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Abstract: This article investigates the problem of a coupled system of fractional order p-
Laplacian equations with impulsive effects. Some new results for the existence of solutions of this
system are obtained by using variational method. In the process of proof, the conditions of variable
coefficient and nonlinear term in the system are weakened, and the existing results are extended.
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1 Introduction and main results

Fractional differential equations have been extensively applied in mathematical model-
ing. The theory of fractional differential equations is a hot topic in recent decades. Many
scholars have developed a strong interest in this kind of problem and achieved some excel-
lent results [1-8]. It is well known that left and right fractional differential operators are
widely used in physical phenomena of anomalous diffusion, such as fractional convection
diffusion equation [9-10]. In recent years, the equations containing left and right fractional
differential operators have become a new research field in the theory of fractional differential
equations. For example, Ervin and Roop [11] first proposed a class of steady-state fractional

convection-diffusion equations with variational structure

—aD (poD;” + D7) Du+b(t) Du+c(t)u=f, 0< B <1,
u(0) =u(T) =0,

where D is the classical first derivative, oD, A , tD;B are the left and right Riemann-Liouville

fractional derivatives. The authors constructed a suitable fractional derivative space. By
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using Lax-Milgram theorem, the solution of problem was studied. The following Dirichlet

problems were discussed in [12]

L (3D (' () + 3:D5° (u' (1)) +VF(t,u () =0, 0 < < 1,
u(0) =u(T) =0.

The existence result of the solution was obtained by Mountain pass theorem and the min-
imization principle under the Ambrosetti-Rabinowtiz condition. The following year, the

authors [13] used the critical point theory to further discuss the following problems

1D (oDfu(t)) = VF(t,u(t)), ae tel0,T], 3 <a<l,
u(0) = u(T) = 0.

Under the Ambrosetti-Rabinowtiz condition, the existence of the weak solution was obtained
by using Mountain pass theorem. In addition, the authors also discussed the regularity of
the weak solution.

In recent decades, impulsive differential equations have been the focus of mathemati-
cians’ research. Impulsive differential equation is an effective method to describe the instan-
taneous change of the state of things, and it can reflect the changing law of things more
deeply and accurately. It has practical significance and application value in many fields
of science and technology, such as signal communication, economic regulation, aerospace
technology, management science, engineering science, chaos theory, information science, life
science and so on. Many scholars at home and abroad have studied this kind of problem.

For example, in [14-15], the authors considered the following fractional impulsive problems

DS Deu(t)+a(t)u(t) =Aft, u(t) t # t;,a.eteD, T}
AGDFHE D)) (ty) = pli(u(t;), j=1,2,-- ,n,
u(0) =u(T) =0,

where o € (3,1], A, p € (0,+00), I; € C(R,R), j = 1,2,--- ,n. a € C([0,T]) and there
exist two positive constants a1, as such that 0 < a; < a(t) < ay. In addition,
AGDF G D)ty )= D36 DRt )= DG D)t

DT FDFu)(E) = lim (D5 (D) (E)),

+
t~>tj

D77 (G DRu)(t5) = lim (D77 (5 Dyu)(t)).

t—t
J
The main tools used in this paper are variational method and three critical points theorem.

Torres and Nyamoradi [16] explored fractional p-Laplacian problems with impulsive effects
+Dg <|0Dfu(t)|p_20Dtau(t)> +a(t)u(t)["ult) = f(tult), t #t;, ae te0,T],

A (7 (Dpult) s D5 u(t)) ) = Liu(t), j = 1.2, n, ne N,
u(0) = u(T) =0,
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where a € (%,1], pe (o), 0=ty <t <ty < <ty <thyn =T, 1 € C(R,R).
The solution of the problem was discussed under the condition of Ambrosetti-Rabinowtiz
by using Mountain pass theorem. On the other hand, the coupled systems of fractional
differential equations have gained importance due to their applications in many fields of
science and engineering. For example, Zhao et al. [17] investigated the following coupled

system of fractional differential equations
tD"‘(a(t)

Dz.(b(t)oD
( ) =u(T
where A > 0, 0 < o, 8 < 1, a, b € L®[0,T] with ag := essinfjra(t) > 0 and by :=

essin fjo 716(t) > 0. By the variational methods, the existence results were obtained.

