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Abstract: In this paper, we study a class of MEMS models with a perturbation term. With

the help of upper and lower solution method and variational approach, we obtain the existence
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parameters in the first quadrant into two parts according to the existence of solutions for a MEMS

system. These are an extension on the existing literature in the aspect of MEMS models.
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1 Introduction

In this paper we discuss the existence and nonexistence of solutions to the following
MEMS equation 




−∆u = λ(1+δ|∇u|2)
(1−u)p + P, x ∈ Ω,

0 ≤ u < 1, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

and the following MEMS system




−∆u = λ(1+δ|∇u|2)
(1−v)p , x ∈ Ω,

−∆v = µ(1+δ|∇v|2)
(1−u)p , x ∈ Ω,

0 ≤ u, v < 1, x ∈ Ω,

u, v = 0, x ∈ ∂Ω,

(1.2)

where Ω is a bounded domain in RN with N ≥ 3, p > 1 and λ, µ, δ, P are all positive
parameters. The relevant problems corresponding to (1.1), (1.2) have been studied in various
areas such as mathematics, physics and so forth.
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In fact, problems like equation (1.1) originally came from the so-called MEMS model
which MEMS means Micro-Electro-Mechanical Systems. This model describes the motion of
an elastic membrane supported on a fixed ground plate and has been extensively studied for
decades. Here we quote some of them and more details can be found in [1-8] and references
therein.

MEMS device is composed of an elastic membrane supported on a fixed ground plate.
When a voltage λ is applied, the elastic membrane deflects toward the ground plate. While
the voltage exceeds a critical value λ∗, the two plates touch and no longer separate. This
state is called unstable. MEMS device is no longer working properly. However, for the sake
of research convenience, most researchers regard the parallel plates as infinite in length and
ignore electrostatic field at the edges of the plates. After approximation, the authors in
papers [6–8] introduced the following model

{
−∆u = λf(x)

(1−u)2
, in Ω,

u = 0, on ∂Ω,
(1.3)

where Ω ⊂ RN is a bounded domain and f(x) ∈ C(Ω) is a non-negative function. In [6], the
authors applied analytical and numerical techniques to establish upper and lower bounds for
λ∗ which is a critical value of (1.3). They also obtained some properties of the stable and
semistable solution such as regularity, uniqueness, multiplicity and so on. In [7], the authors
proved the existence of the second solution by variational approach and got the compactness
along the branches of unstable solution. In [8], the authors applied the extend Pohozaev
identity and addressed that when λ is a small voltage and the domain Ω is bounded and
star-shaped, then stable solution is the unique solution.

In [9], Cassani, Marcos and Ghoussoub investigated the existence of biharmonic type as
follows: 




−∆2u = λf(x)
(1−u)2

, in BR,

0 ≤ u < 1, in BR,

u = ∂u
∂η

= 0, on ∂BR,

(1.4)

where BR is a ball in RN centered at the origin with radius R, 0 ≤ f(x) ≤ 1 and η denotes
the unit outward normal to ∂BR. They proved that, there exists a λ∗ = λ∗(R, f) > 0 such
that for 0 < λ < λ∗, problem (1.4) possesses a minimal positive and stable solution uλ.

Since the approximation of (1.3) brings some errors in some cases, the models (1.3)
need be corrected in several manners. In [10, 11], the authors started to consider the effect
of edges of plates and added the corner-corrected term in (1.3). For instance, the authors in
[11] studied the following equation





−∆u = λ(1+δ|∇u|2)
(1−u)p , in Ω,

0 ≤ u < 1, in Ω,

u = 0, on ∂Ω,

(1.5)
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where δ > 0, p > 1 and λ > 0. They obtained the existence and nonexistence result
depending on δ and some λ∗δ > 0.

If we correct the model (1.3) with external force or pressure, it can be reduced to




∆u = λf(x)
u2 + P, in Ω,

0 ≤ u < 1, in Ω,

u = 1, on ∂Ω,

(1.6)

where P > 0 is a parameter. In [12], Guo, Zhang and Zhou obtained the existence and
nonexistence result of (1.6) which depends on λ and P .

Inspired by the researches in [11–13], we will study the problem (1.1) and get our first
result.

Theorem 1.1 For any δ > 0, we have
(i) There exists a P ∗ > 0 such that for any P ≥ P ∗, (1.1) has no solution in H1

0 (Ω).
(ii) For any 0 < P < P ∗, there exists a critical constant λ∗P > 0 such that for 0 < λ < λ∗P ,

(1.1) has at least two positive solutions in H1
0 (Ω). Moreover, if λ = λ∗P then (1.1) has only

one positive solution in H1
0 (Ω) and has no solution for λ > λ∗P .

Since our equation (1.1) has both the corner-corrected term and external pressure term,
we will use the upper and lower solution method to find the first solution. After showing that
the first solution is exactly the local minimum of the corresponding energy functional of (1.1),
we want to find the second solution with the help of Mountain Pass Lemma. However since
the lack of Ambrosetti-Rabinowitz condition [14] (i.e., there exists an a > 0 such that for
|z| ≥ a, G(x, z)+H(x, z) ≤ θ(g(x, z)z+h(x, z)z) where θ ⊂ [0, 1

2
) and G(x, z) =

∫ z

0
g(x, t)dt,

H(x, z) =
∫ z

0
h(x, t)dt). Therefore we will use the monotonicity trick ([15]) to find a bounded

(PS)c sequence so that we can get our result.
Recently, the following Lane-Emden system was considered by do Ó and Clemente ([16]):





−∆u = λf(x)
(1−v)2

, in Ω,

−∆v = µg(x)
(1−u)2

, in Ω,

0 ≤ u, v < 1, in Ω,

u = v = 0, on ∂Ω.

(1.7)

They obtained a curve Γ that separates the positive quadrant of the (λ, µ)-plane into two
connected components O1 and O2. For (λ, µ) ∈ O1, problem (1.7) has a positive classical
minimal solution (uλ, vλ). If (λ, µ) ∈ O2, there is no solution.

Motivated by the result in [16], we consider the system (1.2) in the second part. With
the help of upper and lower solution approach we get the next result.

Theorem 1.2 There exists a curve Γ which splits the parameter area (λ, µ) of the
first quadrant into two connected parts D1 and D2. When (λ, µ) ∈ D1, (1.2) has at least
one solution. There is no solution if (λ, µ) ∈ D2.
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The rest of our paper is organized as follows. In Section 2, we will introduce a function
transformation to (1.1) and some auxilary results. In Section 3, we give the proof of Theorem
1.1. In Section 4, we show the proof of Theorem 1.2.

2 Preliminaries

Let Ω be a bounded domain in RN for N ≥ 3. Throughout the paper we use standard
Sobolev space H1

0 (Ω) with the usual norm

‖u‖ = (
∫

Ω

|∇u|2 dx)
1
2 ,

and the usual Lebesgue space Lp(Ω) whose norms are denoted by |u|p. Since it is hard to
write the concrete form of energy functional of (1.1), we introduce a function transformation
to overcome this difficulty. Set

v = f̂(u) =
∫ u

0

e
λδ

(p−1)(1−t)p−1 dt

for u ∈ (0, 1). Then v ∈ (0,∞) and f̂
′
(u) = e

λδ

(p−1)(1−u)p−1 > 0.

