2, · · · , en} with e1 = ∇f/|∇f | and {e2, · · · , en}
tangent to Σc, we have

(1) |∇f |, ∆f , λ and the scalar curvature R of (Mn, g) are all constant on Σc;
(2) R1a = 0 and e1 = ∇f/|∇f | is an eigenvector of the Ricci operator;
(3) the second fundamental form hab of Σc is of the form hab = H

n−1
gab;

(4) the mean curvature H = (n−1)λ−(R−R11)
|∇f | is constant on Σc;

(5) on Σc the Ricci tensor of (Mn, g) either has a unique eigenvalue ν, or has two distinct
eigenvalues ν and σ of multiplicity 1 and n− 1 respectively. In either case, e1 = ∇f/|∇f | is
an eigenvector of ν. Moreover, both ν and σ are constant on Σc.

Proof Under this chosen orthonormal frame, we have f1 = |∇f | and f2 = f3 = · · · =
fn = 0. When Dijk = 0, we have from Lemma 2.3 that

R1a = 0 (3.1)

and
Rab =

R−R11

n− 1
gab. (3.2)

Therefore, we obtain from (2.2) and (2.3)

(|∇f |2)a = 0, ∀ a,

which show that |∇f | is constant on Σc. We derive form (2.2) and (2.3)

R,i = 2(n− 1)λi + 2λfi − (|∇f |2)i
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which means that
dR = 2(n− 1)dλ + 2λdf − d(|∇f |2). (3.3)

Taking exterior differential of the both sides of (3.3), we obtain dλ ∧ df = 0. Therefore,
according to the well-known Cartan’s lemma, there exists a smooth function ϕ such that

dλ = ϕdf,

which shows that λ is also constant on Σc. Hence, (1) is proved.
In particular, (2) can be obtained from (3.1) directly.
By the definition of hab, we have

hab = 〈∇ea

( ∇f

|∇f |
)
, eb〉 =

1
|∇f |fab =

1
|∇f |

(
λ− R−R11

n− 1

)
gab, (3.4)

where the last equality used (3.2). Hence,

H = gabhab =
(n− 1)λ− (R−R11)

|∇f | (3.5)

and (3) is proved.
By the Codazzi equation

R1cab = ∇Σc
a hbc −∇Σc

b hac,

we get from tracing over b and c

R1a = ∇Σc
a H −∇Σc

b hab =
n− 2
n− 1

H,a

and (4) follows form R1a = 0.
Since H is constant on Σc, we have from (3.5)

R11,a = 0.

Applying
R11,a = ea(R11)− 2R(∇ea

e1, e1) = ea(R11)− 2habR1b = ea(R11)

yields ea(R11) = 0, which shows that ν = R11 is constant on Σc. By (3.2) we know that
for distinct a, the eigenvalues of Raa are the same. Hence, we have the eigenvalue σ is also
constant. We obtain (5) and complete the proof of Proposition 3.1.

Theorem 3.2 Let (Mn, g) be a gradient Ricci almost soliton satisfying (1.1). Then

(n− 2)Bij = Dkij,
k +

n− 3
n− 2

Ckjif
k. (3.6)

If (Mn, g) is compact, then for p ≥ 0,
∫

Mn

fpBijf
if j dvg = −1

2

∫

Mn

fp|D|2 dvg. (3.7)
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In particular, if Bij = 0, we obtain from (3.7) the 3-tensor Dijk = 0.
Proof By virtue of (2.8) and (2.10), we have

(n− 2)Bij =Ckij,k + WikjlRkl

=(Dkij −Wkijlfl),k + WikjlRkl

=Dkij,k −Wkijl,kfl −Wkijlfkl + WikjlRkl

=Dkij,k −Wkijl,kfl

=Dkij,k +
n− 3
n− 2

Cljifl.

If (Mn, g) is compact, we obtain using integrating by parts

(n− 2)
∫

Mn

fpBijfifj dvg

=
∫

Mn

fp

(
Dkij,

k +
n− 3
n− 2

Ckjif
k

)
fifj dvg

=
∫

Mn

fpDkij,
kfifj dvg

=−
∫

Mn

fpDkijf
ifkj dvg

=− n− 2
2

∫

Mn

fp|D|2 dvg.