Diu(t)) = Afult, u(t), v(t), 0 <t <T,
Jo(t)) = Afu(tult), o(t), 0 <t < T,
) =0,v(0) = v(T) =0,

S

Inspired by the above literature, we study the following fractional impulsive coupled

systems

D7 ép (0 Dy u(t)) + a(t)dp(u(t)) = xfult,ut),v (1), t #1;, ae.t €[0,T],
D70y (0D 0 (1)) + b(t) 6y (v0(t)) = xfo(t, u(t), v (1)), t # 15, ace. t € [0,T),
A(:Dg (G Dfu))(t) = ply(ulty)), A Dy ¢, (§ DY0)(t's) = uSi(v(t's)),
u(0) = u(T) =v(0) = U(T) 0,

(1.1)

where p > 1, o, 8 € (1/p,1], x > 0, p € R, ¢, (z) = |z[" z (x #£0), ¢, (0) = 0, f :

[0,7]xRxR — R is a function such that f(-,u,v) is continuous in [0, T for every (u,v) € R?

and f(t,-,-) is a C! function in R? for any ¢t € [0,7], and f, denotes the partial derivative

of f with respect to s. I;,5;, € CR,R), j =1,2,--- ,m, m,e N, i =1,2,--- ,n, n €N,

a(t),b(t) € C([0,T],R), T > 0,0 =ty <t1 <to < - <ty <tmp1 =T,0=1¢ <t <
<ty <t =T, and

A(:Dy ™" ép(5 Dfw))(t) = D7~ 6, (6 D u) (tF) — 1 D7~ oy (§ DY ) (87),
AGD7 6, (§ D/0))() = D7 6 (§ Do) (t':") — D7 6y (§ D) (t':7),

D576, D) () = i Dy '6,(6 D u)(t),

D77 6,(5 Dfu)(t7) = liHL eD7 0y (§ DY) (8),

DI o, (§ D)) = lim (DI ,(§ D) (1),

t—t/;t

DI, (DY) () = lim D1 6§ D) (1),

t—t’;
For ease of reading, here are some additional definitions of fractional order derivatives. Let
n—1<~ <n,n €N, then ¢Du(t) and ;Dju(t) represent the left and right Riemann-
Liouville fractional order derivatives, respectively, in the following form:

Dju(t) = d* I Tu= _t & t(t—s)nfvfluds
ot din _F(n—v)dt” 0 ’
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dr (=) dar [T ey
tDyu(t) = (=1)"——Ip " Tu = I‘(n—fy)dt”/t (s — )" luds.

§ D} u(t) represents the left Caputo fractional order derivative, in the following form:

d"u(t) 1

¢
SDju(t) = oI} a7 /O (t— )" u (s)ds.

Ifa=p8=1,p=2,a(t) =b(t) =1, x = p =1, then the above fractional coupled systems

with impulsive effects are reduced to a famous second order impulsive coupled systems

This paper studies a class of fractional impulsive coupled systems with p-Laplacian operator.
Under the condition that the nonlinear term satisfies a new class of conditions and the
impulse function satisfies a sub-linear condition, the existence of at least three weak solutions
for the coupled system is obtained by using the three critical points theorem. In literatures
[14-16], the authors only study the existence of solutions for boundary value problems of
fractional differential equations with impulsive effects by using the critical point theory, while
this paper studies the coupled systems of fractional differential equations with impulsive
effects. To some extent, it generalizes the existing results of [14-16]. At the same time,
this paper requires essinf;cjo.rja(t) > —A;, Ay > 0, which weakens the relevant condition
0 < a; < a(t) < ay in [14-15], thereby improving the existing results in [14-15].