This shows that f̂ is strictly increasing, and therefore has an inverse function f such
that u = f(v). Thus we have

−∆v = −∆f̂(u) = −∇(f̂ ′(u)∇u)

= −∇(e
λδ

(p−1)(1−u)p−1∇u)

= −e
λδ

(p−1)(1−u)p−1
λδ

(1− u)p
|∇u|2 − e

λδ

(p−1)(1−u)p−1 ∆u.

Together with (1.1), we know that the existence of solution to (1.1) is equivalent to the
existence of the following equation

{
−∆v = g(v) + h(v), x ∈ Ω,

v = 0, x ∈ ∂Ω,
(2.1)

where g(v) = e
λδ

(p−1)(1−f(v))p−1
λ

(1− f(v))p
and h(v) = Pe

λδ

(p−1)(1−f(v))p−1 . Then it is easy to see

that the energy functional associated to problem (2.1) can be denoted by

I(v) =
1
2

∫

Ω

|∇v|2 dx−
∫

Ω

G(v)dx−
∫

Ω

H(v) dx (2.2)

for v ∈ H1
0 (Ω), where G(v),H(v) are defined by

G(v) =
∫ v

0

g(s) ds =
∫ v

0

e
λδ

(p−1)(1−f(s))p−1
λ

(1− f(s))p
ds (2.3)

and

H(v) =
∫ v

0

h(s) ds =
∫ v

0

Pe
λδ

(p−1)(1−f(s))p−1 ds. (2.4)
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We will give some properties satisfied by g(s), h(s) and G(s), H(s) defined by (2.1),
(2.3) and (2.4). In the sequel, C, C ′, C ′′, Ci (i ∈ N+) represent different constants in the
different circumstances.

Proposition 2.1 (i) We have g(s) ∈ C2(R) with g(s) > 0,h(s) > 0, g′(s) >

0,h′(s) > 0 and g′′(s) > 0. Moreover, g′′(s) is bounded in R.

(ii) There exist positive constants C1, C2 such that

C1s(log s)
2p

p−1 ≤ g(s) ≤ C2s(log s)
2p

p−1 for all s ≥ e.

(iii) There exist positive constants C1, C2 such that

C1s
2(log s)

2p
p−1 ≤ G(s) ≤ C2s

2(log s)
2p

p−1 for all s ≥ e.

(iv) There exist positive constants C1, C2 such that

C1s(log s)
p

p−1 ≤ h(s) ≤ C2s(log s)
p

p−1 for all s ≥ e.

(v) There exist positive constants C1, C2 such that

C1s
2(log s)

p
p−1 ≤ H(s) ≤ C2s

2(log s)
p

p−1 for all s ≥ e.

(vi) For any s ∈ R, we have |G(s)| ≤ C1(1 + |s|q+1) and |H(s)| ≤ C2(1 + |s| q+1
2 ) for

q > 1.

Proof Here we only prove (iv)–(vi) about h(s),H(s) and the detailed proof of (i)–(iii)
about g(s), G(s) can be found in [11]. From the proof of Lemma 2.2 in [11] , we know

C1
λδs

(1− f(s))p
≤ e

λδ

(p−1)(1−f(s))p−1 ≤ C2
λδs

(1− f(s))p

and
C1(log s)

p
p−1 ≤ 1

(1− f(s))p
≤ C2(log s)

p
p−1 for some C1, C2 > 0.

Therefore, we obtain

C3s(log s)
p

p−1 ≤ h(s) = Pe
λδ

(p−1)(1−f(s))p−1 ≤ C4s(log s)
p

p−1 .

Integrating by parts, we obtain C5s
2(log s)

p
p−1 ≤ H(s) ≤ C6s

2(log s)
p

p−1 . Since if s large
enough, (log s)

p
p−1 ≤ s

q−1
2 for any q > 1, H(s) ≤ C(1 + |s| q+1

2 ) for any q > 1.

Proposition 2.2 For any m ∈ N , there exists sm > 0 such that
{

g(s) = C1,ms(log s)
2p

p−1 + C2,ms, s = sm,

g(s) > C1,ms(log s)
2p

p−1 + C2,ms, s > sm,
(2.5)

and {
h(s) = C3,ms(log s)

p
p−1 + C4,ms, s = sm,

h(s) > C3,ms(log s)
p

p−1 + C4,ms, s > sm,
(2.6)

where Ci,m > 0 (i = 1, 2, 3, 4) are positive constants depending on m.
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Proof We know that when s > e, C1s(log s)
2p

p−1 ≤ g(s) ≤ C2s(log s)
2p

p−1 and C3s(log s)
p

p−1

≤ h(s) ≤ C4s(log s)
p

p−1 . We can choose n ∈ N such that C1(m + n − 1)
2p

p−1 − C2m
2p

p−1 +
C3(m + n− 1)

p
p−1 − C4m

p
p−1 > 0. Let

C1,m =
C1(m + n− 1)

2p
p−1 − C2m

2p
p−1

(m + n− 1)
2p

p−1 −m
2p

p−1

, C3,m =
C3(m + n− 1)

p
p−1 − C4m

p
p−1

(m + n− 1)
p

p−1 −m
p

p−1
,

and

C2,m =
m

2p
p−1 (m + n− 1)

2p
p−1 (C2 − C1)

(m + n− 1)
2p

p−1 −m
2p

p−1

, C4,m =
m

p
p−1 (m + n− 1)

p
p−1 (C4 − C3)

(m + n− 1)
p

p−1 −m
p

p−1
.

Set Y (s) := C1,ms(log s)
2p

p−1 + C2,ms + C3,ms(log s)
p

p−1 + C4,ms. Then we get

Y (em) =C1,memm
2p

p−1 + C2,mem + C3,memm
p

p−1 + C4,mem

=
emm

2p
p−1 [C1(m + n− 1)

2p
p−1 − C2m

2p
p−1 ] + emm

2p
p−1 [(m + n− 1)

2p
p−1 (C2 − C1)]

(m + n− 1)
2p

p−1 −m
2p

p−1

+
emm

p
p−1 [C3(m + n− 1)

p
p−1 − C4m

p
p−1 ] + emm

p
p−1 [(m + n− 1)

p
p−1 (C4 − C3)]

(m + n− 1)
p

p−1 −m
p

p−1

=
emm

2p
p−1 C2[(m + n− 1)

2p
p−1 −m

2p
p−1 ]

(m + n− 1)
2p

p−1 −m
2p

p−1

+
emm

p
p−1 C4[(m + n− 1)

p
p−1 −m

p
p−1 ]

(m + n− 1)
p

p−1 −m
p

p−1

=C2e
mm

2p
p−1 + C4e

mm
p

p−1 .

This implies Y (em) > g(em) + h(em), and we can see

Y (em+n−1) = [C1,m(m + n− 1)
2p

p−1 + C2,m]em+n−1 + [C3,m(m + n− 1)
p

p−1 + C4,m]em+n−1

= C1e
m+n−1(m + n− 1)

2p
p−1 + C3e

m+n−1(m + n− 1)
p

p−1

< g(em+n−1) + h(em+n−1).

