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Abstract: The Hilbert class polynomial HO(x) ∈ Z[x] attached to an order O in an imagi-

nary quadratic field K is the monic polynomial whose roots are precisely the distinct j-invariants

of elliptic curves over C with complex multiplication by O. Let p be a prime inert in K and strictly

greater than | disc(O)|. We show that the number of Fp-roots of HO(x) (mod p) is either zero or

|Pic(O)[2]| by exhibiting a free and transitive action of Pic(O)[2] on the set of Fp-roots of HO(x)

(mod p) whenever it is nonempty. We also provide a concrete criterion for the existence of Fp-roots.

A similar result was first obtained by Xiao et al. [25] and generalized much further by Li et al. [13]

(that covers the current result) with a different approach.
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1 Introduction

Let O be an order in an imaginary quadratic field K, and Pic(O) be the Picard group of

O, i.e. the group of isomorphism classes of invertible fractional O-ideals under multiplication.

The Hilbert class polynomial HO(x) attached to O is defined to be

HO(x) =
∏

[a]∈Pic(O)

(x− j(C/a)), (1.1)

where [a] denotes the isomorphism class of the invertible fractional O-ideal a, and j(C/a)

stands for the j-invariant of the complex elliptic curve C/a. It is well known that HO(x)

has integral coefficients, and it is irreducible over Q (see [3, §13] and [12, Chapter 10, App.,

p.144]).

Let p ∈ N be a prime number, and H̃O(x) ∈ Fp[x] be the polynomial obtained by

reducing HO(x) ∈ Z[x] modulo p. Suppose that p is non-split in K so that the roots of
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H̃O(x) are supersingular j-invariants, which are known to lie in Fp2 . It’s natural to ask how

many of them are actually in Fp. Castryck, Panny, and Vercauteren answered this question

in [4, Theorem 26] for special cases when p ≡ 3(mod 4), K is of the form Q(
√
−l) with l

prime, l < (p+ 1)/4 and O is an order containing
√
−l. Their method as in [4, Section 5.2]

counts the Fp-roots by constructing supersingular elliptic curves over Fp. We take a different

approach here by reinterpreting the Fp-roots in terms of quaternion orders, which allows us

to answer the question in more generality.

Our main result is as follows.

Theorem 1.1 Let K be an imaginary quadratic field and O be an order in K. Let

p be a prime inert in K and strictly greater than | disc(O)|, and Hp be set of Fp-roots of

H̃O(x). If Hp is nonempty, then it admits a regular (i.e. free and transitive) action by the

2-torsion subgroup Pic(O)[2] ⊂ Pic(O). In particular, the number of Fp-roots of H̃O(x) is

either zero or |Pic(O)[2]|.
Moreover, Hp 6= ∅ if and only if for every prime factor ` of disc(O), either condition (i)

or (ii) below holds for ` depending on its parity:

(i) ` 6= 2 and the Legendre symbol
(
−p
`

)
= 1;

(ii) ` = 2 and one of the following conditions holds:

(a) p ≡ 7(mod 8);

(b) −p+ disc(O)
4
≡ 0, 1 or 4(mod 8);

(c) −p+ disc(O) ≡ 1(mod 8).

The assumption that | disc(O)| < p immediately implies that p does not divide the

discriminant of HO(x) by an influential work of Gross and Zagier [8]. Therefore, H̃O(x) has

no repeated roots. We provide an alternative proof of this fact under the current assumptions

in Corollary 2.7.

Remark 1.2 After the first of version of this manuscript appeared on the web, Jianing

Li kindly informed us that a similar result to Theorem 1.1 has firstly been obtained in [25,

Theorem 1.1] under the assumption that | disc(O)| < 4
√
p/3. Moreover, Li et al. used a

method similar to [25] and generalized it much further in a joint work [13]. Their result is

as follows. Let j0 = j(C/O), and put L := Q(j0). If p coprime to the index [OL : Z[j0]) (e.g.

if p - disc(O)), then they completely determined the factorization of H̃O(x) in Fp[x]. Partial

results are also obtained without the co-primality condition. In particular, the results of

Theorem 1.1 has been covered in [13, Theorem 4.1]. On the other hand, the current project

was initiated in May 2021 during an online discussion between the authors. Unaware of the

significant progress made by aforementioned works, we worked independently and obtained

Theorem 1.1 by a completely different method: we count the Fp-roots by demonstrating a

regular action using quaternion orders, whereas the aforementioned works count by studying

the factorization of p in L.
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For the reader’s convenience, we reproduce the celebrated formula of Gauss on the order

of Pic(O)[2].