2 Preliminaries

For basic concepts and lemmas of fractional derivatives and integrals, please see [18-19].
Here, we give some important lemmas and definitions.

Proposition 2.1 ([18]) Let u be a function defined on [a,b], 0 < a < b. If ¢DJu(t),
¢DJu(t), oD u(t) and ;Dju(t) all exist, then

DY = Du0) =Y (= 0 € ],
DYu(t) = Dm(t)—nzl %(b— )77t € [, b]
N LCREEY e

where n e Ny n—1 <~y <mn, ['(j—y+1) is the Euler gamma function, in the following

form: -
F(j—ny+1)= / Vet 9T = el los(t),
0
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Definition 2.1 ([19]) Let 0 < a <1, 1 < p < co. Define the fractional derivative space
E*P as follows

E“? = {u e L”([0,T],R) [oDfu € LP ([0,T],R)},

with the norm
1
ull g = (Jullf, + lloDfull7,) 7, (2.1)

where |jul|,, = (fOT |u (t)|Pdt)1/? is the norm of LP ([0,T],R). Ey”* is defined by closure of
C¢ ([0,77,R) with respect to the norm ||| ga.p-

Remark 2.1 For any u € Ej*, according to Proposition 2.1, when 0 < a <
1 and the boundary conditions u(0) = w(T) = 0 are satisfied, we can get {Dyu(t) =
oD&u(t), sDYu(t) = (Dyu(t), t € [0, T1.

Lemma 2.1 ([19]) Let 0 < o < 1, 1 < p < co. The fractional derivative space Ej"”
with respect to the norm ||u|| g, is a reflexive and separable Banach space.

Lemma 2.2 ([13]) Let 0<a <1,1 <p<oo. If u € Ey"?, then

T« o
llull L < m”th ull - (2.2)
If & > 1/p, then
||u||oo < COOHOD?uHLp? (23)

where [|u|| , = max;c(o,r) |u (t)| is the norm of C'([0,T],R), and

T %
= 1 > 07 p = P > 1.
I (a) (ap* —p*+1)*

Co
According to (2.2), we can consider in Ej"" the following norm
r 1
[l gor = (/ oD u ()P dt)? = [loDiull ., Yu € EGP. (2.4)
0

Lemma 2.3 ([13]) Assume that 1/p < a < 1, 1 < p < oo, then Ej"? is compactly
embedded in C ([0, 7], R).

Lemma 2.4 ([13]) Let 1/p < a <1, 1 < p < oo. Assume that the sequence {uy}
converges weakly to w in Eg"?, i.e., uy — u, then u, — v in C ([0,T],R), ie., |lux —ul|, —
0, k — oo.

To investigate problem (1.1), this article defines a new norm on the space Ej”, as
follows

lull, = ( / oD (£)"dt + / a(®)|u (8)de) (2.5)

. . . I o DXu(t)|Pdt
Lemma 2.5 ([16]) If essinfico rja(t) > —A;, where A\; = ueElg‘I’l”f\{O} W

Then the norm ||ul|,, is equivalent to ||u|| ..., that is, there exist two positive constants A4,
A, such that Aql|ul| ga., < lJull, < Asl|t|gas, Yu € EfP, where |Ju|| ga,, is defined in (2.4).