Let Ỹ (s) = g(s) + h(s) − Y (s), and then Ỹ (em) < 0 < Ỹ (em+n−1). According to the
continuity of function Ỹ (s), we can find em < sm < em+n−1 satisfying (2.5) and (2.6) .

Since we will use upper and lower solution method to get the first solution of (1.1), we
give the definition of upper and lower solution.

Definition 2.1 A function v ∈ H1
0 (Ω) is a upper solution to problems (1.1) if the

following 



−∆v ≥ λ(1+δ|∇v|2)
(1−v)p + P, x ∈ Ω,

0 ≤ v < 1, x ∈ Ω,

v = 0, x ∈ ∂Ω

(2.7)

holds. Accordingly, if the first inequality in (2.7) is reversed for some v, we call v a lower
solution of problem (1.1). The upper and lower solution for (2.1) is defined in the same way.
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In [17], T. Kusano established the existence of positive solutions in C2(RN ) to the
following problem

−∆u = f(x, u), x ∈ RN (2.8)

via the upper and lower solution method.
Proposition 2.3 ([17]) If there exists a upper solution ū and a lower solution u of

(2.8), ū ≥ u and f(x, u) are locally Lipschitz continuous, then (2.8) has a solution u and
u ≤ u ≤ ū.

If we consider (2.8) on some bounded domain Ω ⊂ RN with u = 0 on ∂Ω, then we quote
the following result.

Proposition 2.4 ([18]) Assume that u is the upper solution and u is the lower solution
of (2.8), I(u) is the energy functional of (2.8). Let U = {u ∈ H1

0 (Ω)|u ≤ u ≤ u a.e on Ω},
a(u) ∈ L1

loc(0,∞) for any u ∈ U , b(x) ∈ L1(Ω) and f(x, u) ≤ a(u)b(x), then there exists a
solution u of (2.8) in set U which is the minimum point of I(u) in U .

Proposition 2.5 ([19]) If u ∈ H1
0 (Ω) is the solution of the following equation

{
Lu = f(x, u) + tJ, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.9)

where L is a linear elliptic operator and t ≥ 0 is a constant. J is the first eigenfunction of L.
The function f(x, u) is continous and nonnegative function defined on Ω× [0,∞). Moreover,
if we assume

(i) limu→∞
f(x,u)

u
> λ1, for any x ∈ Ω, where λ1 is the first eigenvalue of L;

(ii) limu→∞
f(x,u)

uβ = 0, for any x ∈ Ω and β = N+1
N−1

;
then there is a constant K such that |u|L∞ ≤ K.

Lemma 2.1 For any solution v of (2.1), there exists a constant m0 > 0 such that
|v|L∞ ≤ m0.

Proof We prove this by Proposition 2.5. Let L = −∆, t = 0, f(x, u) = g(v) + h(v).
We only need to verify whether the conditions in Proposition 2.5 are satisfied. In fact, we
have

lim
v→∞

g(v) + h(v)
v

≥ lim
v→∞

C1v(log v)
2p

p−1 + C1v(log v)
p

p−1

v
= ∞ > λ1,

and then using n times of L’Hopital rule we get

0 ≤ lim
v→∞

g(v) + h(v)
vβ

≤ lim
v→∞

C2v(log v)
2p

p−1 + C2v(log v)
p

p−1

vβ

= lim
v→∞

C2v(log v)
2p−n(p−1)

p−1 + C2v(log v)
p−n(p−1)

p−1

(β − 1)nvβ−1

= 0.

Hence limv→∞
g(v)+h(v)

vβ = 0, and by Proposition 2.5, we know that there exists a constant
m0 such that |v|L∞ ≤ m0.
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We will use the variational method to find the second solution of (1.1), and therefore
we recall some basic results about this method.

Definition 2.2 ([20]) Given a real Banach space X, we say a functional I : X → R
of class C1 satisfying the mountain pass geometry if there exists u0, u1 ∈ X and 0 < r <

‖u1 − u0‖ such that

inf
‖u−u0‖=r

I(u) > max{I(u0), I(u1)}.

We define the Palais-Smale sequence at level c ((PS)c sequence for short) and (PS)c

conditions in X for I as follows.
Definition 2.3

(i) For c ∈ R, a sequence {un} is a (PS)c sequence in X for I if I(un) → c, I ′(un) → 0
as n →∞.

(ii) I satisfies the (PS)c condition in X if every (PS)c sequence in X for I contains a
convergent subsequence.

Now we quote the Mountain Pass Lemma.
Proposition 2.6 ([20]) If the functional I satisfies mountain pass geometry, then it has

a (PS)c sequence {un} in X, where c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), and Γ = {γ ∈ C([0, 1], X); γ(0) =

u0, γ(1) = u1}. Moreover, if I satisfies (PS)c conditions in X, then it admits a critical point
u such that I(u) = c, I ′(u) = 0.

In order to find a bounded (PS)c sequence for the functional I in H1
0 (Ω), we recall the

following monotonicity trick.
Proposition 2.7 ([21]) Let X be a Banach space equipped with a norm ‖ · ‖X and

J ⊂ R+ be an interval. We consider a family {Iµ}µ∈J of C1-functionals on X of the form

Iµ(u) = A(u)− µB(u), ∀µ ∈ J,

such that A(u) →∞ as ‖u‖X →∞. We assume there are two points v1, v2 in X such that

cµ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) > max{Iµ(v1), Iµ(v2)},

where Γ = {γ ∈ C([0, 1], X) | γ(0) = v1, γ(1) = v2}. Then, for almost every µ ∈ J , there is a
sequence {vn} ⊂ X such that {vn} is bounded in X, Iµ(vn) → cµ and I ′µ(vn) → 0. Moreover,
the map µ → cµ is continuous from the left.

In the sequel we will take J = [ 1
2
, 1] and prove that our functional Iµ satisfies the

conditions in Proposition 2.7, and then Iµ has a bounded (PS)cµ
sequence {uµ,n} at level

cµ as µ → 1.

3 The proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. First we will show the nonexistence
result for (1.1).
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Proof of Theorem 1.1 (i) We argue by contradiction. Let ϕ ∈ H1
0 (Ω) is the positive

solution of {
−∆ϕ = 1, in Ω,

ϕ = 0, on ∂Ω.
(3.1)

By Lax-Milgram theorem we know the existence and uniqueness of solution to (3.1) and
ϕ,∇ϕ ∈ L∞(Ω) follows by the elliptic regularity results. Then we define P ∗ = 1

|ϕ|∞ . Suppose
that (1.1) has a solution u when P ≥ P ∗, and then for any λ > 0 we get u satisfying the
following equation

{
−∆(u− Pϕ) = λ(1+δ|∇u|2)

(1−u)p > 0, x ∈ Ω,

u− Pϕ = 0, x ∈ ∂Ω.

By the maximum principle of elliptic partial differential equation we obtain Pϕ < u < 1.
However, the definition of P ∗ shows that P |ϕ|∞ = P

P∗ ≥ 1. This contradicts with P |ϕ|∞ ≤
u < 1. Therefore when P ≥ P ∗, (1.1) has no solution.