Theorem 1.3 [3, Proposition 3.11] Let r be the number of odd primes dividing disc(O).

Define the number µ as follows: if disc(O) ≡ 1(mod 4), then µ = r, and if disc(O) ≡ 0

(mod 4), then disc(O) = −4n, where n > 0, and µ is determined as follows:

µ =





r if n ≡ 3(mod 4);

r + 1 if n ≡ 1, 2(mod 4);

r + 1 if n ≡ 4(mod 8);

r + 2 if n ≡ 0(mod 8).

Then |Pic(O)[2]| = 2µ−1.

This paper is organized as follows. In section 2, we give a reinterpretation of Hp in

terms of quaternion orders. In section 3, we show that there is a regular action of Pic(O)[2]

on Hp whenever Hp 6= ∅, and provide a nonemptiness criterion for Hp. Throughout the

paper, the prime p ∈ N is assumed to be non-split in K. The notation Bp,∞ is reserved for

the unique quaternion Q-algebra ramified precisely at p and infinity. Given a set X and an

equivalence relation on X, the equivalence class of an element x ∈ X is denoted by [x].
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bers Sarah Arpin, Kristin Lauter, Renate Scheidler, Katherine Stange and Ha Tran for help-

ful comments on some initial ideas on this problem. The first author would also like to thank

Kiran Kedlaya and Rachel Pries for helpful suggestions, and Nandagopal Ramachandran for

helpful discussions. The second author thanks Chia-Fu Yu for helpful discussions.

2 Reinterpretation of the Fp-roots

As mentioned before, we are going to reinterpret the Fp-roots of H̃O(x) in terms of

quaternion orders. For this purpose, we first describe more concretely the reduction of

singular moduli with complex multiplication by O. Assume that the prime p is non-split in

K. For the moment, we make no assumption on the discriminant of the order O ⊂ K.

Let E``(O) be the set of isomorphism classes of elliptic curves over Q with complex

multiplication by O. It is canonically identified with the singular j-invariants with complex

multiplication by O (i.e. the roots of HO(x) ∈ Z[x]). The Picard group Pic(O) acts regularly

on E``(O) via a-transformation [19, §7] and [16, §1]:

Pic(O)× E``(O)→ E``(O), ([a], E) 7→ Ea. (2.1)

More concretely, if we pick a to be an integral ideal of O and write E[a] for the finite

group scheme ∩a∈aE[a], then Ea = E/E[a] by [24, Corollary A.4]. Here E[a] = ker(E
a−→

E). See [16, Proposition 1.26] and [24, Appendix] for the functorial characterization of Ea.

Alternatively, since a is an invertible O-ideal, Ea can also be identified canonically with the

Serre tensor construction a−1 ⊗O E (see [1, §1] and [2, §1.7.4]). Fix a member E0 ∈ E``(O).
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The regular action in (2.1) gives rise to a Pic(O)-equivariant bijection ξ : E``(O)→ Pic(O)

that sends E0 to the identity element [O] ∈ Pic(O).

Similarly, let E``ss
/Fp

be the set of isomorphism classes of supersingular elliptic curves

over Fp, which is canonically identified with the set of supersingular j-invariants in Fp2 . From

[20, Theorem V.3.1], an elliptic curve E/Fp is supersingular if and only if its endomorphism

algebra End0(E) := End(E) ⊗ Q is a quaternion Q-algebra. Assume that this is the case.

Then End0(E) coincides with the unique quaternion Q-algebra Bp,∞ ramified precisely at p

and infinity, and End(E) is a maximal order in End0(E) by [24, Theorem 4.2]. For simplicity,

put B := Bp,∞ and let Typ(B) be the type set of B, that is, the set of isomorphism (i.e.