> 0.
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Lemma 2.6 Let 0 < a<1,1<p< oco. By Lemmas 2.2, 2.5 and (2.4), for u € Ej"*
one has

[e3

ull L < m”U”Ew < Apllull,, (2.6)
where A, = m If & > 1/p, then
T %
Jull ,, <

el o < Ascllull,
T (a) (ap* — p* + 1)

’U‘H

where ||u||

(2.7)

= maxc(o,7] |u (t)] is the norm of C ([0,7],R), and
T %
Ay =

* p
, P
AT (a) (ap* — p* + 1)7°

Define a new norm on the space Ej”, as follows

loll, = ( / loDfw (1) dt + / b(t)lo (1) de) %, (2.8)

where the definition of EJ” is similar to that of EJ”, see Definition 2.1. Similar to Lemma

2.5, the relationship between [|v[| ; and [|v]| gs,, is given below, where the definition of [|v|| .,
is similar to the definition of ||u|| z..,, as shown in (2.4).
By P

Lemma 2.7 If essinfic(o,1)b(t) > —\i/, where \,' = inf 0 lobZu(o)]"dr

veEPT\{0}) T 2 O then
the norm ||| ; is equivalent to [[v] gs.,, in other words, there exist A;’, As" > 0, such that
Aol gas < 0lls < Ao lJ0]l o, Yo € EgP. So

T
vl < WHU”Eﬂp < Ap HU||57

(2.9)
5% ,
][ < lollgsr < A0l (2.10)
(8) (Bp* —p*+1)7
where A, = 22— A/ = (" 25
1/1—‘([3"1‘1)7 o0 Al'F(B)(ﬁp*fp*Jrl)l%* ’ p p—1 )
Define the fractional derivative space
X = ES" x EJ?, (2.11)
whose norm is as follows
[(w, )l = llully +llvllg, ¥ (u,v) € X. (2.12)
From Lemma 2.1, we can see that X is a separable reflexive Banach space. According to
Lemma 2.3, X compactly embedded in C ([0,7],R) x C ([0,T
1w, 0) [l =

1,R). By (2.7), (2.10), we have

e u(t)]+ mae [o(0)] < Ancul, + Aol < M0 0)

tel0,T

(2.13)
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where M = max {AOC, AOC'}.
Lemma 2.8 ([18]) (Integration by parts) Let « > 0, p>1,¢> 1, 1/p+1/¢ <1+«
orp#1,q#1,1/p+1/q=1+ «. If the function u € L ([a,b] ,R), v € L7 ([a,b] ,R), then

/ [o Dy “u (t)]v (t) dt = / u (t) [¢+D, *v (t)]dt. (2.14)

By multiplying the first equation in problem (1.1) by any = € EJ"" and integrating on

[0,T7], we can obtain

/O D, (o Du(t) x(t)dt + / a(t)é,(u(t))2(t)dt — X / Fult,u(t), o(0)a(t)dt = 0.

By Lemma 2.8, one has

n

/0 D70 (0 D u(t))x(t)dt = — Z/t - z(t)d[;: D7~ ¢p (o Dfu(t))]

:—Z D&, (o Dou 7+1+Z/J+1¢p(op (), Da(t)dt
=S LD by oD () - D5y (o D / (6D u(t)), DE a(t)dt

1YLt )ele) + [ 6,DFu(0), Dra)ar

Thus, we get the definition of the weak solution of problem (1.1).
Definition 2.2 Let (u,v) € X be a weak solution of problem (1.1), if

| @uloDru®),DF () + altyonue®) de+ [ (60607002, DFy(e) + bO)s,(o()a(0)) di

+ M(Z Li(u(t;)z(t;) + Y Si(u(t')y(t's)) - X/O (fu(t, u(t), v(t)2 () + fo (b, u(t), v(t))y(t))dt =0

=1

holds for any V(z,y) € X.

Define functional ¢ : X — R as follows
p(u,) = (el + ol) + 1 b3 /

n v(t l)
+Z/O z)dz)— / ft,u(t),v(t))dt,V (u,v) € X.

=1

(2.15)

By the continuity of functions I; and S; and f(¢,-,-) is a C* function in R? for any ¢ € [0, T,
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it is easy to prove ¢ € C1(X,R). In addition, for V (z,y) € X, one has
¢ (u,v) (z,y) = /0 ' (6p (0D u(t))g D'z (t) + a(t) gy (u(t))x(t)) dt
+ /O ' (@0 (0DF0(1)o D/ y(t) + b(t)dp (v (1))y(1)) dt

ZI (t;))z(t, +Zs (Wt ))y())

- x/o (fult, ult), v(8)a(t) + fo(t, u(t), v(t))y(t))dt.