In the following we show the relationship between the existence of solutions of (1.1) and
the parameter λ.

Lemma 3.1 For any δ > 0, if (1.1) has a solution for λ = λ1 with any fixed P > 0,
then (1.1) has a solution for 0 < λ2 < λ1.

Proof Suppose that (1.1) has a solution uλ1 for λ = λ1, and then for any 0 < λ2 < λ1

we have

−∆uλ1 =
λ1(1 + δ|∇uλ1 |2)

(1− uλ1)p
+ P >

λ2(1 + δ|∇uλ1 |2)
(1− uλ1)p

+ P.

This implies uλ1 is a upper solution and also 0 is a lower solution of (1.1) with λ = λ2. By
Proposition 2.3, we know (1.1) has a solution for any 0 < λ2 < λ1.

Now we discuss the relationship between λ and P .
Lemma 3.2 There exists a λP > 0 such that (1.1) has at least one solution when

0 < λ < λP for any fixed 0 < P < P ∗.
Proof For any fixed 0 < P < P ∗, we choose P

P∗ < s < 1 such that u = sP ∗ϕ. We can
verify easily 0 < u < 1 and u satisfying

−∆u = P +
1 + δ|∇u|2
(1− s)p

(1− s)pP ∗(s− P

P ∗ )
1

1 + δ|∇u|2

≥ P +
P ∗

1 + δP ∗2|∇ϕ|2∞
(1− s)p(s− P

P ∗ )
1 + δ|∇u|2
(1− s)p

≥ P +
P ∗

1 + δP ∗2|∇ϕ|2∞
(1− s)p(s− P

P ∗ )
1 + δ|∇u|2
(1− u)p

.

Let s = P∗+P
2P∗ and λP = P∗

1+δP∗2|∇ϕ|2∞ (1− P∗+P
2P∗ )p(P∗+P

2P∗ − P
P∗ ). Then we know u = sP ∗ϕ

is a upper solution and 0 is a lower solution of (1.1) with λ = λP . By Proposition 2.3 we
get (1.1) has at least one solution in H1

0 (Ω). By Lemma 3.1 we know (1.1) has at least one
solution for any 0 < λ < λP . We get the assertion.
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In order to prove Theorem 1.1 (ii), we define λ∗P as follows.

λ∗P = sup{λP > 0 | (1.1) has at least one solution for any fixed 0 < P < P ∗}. (3.2)

Now we show that λ∗P is well-defined.
Lemma 3.3 λ∗P defined in (3.2) is bounded.
Proof Suppose that 0 < u < 1 is the solution of (1.1) for λP > 0 and any fixed

0 < P < P ∗. Multiplying (1.1) by ϕ and integrating on Ω on both sides of equation (1.1),
we have

|Ω| ≥
∫

Ω

−∆uϕdx =
∫

Ω

(
λP (1 + δ|∇u|2)

(1− u)p
+ P )ϕdx ≥

∫

Ω

λP ϕdx +
∫

Ω

Pϕ dx,

where |Ω| denotes the measure of Ω. Therefore we get λP ≤ |Ω|−P
∫
Ω ϕ dx∫

Ω ϕ dx
and |Ω|−P

∫
Ω ϕ dx∫

Ω ϕ dx
is

positive and finite. This implies λ∗P is bounded.
Lemma 3.4 For any δ > 0, 0 < P < P ∗ and 0 < λ < λ∗P , the equation (1.1) has at

least one upper solution and then at least one solution in H1
0 (Ω).

Proof According to Lemma 3.2 and Lemma 3.3, we know that when 0 < λ1 < λ2 < λ∗P ,
the equation (1.1) has at least one solution uλ1,P for λ = λ1 and uλ2,P for λ = λ2, respectively,
for any fixed 0 < P < P ∗. Moreover, we can regard uλ2,P as a upper solution of equation
(1.1) with λ = λ1. Therefore for any fixed 0 < P < P ∗, when 0 < λ < λ∗P , the equation
(1.1) has a solution uλ and an upper solution uλ and a lower solution uλ = 0.

There is a corresponding solution v = f̂(uλ), an upper solution v = f̂(uλ) and a lower
solution v = f̂(uλ) = 0 to the equation (2.1). By Lemma 2.1 we know v = f̂(uλ) ≤ C.
Define U = {v ∈ H1

0 (Ω) | 0 = v < v < v = f̂(uλ) ≤ C a.e. on Ω}. If we set a(x, v) :=

g(v) + h(v) = e
λδ

(p−1)(1−f(v))(p−1) λ
(1−f(v))p + Pe

λδ

(p−1)(1−f(v))(p−1) , b(x) = 1, in Proposition 2.4,
where f(v) is bounded owing to the boundedness of v, then we have a(x, v) ∈ L1

loc(Ω), and v

is the minimum point of the functional I in U , where I is defined in (2.2). In the following,
we will show that v is the local minimum point of I in H1

0 (Ω).
Lemma 3.5 The solution v is the local minimum point of the functional I in H1

0 (Ω).
Proof We follow the idea in [22] and argue by contradiction. Suppose that v is not

the local minimum point of I on H1
0 (Ω), and then there exists a sequence {vn} ⊂ H1

0 (Ω)
such that ‖vn − v‖ → 0 and I(vn) < I(v) as n →∞.

Let vn,0 = max{v,min{v, vn}}, vn,+ = max{vn−v, 0}, vn,− = max{v−vn, 0}, where v is
the upper solution and v is the lower solution of (2.1). This implies vn = vn,0 + vn,+ − vn,−.
Define Ω0

n = {x ∈ Ω | v ≤ vn ≤ v}, Ω+
n = supp{vn,+}, Ω−n = supp{vn,−}, and F (vn) :=

G(vn) + H(vn), F ′(vn) = g(vn) + h(vn), where “supp” means the support of functional in
Ω. Then

I(vn) =
∫

Ω0
n

1
2
|∇vn|2 dx−

∫

Ω0
n

F (vn) dx +
∫

Ω+
n

1
2
|∇vn|2 dx−

∫

Ω+
n

F (vn) dx

+
∫

Ω−n

1
2
|∇vn|2 dx−

∫

Ω−n

F (vn) dx.
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In Ω+
n , we have
∫

Ω+
n

1
2
|∇vn|2 dx−

∫

Ω+
n

F (vn) dx =
∫

Ω+
n

1
2
|∇(v + vn,+)|2 dx−

∫

Ω+
n

F (v + vn,+) dx.

Similarly we obtain
∫

Ω−n

1
2
|∇vn|2 dx−

∫

Ω−n

F (vn) dx =
∫

Ω−n

1
2
|∇(v − vn,−)|2 dx−

∫

Ω−n

F (v − v−n ) dx.

Since v ≤ vn = vn,0 ≤ v in Ω0
n, we obtain

∫

Ω0
n

1
2
|∇vn|2 dx−

∫

Ω0
n

F (vn) dx = I(vn,0)−
∫

Ω+
n

[
1
2
|∇v|2 − F (v)] dx−

∫

Ω−n

[
1
2
|∇v|2 − F (v)] dx.

