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Abstract: In this paper, we investigate the Dirichlet eigenvalue problem of the elliptic oper-
ator in weighted divergence form £4 ; on the cigar soliton (R?, g, f) as follows

Layu+Vu=Au, in Q,
u =0, on 0f,

where V' is a non-negative continuous function and p is a positive continuous function on Q. We
establish some inequalities for eigenvalues of this problem.
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1 Introduction

Let M be an n-dimensional complete Riemannian manifold. The Dirichlet eigenvalue

problem of the Laplacian A on a bounded domain Q of M is described by

Au = —Au, in €,

1.1
u =0, on 0f). (1)

Many mathematicians have obtained some universal inequalities for eigenvalues of problem
(1.1) (cf. [1-4)).

Let A : Q@ — End(TQ) be a smooth symmetric and positive definite section of the
bundle of all endomorphisms of the tangent bundle T2 of M. Define the following elliptic
operator in divergence form

L, =—div(AV), (1.2)
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where div is the divergence operator and V is the gradient operator. It is easy to see that
the operator L, defined in (1.2) includes the Laplacian operator as a special case. In 2010,

Do Carmo, Wang and Xia [5] considered the eigenvalue problem of L4 as follows

Liu+Vu=>Apu, in M,
{ 4 P (1.3)

u =0, on OM,
where V' is a non-negative continuous function and p is a positive continuous function on

M. They obtained the following Yang-type inequality
k

k
4&,p3 [1 ( V0> n2H2}
M1 — N2 < Megr — M) | — (N — — | + o, 1.4
;_1( k1 — Ai)” < np? ;_1( k1 — Ai) & P I (1.4)

where &1, &, p1, p2 are positive constants, Hy = 15162}\:2(|H(x)|, Vo = gélﬁ V(z) and H is the
mean curvature vector of M in R™. For more reference about Ly4, we refer to [6].

In recent years, metric measure spaces have received a lot of attention in geometry
and analysis. For some significant results about metric measure spaces, we refer to [7,
8] and the references therein. A smooth metric measure space is actually a Riemannian
manifold equipped with some measures which is absolutely continuous with respect to the
usual Riemannian measure. More precisely, for a given n-dimensional complete Riemannian
manifold (M, g) with a smooth metric g, we say that the triple (M, g,du) is a smooth metric
measure space, where du = e~ /dv, f is a smooth real-valued function on M and dv is the
Riemannian volume element related to g.

Let Q be a bounded domain in a smooth metric measure space (M, g,e /dv). Define

the elliptic operator in weighted divergence form £,4 ; as
SA,f: —divaV, (15)

where div; X = e/ div (e’fX) is the weighted divergence of the vector field X on M. When
A is an identity map, —£4,5 becomes the drifting Laplacian Ay = divy V. Moreover, when
f is a constant, £4 ; becomes L, defined in (1.2). There have been some interesting results
for £4, 5 (see [9-11]).

As an important example of complete metric measure spaces, we consider Ricci solitons
introduced by Hamilton [12, 13]. They are corresponding to self-similar solutions of Hamil-
ton’s Ricci flow. We say that (M, g, f) is a gradient Ricci soliton if there is a constant K,
such that

Ric 4+ Hessf = Kg. (1.6)

The function f is called a potential function of the gradient Ricci soliton. For K > 0, K =0
and K < 0, the Ricci soliton is called shrinking, steady or expanding respectively. When the
dimension is two, Hamilton discovered the first complete non-compact example of a steady
Ricci soliton on R?, called the cigar soliton. The metric and potential function of the cigar
soliton (R?, g, f) is given by
d(z')? + d(z?*)?
=T IRRE
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and
f = _IOg(l + |.’E|2),

where |z|> = (2')?+(2?)2. In physics, the cigar soliton (R?, g, f) is regarded as the Euclidean-
Witten black hole under first-order Ricci flow of the world-sheet sigma model. As an impor-
tant tractable model for understanding black hole physics (cf. [14]), it is of great significance
in both geometry and physics. In 2018, Zeng [15] considered the following Dirichlet eigen-

value problem of the drifting Laplacian Ay on a bounded domain € in the cigar soliton
(R%, g, f)

Aju=—u, inQ,
(1.7)
u =0, on 0f)
and derived
k k
(Mgs1 — Akt1 — { [2 <1 + max |x|2> + min |:v|2} A
2 ) .