(2.16)

Therefore, the critical point of functional ¢ corresponds to the weak solution of (1.1).

3 Main result

The three critical point theorems used in this article are first introduced.

Lemma 3.1 ([20]) Let X be a reflexive real Banach space, ® : X — R be a sequentially
weakly lower semi continuous, coercive and continuously Gateaux differentiable functional
whose Gateaux derivative admits a continuous inverse on X*, ¥ : X — R be a continuously
Gateaux differentiable functional whose Gateaux derivative is compact, such that

inf & (z) =& (0) =V (0)=0.
inf @ () = ®(0) = ¥ (0) =0
Assume that there exist r > 0, Z € X with r < ® (Z) such that
(1) sup{¥ () : @ (2) < 7} < 142,
(ii) for each A\ € A, = (E %) , the functional ® — AV is coercive.

()’ sup{¥(x):®(z)<r}
Then, for each A € A,., the functional ® — AU has at least three distinct critical points in X.

Next, we first consider three solutions of problem (1.1) in the case of parameter p > 0,
and get the following results.

Theorem 3.1 Let f:[0,7]x RxR — Ris a function such that f(-,u, v) is continuous
in [0,7] for every (u,v) € R? and f(¢,-,-) is a C*! function in R? for any ¢ € [0,77], and
f(t,0,0) =0, Vt € [0,T]. Assume that all of the following conditions are true

(Hi) a(t), b(t) € C([0,T],R), and essinfeorja(t) > —Ai, essinfieporb(t) > —Ai/,
where A1, \;’ are defined in Lemmas 2.5, 2.7, respectively;

(Hy) There exist L, L;, D; >0,0<¢<p, 0<d; <p,0<l; <p,j=12,---,m,
i=1,2,---,n, so that for V (¢,u,v) € [0,T] x R?, we have

f(tu,v) < L1+ |ul?+ 0], (3.1)

—J; () < Dy (14 ul®) Wi (0) < L (14 o), (3.2)

where J;(u) = f S(t)dt, W (v) = [ S;(t)dt;

0
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(Hs) There are r > 0, w = (w1,ws) € X, such that [jw;]” + ||w2||2 > pr,

/O f(t,wl(t),wg(t))dt > 0, Z Jj(wl(tj)) >0, Z W; (CUQ(t/Z')) >0

and the following inequality holds:

wil? + w25
lwillg + llwsl5 < B, — r , (3.3)

L T e w)dt T sup f(buv)de

(u,0)EQ(MPT)

where the definition of [-[|,, ||| 5, X and M are shown in (2.5), (2.8), (2.11), (2.13) and
1
Q(MPr) = {(u,v) eR?: = (Jul" + v]") < Mpr} :
p
Then, for every x € Agp = (By, B,.), there exists

r—x fOT sup ftu,v)dt
(u,v)eQ(MPr)

max (i (— Ty () + 32 (- W, (v))> |

(u,w)eQ(MPr) \ j=1 i=1

7 :=min

xXp fy Ftwr(t),wa(t))dt — (o]l + [lwz]5)

) (i B+ EW ) |

so that for every p € [0,7), (1.1) has at least three weak solutions.
Proof Define the functionals ® : X — R and ¥ : X — R as below:

® (u,v) = = (ullg +[Ivl7) , (3-4)

1
p

W (u,v) = / F(tu(e) o ()it~ % (ZJj<u<tj>>+Z<wi <v<t'i>>>>, (3.5)

i=1

then p(u,v) = ® (u,v) — xV (u,v). Through the simple calculation, we can gain

inf @ (u,v)=®(0,0) =0,

(u,w)EX

¥ (0,0) —/OTf(t,O, O)dt—g (ijj(owriwi (o)) =0.