Therefore we conclude

I(vn) =I(vn,0) +
∫

Ω+
n

1
2
(|∇(v + vn,+)|2 − |∇v|2) dx−

∫

Ω+
n

[F (v + vn,+)− F (v)] dx

+
∫

Ω−n

1
2
(|∇(v − vn,−)|2 − |∇v|2) dx−

∫

Ω−n

[F (v − vn,−)− F (v)] dx.

(3.3)

Because v is a lower solution, we know −∆v ≤ g(v) + h(v) and
∫

Ω

∇v∇(−vn,−) dx ≥
∫

Ω

[g(v) + h(v)](−vn,−) dx.

Similarly we have ∫

Ω

∇v∇vn,+ dx ≥
∫

Ω

[g(v) + h(v)]vn,+ dx.

Summing up, we get

I(vn) ≥I(vn,0) +
∫

Ω

[
1
2
|∇vn,+|

2

+
1
2
|∇vn,−|2] dx−

∫

Ω+
n

[F (v + vn,+)− F (v)− f(v)vn,+] dx

−
∫

Ω−n

[F (v − vn,−)− F (v)− f(v)(−vn,−)] dx.

(3.4)
Since F (v + vn,+)−F (v)−f(v)vn,+ = G(v + vn,+)+H(v + vn,+)−G(v)−H(v)−g(v)vn,+−
h(v)vn,+, by Sobolev embedding theorem, Proposition 2.1 (vi) and Hölder inequality, it
follows that

∫

Ω+
n

[G(v + vn,+)−G(v)− g(v)vn,+] dx ≤
∫

Ω+
n

C1(1 + |v + vn,+|q+1) dx

≤ C1|Ω+
n |+ C1|Ω+

n |
1
β |v + vn,+|q+1

2∗

≤ C1|Ω+
n |+ C3|Ω+

n |
1
β .

Here β satisfies q+1
2∗ + 1

β
= 1 for any q > 1. Due to v < v, then for every ε > 0 there exists

θ > 0, such that meas{x|v(x) + θ > v} < ε, where “meas” means the measure of set.
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Since Ω+
n ⊂ {x|v(x) + θ > v} ∪ {x|v(x) + θ ≤ v ≤ vn(x)} and vn → v in H1

0 as n → ∞, by
Poincaré inequality, we obtain

εθ2 ≥
∫

Ω

|∇(vn − v)|2 dx ≥ C

∫

Ω

(vn − v)2 dx

≥ C

∫

v(x)+θ≤vn(x)

(vn − v)2 dx

≥ Cθ2meas{x|v(x) + θ ≤ vn(x)}.

This implies lim
n→∞

|Ω+
n | = 0. Then for n large enough, we have

∫

Ω+
n

[G(v + vn,+)−G(v)− g(v)vn,+] dx ≤ C1|Ω+
n |+ C3|Ω+

n |
1
β < C4ε.

By Proposition 2.1 (vi), Sobolev embedding theorem and Hölder inequality, we have
∫

Ω+
n

[H(v + vn,+)−H(v)− h(v)vn,+] dx ≤
∫

Ω+
n

C2(1 + |v + vn,+|
q+1
2 ) dx

≤ C2|Ω+
n |+ C2|Ω+

n |
1
2 |v + vn,+|2(q+1)

q+1

≤ C2|Ω+
n |+ C5|Ω+

n |
1
2

< C6ε

for n large enough. Therefore we conclude
∫
Ω+

n
[F (v + vn,+) − F (v) − f(v)vn,+] dx < C5ε +

C6ε < C ′ε. By an analogous argument, we obtain
∫

Ω−n

[F (v − vn,−)− F (v)− f(v)(−vn,−)] dx < C ′′ε.

With I(vn) ≤ I(vn,0) and (3.4), we have
∫

Ω

(
1
2
|∇vn,+|2 +

1
2
|∇vn,−|2) dx ≤ I(vn)− I(vn,0) + C ′ε + C ′′ε ≤ Cε. (3.5)

However, since Ω+
n

⋂
Ω−n = ∅, we conclude

C(
∫

Ω

v2∗
n,+ dx)

N−2
2N ≤ 1

2

∫

Ω

|∇vn,+|2 dx ≤ Cε,

and

C(
∫

Ω

v2∗
n,− dx)

N−2
2N ≤ 1

2

∫

Ω

|∇vn,−|2 dx ≤ Cε

for any ε > 0. These happen only if vn,+(x) = vn,−(x) = 0 a.e. x ∈ Ω. This implies
vn = vn,0 ∈ U a.e. on Ω and I(v) ≤ I(vn), which conflicts with the hypothesis I(v) > I(vn).
So v is a local minimum point of I on H1

0 (Ω).
Lemma 3.6 The energy functional I in (2.2) has a mountain pass geometry.
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Proof Firstly we take x0 in Ω arbitrarily, and choose a proper R such that BR(x0) ⊂ Ω.
Let ψ ∈ C∞

0 (Ω) be a cut-off function satisfying

{
0 ≤ ψ ≤ 1, in Ω,

ψ ≡ 1, in BR(x0).

Then by Proposition 2.1 (iii), we know

I(tψ) =
t2

2

∫

Ω

|∇ψ|2 dx−
∫

Ω

G(tψ)dx−
∫

Ω

H(tψ) dx

≤ t2

2

∫

Ω

|∇ψ|2 dx−
∫

BR(x0)

G(tψ) dx−
∫

Ω\BR(x0)

G(tψ) dx

≤ t2

2

∫

Ω

|∇ψ|2 dx− C1t
2(log t)

2p
p−1 |BR(x0)| → −∞ as t → +∞.

Therefore we can take a large enough t such that w = tψ satisfies ‖w‖ > ‖v‖, but I(w) <

I(v). From Lemma 3.5 we know v is a local minimum point of I, and so we can choose a
proper 0 < r < ‖v − w‖ such that

inf
‖ṽ−v‖=r

I(ṽ) > max{I(v), I(w)},

which implies the functional I has the mountain pass geometry as in Definition 2.2.
Define c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)), where Γ = {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = v, γ(1) = w}.

According to Proposition 2.6, there exists a (PS)c sequence {vn} ⊂ H1
0 (Ω) such that

I(vn) → c, I ′(vn) → 0 as n →∞.

Now we show that if {vn} is bounded, then {vn} satisfies (PS)c condition.
Lemma 3.7 If the (PS)c sequence {vn} of the functional I is bounded in H1

0 (Ω), then
it has a convergent subsequence in H1

0 (Ω).
Proof Since {vn} is bounded in H1

0 (Ω), it has a weakly convergent subsequence (still
denoted as {vn}). We may assume that as n →∞,





vn ⇀ v in H1
0 (Ω),

vn → v in Lq+1(Ω) for q ∈ [1,
N + 2
N − 2

),

vn → v a.e. x ∈ Ω

(3.6)

for some v ∈ H1
0 (Ω). Moreover, there also exists a m(x) ∈ Lq+1(Ω) for q ∈ [1, N+2

N−2
) such

that |v(x)| ≤ m(x) a.e. x ∈ Ω. From I ′(vn) → 0 in H1
0 (Ω) as n →∞, we obtain

〈I ′(vn), ϕ〉 =
∫

Ω

∇un∇ϕdx−
∫

Ω

g(vn)ϕdx−
∫

Ω

h(vn)ϕdx → 0 (3.7)
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for any ϕ ∈ H1
0 (Ω). Since g(s), h(s) ∈ C1(R), it follows that

g(vn)ϕ → g(v)ϕ, h(vn)ϕ → h(v)ϕ a.e. x ∈ Ω.