—min |z|* X1 — 2 (2 + 3min |:I:|2)} .
€N €N

In this paper, on a bounded domain  of the cigar soliton (R2, g, f), we consider the

Dirichlet eigenvalue problem of £4 ; as follows

Laru+Vu=Apu, in €,
{ Af p (1.9)

u =0, on 09,

where V' is a non-negative continuous function and p is a positive continuous function on
M. We obtain the following results.

Theorem 1.1  Let Q be a bounded domain in the cigar soliton (R?, g, f). Let A
be the i-th eigenvalue of problem (1.9). Assume that {7 < A < &I throughout 2, and
p < p(z) < pa, Vo € Q, where I is the identity map, &, &, p1, p2 are positive constants.
Then we have

k

k
2 14+ Co)\ — p5 'V, 2 +3C
D k=) < P [f%cl > eyr — [( 0>(§1 pz o) o -, (1.10)

i=1 i=1

where Cy = max{|x| } Oy = mln{|x\ }and Vy = mln{V( )}

Remark 1.1 If Aisan 1dent1ty map, p(z ) =1 and V(z) =0, then § = & = 1,
p1 = p2 =1 and Vy = 0. Thus (1.10) becomes (1.8). Therefore, our result generalizes (1.8)
of [15].

Moreover, we derive the following result for lower order eigenvalues of problem (1.9).

Theorem 1.2  Let Q be a bounded domain in the cigar soliton (R?, g, f). Let A
be the i-th eigenvalue of problem (1.9). Assume that {7 < A < &1 throughout 2, and
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p1 < p(x) < pa, Vo € Q, where T is the identity map, &1, &2, p1, p2 are positive constants.

1
}2
)

(1.11)

Then we have

2

1 2p
pz_;(/\erl —A)? < [)1(17_’_201) {252(1 + Cy)

(1+Co) (M —p2'Vo) 2430
& P2

where Cjy = maé({|x|2}, Cy = mig{|x\2} and Vp = mig {V(x)}.
zE BAS FAS
Corollary 1.1 Let € be a bounded domain in the cigar soliton (R?, g, f). Denote by
A; the i-th eigenvalue of problem (1.7). Then we have

2

S O — At < - fcl {2(1 ) [(1 YO M- (24 301)} } (1.12)

p=1

_ 2 o 2
where Cy = I;léi{)zc{|x| } and C = Ixnelglle{|1’| }.

2 Proofs of the Main results

In this section, we give the proofs of the main results.
Proof of Theorem 1.1 Suppose that z? is the p-th local coordinate of z; € Q C R2,

where p = 1,2. Consider the test functions
k
@i:xpui—Zaijuj, fori=1,...,k. (2.1)
j=1

where
aij —/pxpuiujd,u.
Q

It is easy to find that
Q
Hence the Rayleigh-Ritz inequality reads as

Akt 1 / peidu < / 0i(Lay+V)eidp. (2.3)
Q Q
According to the definition of £4 ¢, we have

Lar(2Pu;) = —divy (AV(2Pu,))
= —el div (e*f (A (2PVu; + uiVa:p)))
= —div (4 (2’Vu; + u;VaP?)) — (Vf, A (2’ Vu; + u; VaP)) (2.4)
= —aP divy (AVuy;) — (VaP, AVu,;) — u; div(AVa?) — (Vu,, AVaP)
=P L4 pu; +uLa pa? —2(VaP AVuy,) .
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Hence, we derive

k
/ i(La s+ V)pidp = / Pi [(EA,f +V) (@Pu) = p Y aihju; | dp
Q Q

=1

= / @i (TP Xipu; +ui Lo po? — 2 (VP AVu,)) dp (2:5)
Q

=>\i/p90?du+Pi,
Q

where P; = [, ¢ (u;€a 527 — 2(VaP, AVu;)) du. Substituting (2.5) into (2.3), we can get