Furthermore, ® and ¥ are continuous Gateaux differential and for V (x,y) € X, one has

' (u,v) (2,y) :/ (05 (0D u(t)) o Dy x(t) + a(t)dp(u(t))x(t)) di
0 (3.6)

+/ (@0 (0DF0())o D/ y(t) + b(t)dp (0 (1)) (1)) dt,
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' (u,v) (2,y) = / (fult,u(t),v(t)z(t) + fo(t, u(t), v(t)y(t))dt
’ (3.7)
—<ZI (u(t;)) +Zs )).

In addition, ®' : X — X* is continuous. Next, we prove that ¥ : X — X* is continuous
compact. Assuming that {(u,,v,)} C X, then there exists (u,v) € X, such that (u,,v,) —
(u,v), n — 400, 80 (Up,v,) — (u,v) on [0,T]. Because f(t,-,-) is a C* function in R? for
any t € [0,T], so f is continuous in R? for any ¢ € [0,T]. Thus f (¢, u,,v,) — f (t,u,v)
as n — +oo. Since I;,S; € C(R,R), I;(u,(t;)) — I;j(u(t;)), Si(v.(t';)) — Si(v(t)) as
n — +oo. By Lebesgue control convergence theorem, we can get that V' (u,,,v,) — ¥’ (u,v),
n — +oo. Thus, ¥’ is strongly continuous. From Proposition 26.2 in [21], ¥’ is compact.
Thus, ® : X — R is weakly semi-continuous, coercive and ®' has a continuous inverse
operator on X*.

The following is to verify the condition (i) in Lemma 3.1. Choose (ug,v9) = (0,0),
(ur,v1) = (wi,wq). If (£,m) € X satisfies ® (&,n) = (HfHZ + HU”Z) < r, then, by (2.7),

(2.10), we have ® (¢, 1) > (A,, IEIIE, + o p|m||”) nd

1 1 1
temexsoensn  cfemex:d(gien+gm) <]

1
c {(m) € X S (el + i) < M}
Thus, by x > 0, u > 0, we get

sup{¥ (§,n) : @ (§,n) <r}
—sup{/ ftf dt—( J] t))—i—Z W(?? ))i‘l’(fﬂ?)ér}

S/O sup  f(t,€n) dt+§(§m)rg&>§m) <j2(_Jj(£))+Z(_Wi (n))) :

(&meQ(Mrr)

+

I max <i (-

Wi =0,b < B,, we obtain
(&,m)eQ(Mrr) ( (77))> Y X

1

r
If max <Z &)+ > (-w; (77))> > 0, (3.8) is also correct for i € [0,7). Besides,
(E&meQ(Mrr) \ j=1 i=1
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for o < v, we have

U (wy,ws) / ft,wi(t),wa(t dt—(ZJ wa (t —I—ZW(wg )

pro Jt,wi(t - (|w1||i + IlszIZ)

/ [t wi(t),wa(t))dt — (Z o +§:1W¢ (wQ(t’i))>

x(ZJ] wi (t —i—ZW(u& )
j=1
(e lI2, + llwll3)

> / F(twn (), wa(t))dt — / it (0, nlt))dt + e

(3.9)

sup{W(Em):2(EM<r}  which implies the

Combining (3.8) and (3.9), we obtain ggil :’;‘; > 1S

condition (i) of Lemma 3.1 holds.
Last, we will verify that for any Vx € Ap, the functional ® — xV¥ is coercive

(&,m) e 7X, by (2.7), (2.10), (2.13) and (H3), one has

T T
/ £ (€ o ()dt < L / (14 1€ + [n[")dt < LT + LT l€ll". + LT |[n]l"
0 0 (3.10)

<LT + LTAL [IE]lG + LTN " [Inll5 < LT + LTM? (Jlg]l5, + lInll)