B×-conjugacy) classes of maximal orders in B. We obtain the following canonical map,

which is known to be surjective [23, Corollary 42.2.21]:

ρ : E``ss
/Fp

� Typ(B), E 7→ [End(E)]. (2.2)

Let R be a maximal order in B, and Cl(R) be its left ideal class set, that is, the set of

isomorphism (i.e. right B×-equivalent) classes of fractional left ideals of R in B. Given a

fractional left ideal I ofR, we write Rr(I) for the right order of I, which is defined as follows:

Rr(I) := {x ∈ B | Ix ⊆ I}.

Sending a fractional left R-ideal to its right order induces a surjective map

Υ : Cl(R) � Typ(B), [I] 7→ [Rr(I)]. (2.3)

The Deuring correspondence [23, Corollary 42.3.7] establishes a bijection between Cl(R)

and E``ss
/Fp

. One direction of this correspondence goes as follows. From the surjectivity of

ρ, we may always fix ER ∈ E``ss
/Fp

such that End(ER) = R. Then the member of E``ss
/Fp

corresponding to a left ideal class [I] ∈ Cl(R) is the I-transform EI
R of ER. If I is chosen

to be an integral left ideal of R, then EI
R can be identified with the quotient ER/ER[I] by

[24, Corollary A.4] again. From [23, Corollary 42.3.7], we have

End(EI
R) ' Rr(I). (2.4)

Let P be a place of Q lying above p, and rP : E``(O) → E``ss
/Fp

be the reduction map

modulo P. For each E ∈ E``(O), we write Ẽ for the reduction of E modulo P. From [12,

§9.2], reducing E0 modulo P gives rise to an embedding ι : O ↪→ R0 := End(Ẽ0). By an

abuse of notation, we still write ι for both of the following two induced maps:

K ↪→ B and Pic(O)
[a]7→[R0ι(a)]−−−−−−−−→ Cl(R0). (2.5)

For simplicity, we identify K with its image in B via ι and write R0a for R0ι(a).

Now we are ready to give a concrete description of rP : E``(O)→ E``ss
/Fp

.
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Proposition 2.1 The reduction map rP fits into a commutative diagram as follows:

Here ξ is the Pic(O)-equivariant bijection that sends the fixed member E0 ∈ E``(O) to

[O] ∈ Pic(O), and δ is the Deuring correspondence obtained by taking ER0
= Ẽ0.

Proof According to [19, Proposition 15, §11], a-transforms are preserved under good

reductions1. This implies that for every [a] ∈ Pic(O), we have

Ẽa
0 = (Ẽ0)

a = (Ẽ0)
R0a,

so the left square commutes. The right triangle commutes because of (2.4).

Corollary 2.2 For any [a] ∈ Pic(O), we have End(Ẽa
0 ) ' a−1R0a.

Proof This follows directly from Proposition 2.1 since the right order ofR0a is precisely

a−1R0a.

Remark 2.3 Let OK be the ring of integers of K, and f be the conductor of O so

that O = Z + fOK . Write f = pmf ′ with p - f ′, and put O′ := Z + f ′OK. According to

[17, Lemma 3.1], ι(K) ∩ R0 = ι(O′). For any invertible fractional ideal a of O, we have

R0a = (R0O′)a = R0(O′a). It follows that the map ι : Pic(O) → CI(R0) factors through

the following canonical homomorphism

$ : Pic(O)→ Pic(O′), [a] 7→ [O′a].

From this, one easily deduces that H̃O(x) = (H̃O′(x))| ker($)|.

Now assume that O is maximal at p (i.e. p - f). From Remark 2.3, ι : O → R0

is an optimal embedding of O into R0, that is, ι(K) ∩ R0 = ι(O). Given an arbitrary

maximal order R of B, we write Emb(O,R) for the set of optimal embeddings of O into

R. The unit group R× acts on Emb(O,R) by conjugation, and there are only finitely

many orbits. Put m(O,R,R×) := |R×\Emb(O,R)|, the number of R×-conjugacy clasess of

optimal embeddings from O into R. We recall below a precise formula by Elkies, Ono and

Yang for the cardinality of each fiber of the reduction map rP : E``(O)→ E``ss
/Fp

.