(Arg1 — /\z)/ ppidp < P (2.6)
Q

Set
bij = / (wila, gz —2(VaP, AVu;))udp, Vi,j=1,... k.
Q

Then we have

Q

20Pu; L4 puidp + / 2P L4 5 (wiuy) dp
Q

Q

= /pruiEA’fujdu - /prquA,fuidu 27)
= / 2Pu; (a5 + V) ujdp — / xPu; (Lap + V) uidp
Q Q
= ()\j — /\i)aij-
Using the Cauchy-Schwarz inequality, we obtain
k 2
P? = / oy (uiSA,fxp —2(VzP AVu;) — priju]) d,u]
! = (2.8)

X 2
1
< / pgpfd,u-/ p <ui£,47fxp —2(Va? AVu;) — p E bijuj) du.
Q Q =

Combining (2.6) and (2.8), we infer that

k 2
1
(k1 = A) P! < (A — /\i>/ ppidp / - <Ui£A,f1‘p —2(Va? AVu;) — szij%) dp
Q QP

Jj=1
1 i ’
<P / - (uiSA’f:L"’ —2(Va? AVu;) — p E biju]) dps.
QP -
7=1

(2.9)
It implies that

1
(A1 — M) P < / »

. 2
(uiﬁA,fxp —2(VaP AVu;) — pz biju]) dp. (2.10)
Q =
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Multiplying both sides of (2.10) by (Ax11 — A;), taking the sum over ¢ from 1 to k and p

from 1 to 2, we get

k
> e — ZP
i=1
k k ?
< Z Mol — Z/ (u La sl —2(VaP, AVu,) — pz bijuj) dp.
=1 j=1

(2.11)

Using (2.7), we deduce

2

i 2
1
E / ; (uiﬁA,fxp —2(VaP AVu;) — p E bijuj) dpu
Q =

p=1

—Z/ (u; L 2P)? + 4 (VP AVu;)® — du; L4 pzP (VaP, AVU1>] dp — QZb

j=1

_Z/ (w;La 2?)? + 4 (Va?, AVu,)? — du; La raf (VaP, AVW}] d,u—2z (N — \)%a

Jj=1
(2.12)
and
2 2 k
Z P, = Z/ (x”ufEA’fxp — 2xPu; (VaP, AVui>) dp — 2 Z a;jbi;
p=1 p=1"79 j=1
} ) (2.13)
- Z/ u? (Va?, AVaPy dp+ 23 (A = \j)a
p=1"9 j=1
Using (2.12) and (2.13), we obtain
k 2
> M= X)) / VaP, AVa?) dp + 2 Z Aepr = M) (A = Aj)al;
i=1 p= i,j=1
k 2
< Z(/\k+1 / (uifar2?)? + 4 (VaP, AVu,)® — du; L4 pxP (VaP AVuJ}
i=1

-2 Z ()\kJrl — )\z)()\z — )\j)2a?j.
i,j=1

(2.14)
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Moreover, observe that
k
Z Aot — X2 (N — Ay,
k k
Z Mert = A) s = M) = A)al; = D e — M) (A = A)a (2.15)
=1 ij=1
k
= — Z ()\k+1 — )\2)()\1 — )\j)QG/?j.
i,j=1
Therefore, combining (2.14) with (2.15), we have
k 2
Z Ari1 — A2 / (VP AVaP) du
i=1 p=1"9
k 2
1 2 2
< (Met1 — Z ; |:(ui£A7fxp) +4(VaP, AVu;)” — 4du; L4 sa? <pr7AVui>} d
1=1 p=1
(2.16)

Now it is necessary to calculate and estimate some terms in (2.16). It is not difficult to

obtain
(Va', V') = (Va? Va?) = 1 + |z,
(Vz',Va?) =0
and
Az' = Az? =0.
Using (2.17) and (2.18), and noticing
1 2 <
—log(1 2)) = — 2 _ a\7 4
V(- log(1+ o) =~ Vief = s DV

we infer that

2
(Vf,VaPt) = “TEPR Z;ﬂ(qu,pr) = —22P.
q:
It implies
2
1
(VF,V|z|*) = — > 4arat(Va?, Va) = —4|zf.