For

and
~J; () < Dy (14 It ) < Dy (1+62) < Dy (1+ A% Nel) . (31D)

So
> (e £ 30D s (14 AL ). (3.12)
j=1 =1

Similarly, we can get
SO W) < 30 L (14 A" Il )- (3.13)
i=1

=1

Thus, for ({,n) € X, since ‘;‘ >0, by (3.10), (3.12), (3.13), we have

(€S, + limll5) = XLT = xLTM? (JIglly, + lInll5)

—H (ZDj <1+A§é Hél\i") +> L <1+A’ool"’ IUIIZ))
=1 i=1

==
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If 0 < q,dj,l; < p, for x > 0, one has e )l‘}m (®(&,n) —xT(&n)) = +oo. Obviously,
;M x —+o0

the functional ® — x WV is coercive. If ¢ = p, then

(&) —x¥(&n) > (; - XLTMP) (€I + NInll5) — xLT

—p (ZDj (1A% g2 ) +>ors (14 47"
j=1 i=1

)

I
fOT sup f(t,&m)dt
Choose L < “"77)62%1\2}7 . For x < B, one has %—XLTM” >0. If0 < dj,l; <p, for
Vx € Ap, one has e )lﬁm (@ (&,7n) — x¥ (£,n)) = +00. Obviously, the functional ® — x¥
)l x —+oo

is coercive. Therefore, the conditions in Lemma 3.1 are all true. By Lemma 3.1, we get that,
for each x € Ap, the functional ¢ = ® — x¥ has at least three different critical points in X.

Remark 3.1 The assumption (H3) studies both 0 < ¢ < p and ¢ = p. Obviously when
p = 2, the assumption (H») contains the condition 0 < ¢ < 2 in [14-15]. In addition, the

assumption (H;) allows a(t) can have a negative lower bound, satisfying essinfcorja(t) >
of L loDeu Pt

weESP\{0} o lu(®)7dt

satisfying 0 < a; < a(t) < ag. Thus, our conclusions extend the existing results.

=M1, where \; = > 0, but a(t) in [14-15] has a positive lower bound,

In Theorem 3.1, we consider the case of the parameter p > 0, and we will consider the
three solutions of problem (1.1) in the case of the parameter p < 0, and get the following
result.

Theorem 3.2 Let f:[0,7] x R xR — R is a function such that f(-,u,v) is continuous
in [0,7)] for every (u,v) € R* and f(¢,-,-) is a C! function in R? for any ¢ € [0,7], and
f(t,0,0) =0, Vt € [0, T]. Assume that the condition (H;) and the following conditions hold

(Hy) There exist L, L;, D; >0,0<¢<p,0<d; <p,0<l; <p, j=1,2,---,m,
i=1,2,---,n so that for V (¢,&,n) € [0,T] x R?, we have

li> :

F&m) < L7+ ), 7€) < Dy (14 16%) Wit < L (1+ Iy

(Hs) There are 7 > 0, w = (w1,ws) € X, such that [lw, ||, + [Jwal[}; > pr,

T m n
/ F(twn(8),wa(8)dt > 0, > Tiwi(t;) < 0,) Wi (wa(t')) <0
0 j=1 i=1
and (3.3) holds. Then, for every x € A = (B, B,), there exists

T
xf, sup  f(t&mdt—r
(emea(nrr)

mes (S0+ W)

(EmeuMrr) \ j=1 i=1

~v* :=max

Xp fy Ftwi(t),wat))dt — (], + lw215)

» (f: T (t) + 32 Wi entr) )
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so that for every u € (7*,0], (1.1) has at least three weak solutions.

Proof The verification process is analogue to Theorem 3.1, which is omitted here.