By Proposition 2.1 (ii), (iv), we have

|g(vn)ϕ| ≤ |C(1 + |vn|q)ϕ| ≤ C|ϕ|+ C|m(x)|q|ϕ| ∈ L1(Ω),

|h(vn)ϕ| ≤ |C(1 + |un|
q−1
2 )ϕ| ≤ C|ϕ|+ C|m(x)| q−1

2 |ϕ| ∈ L1(Ω).

Then by Lebesgue Dominated Convergence Theorem, we obtain
∫

Ω

g(vn)ϕdx →
∫

Ω

g(v)ϕdx,

∫

Ω

h(vn)ϕdx →
∫

Ω

h(v)ϕdx as n →∞.

Moreover, vn ⇀ v in H1
0 (Ω) implies

∫
Ω
∇vn∇ϕdx → ∫

Ω
∇v∇ϕdx and

∫

Ω

∇vn∇ϕdx−
∫

Ω

g(vn)ϕdx−
∫

Ω

h(vn)ϕdx →
∫

Ω

∇v∇ϕdx−
∫

Ω

g(v)ϕdx

−
∫

Ω

h(v)ϕdx.

(3.8)

Then from (3.7) and (3.8) we get
∫

Ω

∇v∇ϕdx−
∫

Ω

g(v)ϕdx−
∫

Ω

h(v)ϕdx = 0. Set ϕ = v

we have ∫

Ω

∇vn∇v dx →
∫

Ω

|∇v|2 dx

and ∫

Ω

|∇v|2 dx−
∫

Ω

g(v)v dx−
∫

Ω

h(v)v dx = 0. (3.9)

Now by (3.7) and (3.9), it yields that
∫

Ω

|∇(vn − v)|2 dx =
∫

Ω

|∇vn|2 dx−
∫

Ω

|∇v|2 dx− 2
∫

Ω

(∇vn∇v − |∇v|2) dx

=
∫

Ω

g(vn)vn dx +
∫

Ω

h(vn)vn dx− (
∫

Ω

g(v)v dx +
∫

Ω

h(v)v dx) + o(1)

→ 0 as n →∞.

This means vn → v in H1
0 (Ω) as n →∞ and I ′(v) = 0. We get the assertion.

In order to obtain the existence of a mountain pass solution to (1.1), it suffices to show
the boundedness of the (PS)c sequence {vn}. However it is difficult to prove it directly
since the functions g(s) and h(s) do not satisfy any Ambrosetti-Rabinowitz type conditions.
Therefore we will apply the monotonicity trick as in [15]. First, we modify the nonlinear
terms g and h as follows:

g̃(s) =

{
g(s), s < sm,

C1,ms(log s)
2p

p−1 + C2,ms, s ≥ sm,
(3.10)
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and

h̃(s) =

{
h(s), s < sm,

C3,ms(log s)
p

p−1 + C4,ms, s ≥ sm,
(3.11)

where m0 < em < sm < em+n−1 (m,n ∈ N+) such that g̃(s) + h̃(s) = g(s) + h(s) for s = sm

and g̃(s) + h̃(s) < g(s) + h(s) for s > sm. Here sm and Ci,m (i = 1, 2, 3, 4) are defined in
Proposition 2.2.

We consider the equation

{
−∆v = µg̃(v) + µh̃(v), x ∈ Ω,

v = 0, x ∈ ∂Ω,
(3.12)

where µ ∈ [ 1
2
, 1]. The energy functional of (3.12) is Ĩµ : H1

0 (Ω) → R defined by

Ĩµ(v) =
1
2

∫

Ω

|∇v|2 dx− µ

∫

Ω

G̃(v)dx− µ

∫

Ω

H̃(v) dx, (3.13)

where G̃(v), H̃(v) are defined by

G̃(v) =
∫ v

0

g̃(s) ds, H̃(v) =
∫ v

0

h̃(s) ds.

Lemma 3.8 There exists an interval J ⊂ [ 1
2
, 1] such that the family of functionals

{Ĩµ}µ∈J has a mountain pass geometry.
Proof From Lemma 3.6, we know that v is the local minimum point of I and I(v) >

I(tψ) for t large enough. Here v is the solution of (2.1). By Lemma 2.1, we know |v|L∞ ≤ m0.
This implies when µ = 1, we have Ĩµ(v) = I(v). So we obtain for µ = 1, Ĩµ(v) has a mountain
pass geometry by Lemma 3.6. Furthermore, when 1

2
< µ < 1, we have Ĩµ(v) > I(v) for any

positive v ∈ H1
0 (Ω). Because Ĩµ(v) is continuous with respect to µ, there exists 1

2
< µ0 < 1

such that Ĩµ(v) > Ĩµ(tψ) for any µ ∈ [µ0, 1].
From Lemma 3.5, we may assume that there exists φµ ∈ H1

0 (Ω)
⋂

C1(Ω) such that
I(v + φµ) > I(v). According to the continuity of Ĩµ with respect to µ, we can choose µ0

close to 1 properly such that Ĩµ(v) < I(v + φµ) for µ ∈ [µ0, 1]. Since I(v + φµ) < Ĩµ(v + φµ),
we get Ĩµ(v + φµ) > Ĩµ(v). Again by Lemma 3.5, v is also the local minimum point of Ĩµ(v)
on H1

0 (Ω) for any µ ∈ [µ0, 1].
Define cµ = inf

γ∈Γ
max
t∈[0,1]

Ĩµ(γ(t)), where Γ = {γ ∈ C([0, 1],H1
0 (Ω)) | γ(0) = v, γ(1) = tψ}.

According to Proposition 2.6, for almost every µ ∈ [µ0, 1], we can find a (PS)cµ
sequence

{vµ,n} ⊂ H1
0 (Ω) such that

Ĩµ(vµ,n) → cµ, Ĩ ′µ(vµ,n) → 0 as n →∞.

Lemma 3.9 For almost every µ ∈ [µ0, 1], the (PS)cµ
sequence {vµ,n} of functional Ĩµ

satisfies (PS)cµ
condition.
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Proof Set A(u) = 1
2

∫
Ω
|∇u|2 dx, B(u) =

∫
Ω

G̃(u) +
∫
Ω

H̃(u) dx. We see A(u) → ∞
as ‖u‖ → ∞ in H1

0 (Ω). Therefore by Proposition 2.7, we obtain a (PS)cµ
sequence {vµ,n}

which is bounded in H1
0 (Ω). Then with the help of Lemma 3.7, we get that there exists a

function vµ ∈ H1
0 (Ω) such that vµ,n → vµ in H1

0 (Ω) and Ĩ
′
(vµ) = 0, which implies (PS)cµ

condition holds.
Now we choose a sequence {vµj

}j∈N such that Ĩµj
(vµj

) = cµj
, Ĩ ′µj

(vµj
) = 0 as µj ↗ 1.