2
1+ |z —
Hence, (2.19) and (2.21) yield
Apx? = Ax? — (Vf,VaP) = 227,

Furthermore, utilizing (2.17) and (2.19), we have

2
Alz]? = ZA (@) =) (22" Az + 2(VaP, VaP)) = 4(1 + |z]).
p=1

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Combining (2.22) and (2.24), we derive
Aglaf? = Alz|* = (Vf, V|z|*) = 4(1 + 2[z*). (2.25)

According to the assumptions of the theorem, we have

1
py !t < / uidp = / —puidp < pi. (2.26)
Q QP

Now we calculate the righthand side of (2.16). Since A < &1, we can infer from (2.23)
and (2.25) that

2 2
Z/(uiﬂA,f:Up)Qd,uS&%Z/u?(Afxp)Qduzél{fg/uf|x|2d,u (2.27)
= Jo = Ja Q

and

2

2
Z/ (Va?, AVu;)* dp < €2 Z/ (Va?, Vu;)? dp = §§/ (1 + |£E|2) |V, [*du. (2.28)
Q = Jo Q

p=1

Moreover, from

2
1 1

g /uiAfxp <V:Jcp,Vui>du:/<Vx|2,Vu?>du:—/U?Af|:r|2d,u,

e 2 Ja 2 Ja

we obtain
2
Z/ (—uiLa g2 (VP AVu;)) dp < —2§§/ u? (1 + 2[z|?) dp. (2.29)
e Q
Using (2.26) and noticing that A > &1, we have

Q Q

Vuidy > 51/ (V| *dp + py ' Vo.
Q Q

It implies that
Xi—pyt
/ Vs 2dp < 'g?VO. (2.30)
Q

Then it follows from (2.27-2.30) that

2
/ E [(uiﬁA,fxp)z +4(VaP, AVu;) — du; L4 p2” (VaP, AVu,) | dp
Q

p=1
§4£§/ ; [(1+]2?) [V = (2 + 3|2|*) uf] du (2.31)
Q

<47§§ [(1 + Co)(Ni — p3 ' Vo) _2+30y
B P1 51 P2
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Moreover, we acquire

2
1+C
Z/ ui (VaP, AVzP) du > 2& / u? (14 |z?) dp > 26 to (2.32)
p=1 Q Q P2
It follows from (2.16), (2.31) and (2.32) that
k
1+C
26 P ' Z()\k+1 - )2
2 4
=t (2.33)

k
4¢3 (14+Co)Ni —p3 Vo) 243G
<=2N Ny — N -
< > ks = A) [ . Py

i=1

Hence we can know that (1.10) holds. This completes the proof of Theorem 1.1.

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Define a 2x2 matrix C' = (Cs), where C,s = fQ PrPUL Uy 1 A
Using the orthogonalization of Gram-Schmidt, we know that there exist an upper triangle
matrix R = (R,) and an orthogonal matrix T' = (T,s) such that R = T'C. That is to say,
for 1 < s < p<2, we have

2 2
Rys = ZTkaks = /QZTkamkulusﬂdM = 0.
k=1 k=1

2
Setting y? = > Tpra®, we get
k=1

/ pyPurug1dp =0, for 1 <s<p<2. (2.34)
Q
For p = 1,2, define the test functions ¢, by

©p = yPur — apuq, (2.35)

where
a, = / pyPuidp.
Q

Since (2.34) holds, it yields
/ pppusi1dp =0, for 0 <s<p<2. (2.36)
Q
According to the Rayleigh-Ritz inequality, we have
e /Q p2dp < /Q eo(Sas+V)ppdi (2.37)