Remark 3.2 The assumption (H,) studies both 0 < ¢ < p and ¢ = p. Obviously when
p = 2, the assumption (H,) contains the condition 0 < ¢ < 2 in [14-15]. In addition, the
assumption (M) allows a(t) can have a negative lower bound, satisfying essinf,co rja(t) >
—A1, A1 > 0, but a(t) in [14-15] has a positive lower bound, satisfying 0 < a; < a(t) < as.
Thus, our conclusions extend the existing results.

This method is also applicable to fractional impulsive equations, such as the following

impulsive Dirichlet problems
D 0D{u(t) + a1, (u(0) = XS (.00, 141 ac-t € 0T,
AGDT 6§ DPu))(t) = uly(uty)), = 1,2, n, n €N, (3.14)
u(0) =u(T) =0,
where p > 1, a € (1/p,1], x > 0, p € R, a(t) € C([0,T],R), f € C([0,T] x R,R), T" > 0,
D=t <t1 <ty < - <ty <tlpy1 =1, Ij GC(R,R),and
A(DF ¢, (§ Diw))(t;) = 1D 0y (6 D) (8) — 1D b (§ D) (85),
D op(§DFE]) = Jim D8, D))

D37 6,(6 D) (t7) = Jim ¢ Dy 'p(6 D u) (1)

In the case of parameter > 0, the following result is obtained.

Corollary 3.1 Let f:[0,7] xR —Rand I, : R — R, j=1,2,---,n be continuous
functions. Assume that all of the following conditions are true

(G1) a(t) € C([0,T],R) and essinf,c(orja(t) > —A;, where \; is defined in Lemma 2.5;

(G2) There exist L,Ly,--- ,L, >0,0< 3<p, 0<d; <p,j=1,---,n, so that for
V(t,z) € [0,T] x R, we have

Fta) < L(1+12”),~J; (@) < Ly (1+1al"),

where F(t,u) = [ f(t,s)ds, J;j(u) = [, I;(t)dt.
Suppose that there are r > 0, w € E"”, such that 1%||w||z >, fOT F(t,w(t))dt >

0, Z J;j(w(t;)) > 0, and
5wl r
A= P A= . (3.15)
Jy F(t,w(t))dt N max  F(t,z)dt

|2 <Aoo (pr) /P

Then, for every x € A, = (A;, A,.), there exists

T
r—X max  F(t,z)dt T

o s el <Aoe o) X Jo
7 := min ,

2 () Z J;(w(t;)

1A
|”£\<Aoo(m)17 g=1

F(t,w)dt — Jllwll,,”
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so that for Vi € [0,7), (3.14) has at least three weak solutions in Ej".

When the parameter pu < 0, there is another conclusion, specifically as follows:

Corollary 3.2 Let f:[0,7] xR —-Rand I; :R — R, j =1,2,---,n be continuous.
Assuming (G1) and the following conditions are met.

(G3) There are L,Ly,---,L, >0,0< 5 <p,0<d; <p,j=1,---,n, so that for
V(t,x) € [0,T] x R, we have F (t,z) < L (1 + |x\5> ,Jj(z) < L (1 + |x]dj) . Suppose there

isr >0, we ES" so that %HwHZ > r, fOT F(t,w(t))dt > 0,> J;j(w(t;)) < 0 and (3.15)
j=1
holds. Then, for every x € A, = (A, A,.), there exists
ma; F(t,x)dt —r
X (t,z) Xf

0
% || <Aoo (pr)'/P
7" 1= max ,

max i J;(x)

1
|z| <Aoo (pr)? 7

OT F(t,w
Z J;(w(t;)

I
-

so that for every u € (7*,0], (3.14) has at least three weak solutions in Ej™*.

4 Conclusion

In this paper, we discuss the multiplicity of solutions for a class of coupled systems of
fractional p-Laplacian differential equation with impulsive effects. By using the three critical
points theorem, the multiplicity results of weak solutions are obtained under the conditions
of p-sublinear growth. Compared with the existing related work, our results weaken the

existing related conditions and improve and enrich the related results to a certain extent.
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