For simplicity, we denote {vµj
} as {vj}. Now we show that{vj}j∈N is bounded.

Lemma 3.10 The sequence {vj}j∈N is uniformly bounded in H1
0 (Ω).

Proof We argue by contradiction. Suppose that ‖vj‖ → ∞ as n →∞. Let wj = vj

‖vj‖ ,
and then ‖wj‖ = 1. Up to a subsequence {wj} if necessary, there exists a w0 ∈ H1

0 (Ω) such
that 




wj ⇀ w0 in H1
0 (Ω),

wj → w0 in Lq+1(Ω) for q ∈ [1,
N + 2
N − 2

),

wj → w0 a.e. x ∈ Ω.

(3.14)

We can also find a d(x) ∈ Lq+1(Ω) for q ∈ [1, N+2
N−2

) such that |w0| ≤ d(x) a.e. x ∈ Ω. Now
we seperate our proof in four steps.

Step 1 We claim w0 ≡ 0. Define Ω0 = {x ∈ Ω : w0 6= 0}. In fact, if Ω0 is not empty,
then vj(x) = wj(x)‖vj‖ → ∞ for x ∈ Ω0. Therefore by Proposition 2.1 (iii), (iv), we have

∫

Ω

G̃(vj) + H̃(vj)
v2

j

w2
j dx ≥

∫

Ω0

C1v
2
j (log vj)

2p
p−1 + C2v

2
j (log vj)

p
p−1

v2
j

w2
j dx

≥
∫

Ω

(C1(log vj)
2p

p−1 + C2(log vj)
p

p−1 )w2
j dx → +∞ as j →∞.

(3.15)
However since Ĩµj

(vj) = cµj
, we know

lim
j→∞

∫

Ω

G̃(vj) + H̃(vj)
v2

j

w2
j dx = lim

j→∞

∫

Ω

G̃(vj) + H̃(vj)
v2

j

|vj |2
‖vj‖2 dx

= lim
j→∞

∫

Ω

G̃(vj) + H̃(vj)
‖vj‖2 dx

= lim
j→∞

1
‖vj‖2 (

1
2
‖vj‖2 − Ĩµj

(vj))

=
1
2
,

(3.16)

which contradicts with (3.15). Therefore w0 ≡ 0.

Step 2 Define F̃ (s) = sg̃(s) − 2G̃(s) + sh̃(s) − 2H̃(s). We claim that there exists a
constant C > 0 such that F̃ (t) < F̃ (s) + C for any 0 < t < s. Actually, for s > sm > e, we
have

F̃ ′(s) = sg̃′(s)− g̃(s) + sh̃′(s)− h̃(s) =
2p

p− 1
C1,ms(log s)

p+1
p−1 +

p

p− 1
C3,ms(log s)

1
p−1 > 0.
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This implies that F̃ (s) is increasing when s > sm. Therefore we have
(i) If sm ≤ t < s, then F̃ (t) < F̃ (s) + C1 for any C1 ≥ 0.
(ii) If 0 < t < sm ≤ s and denote C2 = maxs∈[0,sm] |F̃ (s)|, then F̃ (t) ≤ F̃ (s) + C2.
(iii) If 0 < t < s < sm, then F̃ (t) ≤ F̃ (s) + 2C2.
We take C ≥ max{C1, C2} large enough such that C + c 1

2
> 0. Then we get F̃ (t) <

F̃ (s) + C for any 0 < t < s.
Step 3 Let tj ∈ [0, 1] such that Ĩµj

(tjvj) = maxt∈[0,1] Ĩµj
(tvj). We claim 2Ĩµj

(tvj) ≤
2c 1

2
+ C. We will have the following cases.
(i) If tj = 0, then 2Ĩµj

(tjvj) = 0 < 2c 1
2

+ C.
(ii) If tj = 1, then 2Ĩµj

(tjvj) = 2Ĩµj
(vj) = 2cµj

< 2c 1
2

< 2c 1
2

+ C.
(iii) If 0 < tj < 1, then Ĩ ′µj

(tjvj)tjvj = tj Ĩ
′
µj
|t=tj

= 0 since tjvj is the maximum point
of Ĩµj

(tvj).
Therefore we get

2Ĩµj
(tvj) ≤ 2Ĩµj

(tjvj)− Ĩ ′µj
(tjvj)tjvj

= µj

∫

Ω

[tjvj g̃(tjvj)− 2G̃(tjvj) + tjvjh̃(tjvj)− 2H̃(tjvj)] dx

≤
∫

Ω

µj(F̃ (vj) + C) dx = −Ĩ ′µj
(vj) + 2Ĩµj

(vj) + Cµj

≤ 2cµj
+ C ≤ 2c 1

2
+ C.

The last inequality is deduced by the monotonicity of µ → cµ.

Step 4 We show that if ‖vj‖ → ∞, a contradiction occurs. For any constant T > 0,
by Proposition 2.1 (i) we know G̃(Twj) + H̃(Twj) → G̃(Tw0) + H̃(Tw0) a.e. x ∈ Ω. By
Proposition 2.1 (vi), we have

G̃(Twj) + H̃(Twj) ≤ C(1 + |Twj |q+1 + |Twj |
q+1
2 )

≤ C(1 + |Td(x)|q+1 + |Td(x)| q+1
2 ),

where q ∈ [1, N+2
N−2

). Thus C(1+|Td(x)|q+1+|Td(x)| q+1
2 ) ∈ L1(Ω). Since w0 ≡ 0, by Lebesgue

Dominated Convergence Theorem, we obtain
∫

Ω

G̃(Twj) + H̃(Twj) dx →
∫

Ω

G̃(Tw0) + H̃(Tw0) dx = 0 as j →∞.

Therefore

2Ĩµj
(Twj) = T 2

∫

Ω

|∇wj |2 dx− 2µj

∫

Ω

(G̃(Twj) + H̃(Twj)) dx → T 2 as j →∞. (3.17)

Denote t = T
‖vj‖ . We may assume that 0 < t < 1 for j large due to the hypothesis ‖vj‖ → ∞.

Since T > 0 is finite and arbitrary, we can choose a suitable T such that

2Ĩµj
(Twj) = 2Ĩµj

(
Tvj

‖vj‖) = 2Ĩµj
(tvj) ≤ 2c 1

2
+ C <

T 2

2
as j →∞. (3.18)
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Obviously (3.17) and (3.18) contradict each other. Hence the hypothesis is not true and we
show the sequence {vj} is uniformly bounded in H1

0 (Ω).
By an analogous argument as in Lemma 3.7, we conclude that (PS)cµj

sequence {vj}j∈N

has a strong convergent subsequence in H1
0 (Ω) which is still denoted as {vj} and vj → v1 as

j →∞ for some v1 ∈ H1
0 (Ω). In fact, we can show that v1 is the second solution of (2.1).