Lemma 2.4 [[7, Lemma 3.3]] Suppose that O is maximal at p. Then for any member

E ∈ E``ss
/Fp

, we have

|r−1
P (E)| = ε ·m(O,R,R×),

where R = End(E), and ε = 1/2 or 1 according as p is inert or ramified in K.

A priori, [7, Lemma 3.3] is only stated for the maximal order OK . Nevertheless, the same

proof there applies more generally to quadratic orders maximal at p. Alternatively, using

1A priori, the statement of [19, Proposition 15, §11] requires that O = OK , the maximal order of K.

Nevertheless, the result here holds for general O here since a is an invertible O-ideal by our assumption.
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Proposition 2.1 and the Deuring lifting theorem2 [12, Theorem 14, §13.5] [8, Proposition 2.7],

one easily sees that Lemma 2.4 is equivalent to the following purely arithmetic result, whose

independent proof will be left for the interested reader.

Lemma 2.5 Keep O and ε as in Lemma 2.4. Let R be a maximal order in B, and

ϕ : O ↪→ R be an optimal embedding. Denote the induced map Pic(O) → CI(R) by ϕ as

well. Then for each [I] ∈ CI(R), we have

|ϕ−1([I])| = ε ·m(O,Rr(I),Rr(I)
×).

We immediately obtain the following corollaries from Lemma 2.4 .

Corollary 2.6 Suppose that O is maximal at p. The j-invariant of a supersingluar

elliptic curve E/Fp is a root of H̃O(x) if and only if O can be optimally embedded into

End(E).

This matches well with Corollary 2.2. Indeed, a classical result of Chevalley, Hasse and

Noether [9, §4] says that any maximal order of B that contains a copy of O optimally is

isomorphic to a−1R0a for some [a] ∈ Pic(O).

Corollary 2.7 If p > | disc(O)|, then the reduction map rP : E``(O) → E``ss
/Fp

is

injective. In particular, H̃O(x) has no repeated roots.

We give a simple proof that is independent of the result of Gross and Zagier [8].

Proof Since p does not split in K and is strictly greater than |disc(O)|, it is necessarily

inert in K. From Lemma 2.4 , it suffices to show that |Emb(O,R)| ≤ 2 for any maximal

order R in B. Since p > | disc(O)|, Kaneko’s inequality [10, Theorem 2’] forces any two

optimal embeddings ϕ, ϕ′ : O → R to have the same image. On the other hand, ϕ and ϕ′

share the same image if and only if ϕ′ = ϕ or ϕ̄, the complex conjugate of ϕ. The desired

inequality |Emb(O,R)| ≤ 2 follows immediately.

Remark 2.8 In another direction, Elkies, Ono and Yang [7, Theorem 1.4] showed that

there exists a bound Np such that the reduction map rP : E``(OK) → E``ss
/Fp

is surjective

whenever | disc(OK)| > Np. This bound is first effectivized by Kane [11] conditionally upon

the generalized Riemann hypothesis. Liu et al. further improved this bound in [14, Corollary

1.3].

Let us return to the task of interpreting Fp-roots of H̃O(x) ∈ Fp[x] in terms of maximal

orders in B. For the rest of this section, we keep the additional assumption that p >

| disc(O)|. We recall from [6, Proposition 2.4] a classical result on supersingular elliptic

curves in characteristic p.

Lemma 2.9 Let p > 3 and let E be a supersingular elliptic curve over Fp. Then

j(E) ∈ Fp if and only if there exists ψ ∈ End(E) such that ψ2 = −p.
Recall that Hp denotes the set of Fp-roots of H̃O(x), which can be identified canonically

with a subset of E``ss
/Fp

.

2Here the Deuring lifting theorem guarantees that the optimal embedding ι : O → R0 is “non-special”,

that is, every optimal embedding ϕ : O → R is realizable as End(E) → End(Ẽ) for some E ∈ E``(O).
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Lemma 2.10 The map ρ : E``ss
/Fp
→ Typ(B) in (2.2) induces a bijection between Hp

and the following subset Tp ⊆ Typ(B):

Tp := {[R] ∈ Typ(B) | Emb(O,R) 6= ∅, and ∃α ∈ R such that α2 = −p}. (2.6)

Proof Combining Corollary 2.6 and Lemma 2.9, we see that ρ(Hp) = Tp. Now it

follows from [23, Lemma 42.4.1] that ρ : Hp → Tp is injective, and hence bijective.