It follows from (2.36) that

/ peydp = / Py urdp — ay / pppurdp = / PPy urdp. (2.38)
Q Q Q Q



122 Journal of Mathematics Vol. 44

Similar to the proof of (2.4), we acquire
Las(yPur) = yPLa yur +urLa py” — 2(Vy?, AVuy) . (2.39)
Combining (2.38) and (2.39), we have
/Qcpp (Lay +V)opdu =\ /Q ppadp + /Qypul (u1La,sy? —2(Vy?, AVuy))dp.  (2.40)
At the same time, using
-2 /Q yPuq (Vy?, AVuy) du = /Quf (VyP, AVyP) dp — /QypufﬂA,fy”d,u,
we obtain

/ yPur (urLa, ry? —2(Vy?, AVuy)) dp = / u? (VyP, AVyP) du. (2.41)
Q

Q

Substituting (2.40) and (2.41) into (2.37), we deduce

(Aps1 — A1) / peadp < / ui (Vy?, AVy?) dp. (2.42)
Q Q

Observing that
1
/ Uy <<Vu1,Vyp> + 2u1Afyp> dp =0,
Q

we infer
1 1
—2/ ®p <<Vul,Vyp> + 2u1Afy”> dp = — 2/ yPuy <<Vu1, VyP) + 2u1Afy”> dp
Q Q

=/ ui[Vy? [Pdp.
Q

(2.43)
Therefore, using (2.42) and (2.43), and summing over p from 1 to 2, we derive
2
Z()‘pﬂ —A1)? / w3 | VyP | Pdu
p=1 @
& 1
= — 2Z(Ap+1 — )\1)5 / QOP <<V’LL17 Vyp> + 2U1Afyp> d,l,b
- Q
=t (2.44)

2 2 2
1 1 1
<é E (Apt1 — )\1)/ pepdp + 5 E / p <<VU17VZJP> + 2U1Afyp> dp
p:l Q p:l Q

2 2 2
1 1 1
<6 § /U? (Vy", AVyP) dp+ < E /p <<Vu1,Vyp> + 2U1Afy”> dp,
p=1" % p=1"7%

where 0 is any positive constant.
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Since y? = > T,ra® and T is an orthogonal matrix, we know that y' and y® are the

standard coordinate functions of R2. It is not difficult to check that

ly* = |z/?,
[VyP|? =1+ ||, (2.45)
Apy? = 2yP (2.46)
and
Asly|? = 4(1 + 2]z). (2.47)

Noticing that p;' < [, udu < pi', and using (2.45), we obtain

2 2

SO = A [ 9P =Y (s = A [ 1 (14 o) di
p=1 & p=1 Q
, (2.48)
1+Cy |
e P Z:(Apﬂ—‘)\l)§
p=1
and
: 1+ G
Z/ ui (Vy?, AVyP) dp < 252/ uf (14 [zf*) dpu < 26, : (2.49)
p=1"9 Q
Similar to the proof of (2.30), we have
/Vu1| dp < 2 p2 Vo (2.50)
Then it follows from (2.46), (2.47) and (2.50) that
1 2
Z/ < Vuy, VyPy + 2u1Afyp> dpu
= [ 20 k) 19 = Gl + |
0P (2.51)

:/Q; [(1+ [2?) [V 2 — (2 + 3)[2) 2] dp

1 [(+Co)(M—p3 Vo) 2+3C’1]

Si
P1 &1 P2

Substituting (2.48), (2.49) and (2.51) into (2.44), we get

(NI

140 2
= e — A1)

P2 1

<5 [252(1+Co>] +1{1 {(HCO)(M—/);%) _2+301]}.
B P1 o Lot &1 P2
(2.52)
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Taking

Journal of Mathematics Vol. 44
{1 [(1 +Co)(M —p3 Vo) 2+301] }2
5= P1 &1 . P2
[252 (1+ Co)} :
P1

in (2.52), we obtain (1.11). This finishes the proof of Theorem 1.2.
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