Therefore, we obtain (3.7) and complete the proof of Theorem 3.2.
Proposition 3.3 Let (Mn, g) be a compact gradient Ricci almost soliton satisfying

(1.1) with Bij = 0. If n ≥ 4, then the Cotton tensor Cijk = 0 at all points where ∇f 6= 0.
Proof From Lemma 2.2 and Theorem 3.2, we conclude that Cijk = −Wijklfl. Under

the orthonormal frame as in Lemma 2.3, we have

Cijk = −Wijk1|∇f |. (3.8)

In particular, we obtain from (3.8)
Cij1 = 0. (3.9)

From Theorem 3.2, we get
n− 3
n− 2

C1ji|∇f | = 0.

Hence, If n ≥ 4, then
C1ji = Cj1i = 0. (3.10)

Moreover, from (3.8) we also have that Cabc = −Wabc1|∇f |. Using (2.4) and Proposition
3.1, we obtain

Wabc1 = Rabc1 = R1cba = ∇Σ
eb

hac −∇Σ
ea

hbc = 0.
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Therefore, we obtain
Cabc = 0. (3.11)

Combining (3.9) with (3.10) and (3.11), we arrive at the conclusion of Proposition 3.3.
Proposition 3.4 Let (M4, g) be a compact gradient Ricci almost soliton satisfying

(1.1). If Bij = 0, then the Weyl curvature tensor Wijkl = 0 at all points where ∇f 6= 0.
Proof Since Bij = 0, we have Dijk = Cijk = 0. Hence, Lemma 2.2 shows that

Wijk1 = 0 for 1 ≤ i, j, k ≤ 4. It remains to show that Wabcd = 0 for 2 ≤ a, b, c, d ≤ 4. This
essentially reduces to show the Weyl curvature tensor is equal to zero in 3 dimensions (see
[14, p.276–277] or [11, p.13]). Therefore, we have Wijkl = 0.

Theorem 3.5 Let (Mn, g) be a compact gradient Ricci almost soliton satisfying (1.1)
with Bij = 0.

(1) If n ≥ 5, then the Weyl curvature tensor is harmonic or Einstein.
(2) If n = 4 and it has positive sectional curvature, then (M4, g) is rotational symmetric

or Einstein.
Proof (1) If (Mn, g) is not Einstein, then from the set {p|∇f(p) = 0} is of measure

zero we have Cijk = 0 on Ω = {x|∇f 6= 0} everywhere according to Proposition 3.3 and the
continuity. Hence, the Weyl curvature tensor is harmonic.

(2) Under the assumption of Theorem 3.1, Proposition 3.4 shows that (M4, g) has
vanishing Weyl curvature tensor at all points where ∇f 6= 0. So if the set Ω = {x|∇f 6= 0} is
dense, by continuity of the Weyl curvature tensor we have Wijkl = 0 everywhere and (M4, g)
is locally conformally flat. Recall that in any neighborhood of the level surface Σc, where
∇f 6= 0, we can express the metric ds2 by

ds2 =
1

|∇f |2 (f, θ)df2 + gab(f, θ)dθaθb, (3.12)

where θ = (θ2, · · · , θn) denote the intrinsic coordinates on Σc. Since (M4, g) has vanishing
Weyl curvature tensor and positive sectional curvature, the Gauss equation

RΣc

abcd = Rabcd + haahbb − h2
ab

and Proposition 3.1 tells us that (Σc, gab) is a space form with constant positive sectional
curvature and 1

|∇f |(f, θ) = 1
|∇f |(f). Hence on Ω we have

ds2 =
1

|∇f |2 (f)df2 + ϕ2(f)gSn−1 , (3.13)

where gSn−1 denotes the standard metric on unit sphere Sn−1. We conclude that (M4, g) is
rotationally symmetric.
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近黎奇梯度孤立子的分类

曾凡奇, 马冰清

(河南师范大学数学系,河南新乡 453007)

摘要: 本文研究黎奇梯度孤立子的分类问题. 利用与文献[11]类似的方法, 在Bach张量等于零的条件

下, 对于n ≥ 5, 证明了流形是Einstein的或者Weyl曲率张量是调和的.
关键词: 黎奇梯度孤立子; Bach张量; Weyl曲率张量
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