We give another characterization of Tp by presenting the quaternion algebra B = Bp,∞

more concretely. Let d ∈ N be the unique square-free positive integer such thatK = Q(
√
−d).

The assumption that p is inert in K amounts to the equality
(
−d
p

)
= −1. Let

(
−d,−p

Q

)
be

the quaternion Q-algebra with standard basis {1, i, j, k} such that

i2 = −d, j2 = −p and k = ij = −ji. (2.7)

We identify K = Q(
√
−d) with Q(i), and O with the corresponding order in Q(i). Put

Λ := O+ jO, which is an order (of full rank) in the above quaternion algebra. Consider the

following finite set of maximal orders:

Sopt :=

{
R ⊂

(
−d,−p

Q

)
|R is a maximal order containing Λ and R ∩Q(i) = O

}
. (2.8)

Here the superscript “opt” stands for “O-optimal”.

Proposition 2.11 Let R be a maximal order in B. We have [R] ∈ Tp if and only if

R ' R for some R ∈ Sopt. In particular, Hp 6= ∅ if and only if
(

−d,−p
Q

)
' B and Sopt 6= ∅.

Proof Clearly, if R ' R for some R ∈ Sopt, then [R] ∈ Tp. Conversely, suppose that

[R] ∈ Tp, that is, R contains a copy of O optimally, and there exists α ∈ R with α2 = −p.
Then Rα is the unique two sided prime ideal of R lying above p. From [22, Exercise I.4.6],

R is normalized by α, which implies that Oα := αOα−1 is still a quadratic order optimally

embedded in R. If Oα 6= O, then |disc(O)| ≥ p by Kaneko’s inequality [10, Theorem 2’],

contradicting to our assumption that | disc(O)| < p. Thus Oα = O, and conjugation by α

induces an automorphism σ ∈ Aut(O). If σ is the identity, then α lies in the centralizer

of O in B, which is just K. This contradicts to the assumption | disc(O)| < p again. It

follows that σ is the unique nontrivial automorphism of O, i.e. the complex conjugation. We

conclude that ΛR := O+αO ⊂ R is isomorphic to Λ, and B = ΛR⊗ZQ ' Λ⊗ZQ =
(

−d,−p
Q

)
.

Consequently, R is isomorphic to some member of Sopt. The last statement follows from the

bijection Hp ' Tp in Lemma 2.10.

Lemma 2.12 The isomorphism
(

−d,−p
Q

)
' B holds if and only if

(
−p
`

)
= 1 for every

odd prime factor ` of d.

Proof For the moment, let ` be either a prime number or ∞. Write (−d,−p)` for the

Hilbert symbol of −d and −p relative to Q` (where Q∞ = R). From [22, Corollaire II.1.2],(
−d,−p

Q

)
is split at ` if and only if (−d,−p)` = 1. Clearly, (−d,−p)∞ = −1.
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Now assume that ` is an odd prime. By our assumption, p is an odd prime satisfying(
−d
p

)
= −1. From [18, Theorem 1, §III.1], we easily compute that

(−d,−p)` =





1 if ` - (dp);

−1 if ` = p;
(
−p
`

)
if `|d.

Therefore, if
(

−d,−p
Q

)
' B, then necessarily

(
−p
`

)
= 1 for every odd prime factor ` of d.

Conversely, if
(
−p
`

)
= 1 for every odd prime factor ` of d, then (−d,−p)2 = 1 by

the product formula [18, Theorem 2, §III.2]. Hence this condition is also sufficient for the

isomorphism
(

−d,−p
Q

)
' B.

3 The Pic(O)[2]-action on Hp and the Nonemptiness Criterion

Throughout this section, we assume that p is inert in K = Q(
√
−d) and strictly greater

than | disc(O)|. Assume further that the quaternion Q-algebra
(

−d,−p
Q

)
is ramified precisely

at p and infinity, for otherwise Hp = ∅. Denote
(

−d,−p
Q

)
simply by B henceforth and let

{1, i, j, k} be the standard basis of B as in (2.7). We identify K with the subfield Q(i) of B.

Then conjugation by j stabilizes K and sends each x ∈ K to its complex conjugate x̄. Let

Λ = O + jO, and Sopt be the set of maximal orders in (2.8).

First, we assume that Hp 6= ∅ and exhibit a regular action of Pic(O)[2] on Hp. Since the

reduction map rP : E``(O)→ E``ss
/Fp

is injective by Corollary 2.7, the regular action of Pic(O)

on E``(O) induces a regular action of Pic(O) on the image rP(E``(O)) (or equivalently, on

the full set of roots of H̃O(x)). We show that this action restricts to a regular Pic(O)[2]-action

on Hp.

Proposition 3.1 Let E0 ∈ E``(O) be a member satisfying j(Ẽ0) ∈ Fp. Given [a] ∈
Pic(O), we have j(Ẽa

0) ∈ Fp if and only if [a] is a 2-torsion. In particular, Pic(O)[2] acts

regularly on Hp.

Proof Put R0 := End(Ẽ0) and R := a−1R0a so that End(Ẽa
0 ) ' R by Corollary 2.2.

From Lemma 2.9, it is enough to show that there exists α ∈ R with α2 = −p if and only

if [a] ∈ Pic(O)[2]. By Proposition 2.11, we may assume that R0 ∈ Sopt, that is, R0 is a

maximal order in B satisfying R0 ⊇ O + jO and R0 ∩K = O. Then

R∩K = a−1(R0 ∩K)a = O, and R ⊇ a−1ja = a−1āj. (3.1)

First, suppose that [a] ∈ Pic(O)[2]. Then a−1ā = Oa for some a ∈ K×. Moreover,

NK/Q(Oa) = NK/Q(a−1ā) = Z, so NK/Q(a) = 1. Therefore α := aj ∈ R satisfies that

α2 = aāj2 = −p.
Conversely, suppose that α ∈ R is an element satisfying α2 = −p. From the proof of

Proposition 2.11, we must have αx = x̄α for every x ∈ O. Thus j−1α centralizes O, so there
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exists a ∈ K× such that α = ja. Moreover, NK/Q(a) = 1 since α2 = j2āa. Now we have

R ⊃ a−1āj · α = a−1āj · ja = −paa−1ā. (3.2)

We claim that R ⊃ aa−1ā. It suffices to show that R` ⊃ aa−1
` ā` for every prime ` ∈ N, where

the subscript ` indicates `-adic completion at `. If ` 6= p, then (−p) ∈ R×
` , so the containment

follows directly from (3.2). If ` = p, then Rp coincides with the unique maximal order of the

division quaternion Qp-algebra Bp. More concretely, Rp = {z ∈ Bp | nrd(z) ∈ Zp}, where

nrd(z) denotes the reduced norm of z ∈ Bp. On the other hand, for any xp ∈ a−1
p and yp ∈ ap,

we have xpyp ∈ Op, and hence nrd(axpȳp) = nrd(xp) nrd(ȳp) = nrd(xpyp) ∈ Zp. Since a−1
p āp

is generated by elements of the form xpȳp, it follows that Rp ⊃ aa−1
p āp. The claim is verified.

Now aa−1ā ⊆ R ∩ K = O, which implies that aā ⊆ a. Comparing discriminants on both

sides, we get disc(aā) = NK/Q(a)2 disc(ā) = disc(a). Therefore, aā = a, so [a] ∈ Pic(O)[2].

Now we drop the assumption that Hp 6= ∅ and derive a non-emptiness criterion for Hp.

From Proposition 2.11, Hp 6= ∅ if and only if Sopt 6= ∅ (as we have already assumed that(
−d,−p

Q

)
' Bp,∞). For each prime ` ∈ N, let us put

Sopt
` := {R` ⊆ B` | R` is a maximal order containing Λ` and R` ∩K` = O`}.

The local-global correspondence of lattices [5, Proposition 4.21] establishes a bijection be-

tween Sopt and
∏

` S
opt
` , where the product runs over all prime `. Since the reduced discrim-

inant of B is p and the reduced discriminant of Λ is p disc(O) by [15, Lemmas 2.7 and 2.9],

Λ is maximal at every prime ` coprime to disc(O). Moreover, for each such `, the maximal

order Λ` automatically satisfies the condition Λ` ∩K` = O` by its definition Λ` = O` + jO`.

Hence for ` - disc(O), the set Sopt
` has a single element Λ`, and the bijection above simplifies

as

Sopt ←→
∏

`|disc(O)

Sopt
` . (3.3)

Lemma 3.2 Let ` be a prime factor of disc(O). Then Sopt
` 6= ∅ if and only if −p ∈

NK/Q(O×
` ). Moreover, if Sopt

` 6= ∅, then there is a regular action of H1(K/Q,O×
` ) on Sopt

` ,

so any fixed member of Sopt
` gives rise to a bijection Sopt

` ' H1(K/Q,O×
` ).

The Galois cohomological description of Sopt
` is nice to know but not used elsewhere in

this paper.

Proof By our assumption, disc(O) is coprime to p, so B splits at the prime `. This

allows us to identify B` with the matrix algebra M2(Q`). Let V` = Q2
` be the unique

simple B`-module. Every maximal order R` in B` is of the form EndZ`
(L`) for some Z`-

lattice L` ⊆ V`, and L` is uniquely determined by R` up to Q×
` -homothety. In other words,

EndZ`
(L`) = EndZ`

(L′
`) if and only if L` = cL′

` for some c ∈ Q×
` . If R` ∈ Sopt

` , then

the inclusion Λ` ⊆ R` puts a Λ`-module structure on L`. Moreover, the Λ`-lattice L` is

O`-optimal in the sense that EndZ`
(L`) ∩ K` = O`. Conversely, if M` is an O`-optimal

Λ`-lattice in V`, then EndZ`
(M`) is a member of Sopt

` . We have established the following
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canonical bijection

Sopt
` ←→M := {O`-optimal Λ`-lattices L` ⊂ V`}/Q×

` . (3.4)

Recall that Λ` = O` + jO`, where j2 = −p and jx = x̄j for any x ∈ O`. If there exists

a ∈ O×
` satisfying aā = −p, then we can put a Λ`-module structure on O` as follows:

(x+ jy) · z = xz + ȳz̄a, ∀x, y, z ∈ O`.

Since B` = Λ`⊗Z`
Q`, this also puts a B`-module structure on K` = O`⊗Z`

Q`. Consequently,

it identifies K` with the unique simple B`-module V`, and in turn identifies O` with a

Λ`-lattice L` in V`. Necessarily, L` is O`-optimal since EndZ`
(L`) ∩ K` = EndO`

(L`) =

EndO`
(O`) = O`. We have shown that if −p ∈ NK/Q(O×

` ), then Sopt
` 6= ∅.

Conversely, suppose that Sopt
` 6= ∅ and let M` be an O`-optimal Λ`-lattice in V`. The

inclusion O` ⊂ Λ` equips M` with an O`-module structure satisfying EndO`
(M`) = O`.

Being a quadratic Z`-order, O` is both Gorenstein and semi-local. It follows from [21,

Characterization B 4.2] that M` is a free O`-module of rank one. Pick a basis e so that

M` = O`e. Since M` is at the same time a module over Λ`, we have je = ae for some a ∈ O`.

Necessarily, āa = −p because

−pe = j2e = j(je) = j(ae) = āje = āae.

This also implies that a ∈ O×
` since ` 6= p. Therefore, Sopt

` 6= ∅ if and only if −p ∈ NK/Q(O×
` ).

Had we picked a different basis e′ for M`, then e′ = ue for some u ∈ O×
` . It follows that

je′ = j(ue) = ūje = ūae = u−1ūae′.

Correspondingly, a is changed to u−1ūa. Therefore, we have defined the following map:

Φ :M→ {a ∈ O×
` | aā = −p}/∼, (3.5)

where a ∼ a′ if and only if there exists some u ∈ O×
` such that a′ = a(ū/u). We have already

seen that Φ is surjective. Suppose that Φ([M1]) = Φ([M2]) for [Mr] ∈ M with r = 1, 2.

By the above discussion, we can choose suitable O`-base er for Mr such that they give rise

to the same a ∈ O×
` . Then the O`-linear map sending e1 to e2 defines a Λ`-isomorphism

between M1 and M2. Since AutB`
(V`) = Q×

` , it follows that M1 and M2 are Q×
` -homothetic,

so Φ is injective as well.

Lastly, if the right hand side of (3.5) is nonempty, then it admits a regular action by

H1(K/Q,O×
` ) = {b ∈ O×

` | b̄b = 1}/∼ via multiplication. The second part of the lemma

follows by combining the bijections (3.4) and (3.5) with the above action.

Lemma 3.3 Let ` be a prime factor of disc(O). Then −p ∈ NK/Q(O×
` ) if and only if

either condition (i) or (ii) below holds for ` depending on its parity:

(i) ` 6= 2 and
(
−p
`

)
= 1;
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(ii) ` = 2 and one of the following conditions holds:

(a) p ≡ 7(mod 8);

(b) −p+ disc(O)
4
≡ 0, 1 or 4(mod 8);

(c) −p+ disc(O) ≡ 1(mod 8).

Proof For simplicity, put D := disc(O) and δ = 1
2

√
D. We claim that O` = Z` + Z`δ.

It is well known that O = Z + Z(D +
√
D)/2. The claim is obviously true if 4|D. If 4 - D,

then ` 6= 2, so the claim is true in this case as well. Given an element a + bδ ∈ O` with

a, b ∈ Z`, we have NK/Q(a+ bδ) = a2− b2D/4. Therefore, −p ∈ NK/Q(O×
` ) if and only if the

equation

x2 − y2D

4
= −p (3.6)

has a solution in Z2
` .

First, suppose that ` is odd. Then equation (3.6) is solvable in Z2
` if and only if

(
−p
`

)
= 1.

Indeed, suppose
(
−p
`

)
= 1 so that −p is a square in F`. By Hensel’s lemma [23, Lemma

12.2.17], the equation x2 = −p has a solution x0 ∈ Z`. Hence (x0, 0) is a solution of (3.6) in

Z2
` . Conversely, suppose (3.6) has a solution (x0, y0) ∈ Z2

` . Reducing (3.6) modulo ` shows

that x0 (mod `) is a square root of −p in F`, i.e.
(
−p
`

)
= 1.

For the rest of the proof we assume that ` = 2, which implies that 4|D. First, suppose

that (x, y) ∈ Z2
2 is a solution of (3.6). Since x2, y2 ≡ 0, 1 or 4(mod 8) and at least one

of x, y lies in Z×
2 because p is odd, we see that the pair (x2, y2) takes on five possibilities

modulo 8:

(x2, y2) ≡ (0, 1), (1, 0), (1, 1), (1, 4) and (4, 1) (mod 8).

Each possibility puts the following respective constraint on p and D:

−p+
D

4
≡ 0 (mod 8), −p ≡ 1 (mod 8), −p+

D

4
≡ 1 (mod 8),

−p+D ≡ 1 (mod 8), −p+
D

4
≡ 4 (mod 8).

We have proved the necessity part of the lemma for the case ` = 2.

Conversely, let us show that the above congruence conditions are also sufficient. From

the discussion above, each of these conditions guarantees the existence of a solution (x̃, ỹ)

of equation (3.6) in (Z/8Z)2 such that either x̃ or ỹD/4 lies in (Z/8Z)×. Now from a

multivariate version of Hensel’s lemma [23, Lemma 12.2.8], the pair (x̃, ỹ) lifts to a solution

of (3.6) in Z2
2. The sufficiency is proved.

Therefore, −p ∈ NK/Q(O×
2 ) if and only if one of the following conditions holds:

(a) p ≡ 7(mod 8);

(b) −p+ disc(O)
4
≡ 0, 1 or 4(mod 8);

(c) −p+ disc(O) ≡ 1(mod 8).
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Proof of Theorem 1.1 If Hp 6= ∅, then there is a regular action of Pic(O)[2] on

Hp by Proposition 3.1. The criterion for the nonemptiness of Hp follows from combining

Proposition 2.11 with equation (3.3) and Lemmas 2.12, 3.2 and 3.3.
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