Proof of Theorem 1.1 (ii) By Lemma 3.4, we get the first solution v of (2.1) so
that u = f̂(v) is the first solution of (1.1). Now we claim u1 = f̂(v1) is the second solution
of equation (1.1) for any 0 < P < P ∗ and 0 < λ < λ∗P . In fact, if |v1|L∞ ≤ m0, then v1

is the solution of (2.1). We argue by contradiction. Suppose that there exists a x0 ∈ Ω
such that v1(x0) > m0. Then it is easy to see that v1 is a lower solution of (2.1) due to
−∆v1 = g̃(v1) + h̃(v1) ≤ g(v1) + h(v1). By Lemma 3.4 and Proposition 2.3 we get that (2.1)
has a solution v2 such that v2 ≥ v1 satisfying v2(x0) > m0. But this is contradicted with the
result |v2|L∞ ≤ m0 by Lemma 2.1. Therefore we obtain |v1|L∞ ≤ m0 and v1 is a solution of
(2.1) so that u1 = f̂(v1) is the second solution of (1.1).

Now we show the second assertion of Theorem 1.1 (ii). For this we define the set

W = {vλP
| vλP

is a solution of (2.1) for anyP ∈ (0, P ∗), λ ∈ (0, λ∗P )}.

Then it is clear that W is bounded in H1
0 (Ω) since

1
2

∫

Ω

|∇vλP
|2 dx =

∫

Ω

G(vλP
) dx +

∫

Ω

H(vλP
) dx

≤
∫

Ω

C(1 + |vλP
|q+1 + |vλP

| q+1
2 ) dx

≤ C|Ω|+ C1m
q+1
0 ≤ C2,

(3.19)

where q > 1. Here we use the fact that vλP
is a solution of (2.1) and Proposition 2.1 (vi). Then

vλ∗P := limλ→λ∗P vλP
is a solution of (2.1) for λ = λ∗P . Since h(s) = Pe

λδ

(p−1)(1−f(s))(p−1) > 0,
and h′(s) = h(s) λδ

(1−f(s))p f ′(s), we get

h′′(s) = h′(s)
λδ

(1− f(s))p
f ′(s) + h(s)

pλδ(f ′(s))2

(1− f(s))p+1
+ h(s)

λδ

1− f(s))p
f ′′(s)

= h(s)
pλδ(f ′(s))2

(1− f(s))p+1

> 0.

This implies h(s) is convex. By Proposition 2.3 (i), we know g(s) is also convex. Therefore
by the convexity of g(s) + h(s), it is classical (see [23] or [11]) to guarantee that vλ∗P is the
unique solution of equation (2.1). So uλ∗P = f̂(vλ∗P ) is the unique solution of (1.1). From the
definition of λ∗P , it is clear that (1.1) has no solution for λ > λ∗P .

4 The proof of Theorem 1.2
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In this section, we focus on the equation (1.2), i.e.,




−∆u = λ(1+δ|∇u|2)
(1−v)p , x ∈ Ω,

−∆v = µ(1+δ|∇v|2)
(1−u)p , x ∈ Ω,

0 ≤ u, v < 1, x ∈ Ω,

u, v = 0, x ∈ ∂Ω,

where λ, µ, δ are positive parameters and p > 1. It is interesting to find that the existence of
solution of (1.2) depends on the parameter area (λ, µ) in the first quadrant. We will again
apply the upper and lower solution method to get the proof of Theorem 1.2.

Definition 4.1 If a pair (u, v) satisfies




−∆u ≥ λ(1+δ|∇u|2)
(1−v)p , x ∈ Ω,

−∆v ≥ µ(1+δ|∇v|2)
(1−u)p , x ∈ Ω,

0 ≤ u, v < 1, x ∈ Ω,

u, v = 0, x ∈ ∂Ω,

(4.1)

then we say the pair (u, v) is a upper solution of (1.2). If the first two inequalities in (4.1)
are reversed for some (u, v), we call (u, v) a lower solution of (1.2).

The following result is important for the existence of solution of (1.2). For the proof we
refer to Section 3.3 in [24].

Proposition 4.1 ([24]) Let Ω be a bounded domain in RN with N ≥ 2. Consider the
following equation {

−∆u = f(x, u,∇u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Assume u and u are the upper and lower solution which is defined in Definition 2.7. De-
note c = min u and c = max u in Ω. If there exists a continuous function ψ such that
|f(x, u,∇u)| ≤ ψ(u)(1 + |∇u|2) for any x ∈ Ω, and u ∈ [c, c], then this equation has a
classical solution u with u ≤ u ≤ u.

Lemma 4.1 If the system (1.2) has a upper solution (u, v), then (1.2) must have a
classical solution (u, v) with 0 < u ≤ u < 1, 0 < v ≤ v < 1.

Proof We prove the assertion with iterative method. Let (u1, v1) = (u, v). For n ≥ 2,
by Proposition 4.1, we construct two sequences {un} and {vn} as follows:





−∆un = λ(1+δ|∇un|2)
(1−vn−1)p , in Ω,

−∆vn = µ(1+δ|∇vn|2)
(1−un−1)p , in Ω,

0 ≤ un, vn < 1, in Ω,

un, vn = 0, on ∂Ω.

(4.2)

For n = 2, since u ia a upper solution of the following equation

−∆u2 =
λ(1 + δ|∇u2|2)

(1− v1)p
=

λ(1 + δ|∇u2|2)
(1− v)p

, (4.3)
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and 0 is the lower solution of (4.3), by Proposition 4.1, we get a solution u2 to (4.3) with

0 < u2 ≤ u1. Analogously we obtain a solution v2 to −∆v2 =
λ(1 + δ|∇v2|2)

(1− u1)p
such that

0 < v2 ≤ v1. By induction, we suppose 0 < un ≤ un−1, 0 < vn ≤ vn−1 and un−1 = un =
vn−1 = vn = 0 on ∂Ω. Now we claim that 0 < un+1(x) ≤ un(x) and 0 < vn+1(x) ≤ vn(x)
for x ∈ Ω. We argue by contradiction. Suppose that there exists a point x′ ∈ Ω such that
un(x′)− un+1(x′) < 0. By the maximum principle, un− un+1 have a minimum point x0 ∈ Ω
such that ∇(un − un+1)(x0) = 0 and ∆(un − un+1)(x0) > 0. However we have

−∆(un − un+1)(x0) =
λ(1 + δ|∇un(x0)|2)

(1− vn−1(x0))p
− λ(1 + δ|∇un+1(x0)|2)

(1− vn(x0))p

≥ λ(1 + δ|∇un(x0)|2)
(1− vn(x0))p

− λ(1 + δ|∇un+1(x0)|2)
(1− vn(x0))p

=
λδ∇(un − un+1)(x0)∇(un + un+1)(x0)

(1− vn(x0))p

= 0.

(4.4)

This imlplies ∆(un−un+1)(x0) ≤ 0 which contradicts with ∆(un−un+1)(x0) > 0. Hence we
conclude 0 < un+1 ≤ un ≤ u. In the same way we can get 0 < vn+1 ≤ vn ≤ v. This means
the sequences {un} and {vn} are decreasing and bounded in Ω. Therefore {un} and {vn}
have the limit functions u, v such that lim

n→∞
un = u, lim

n→∞
vn = v. By a standard compactness

argument we know (u, v) are the classic solution of (1.2) and in particular different from
zero.

Define the set D1 = {(λ, µ) ∈ R+ × R+ | (1.2) has a classical solution (u, v)}. We need
to illustrate this set is not empty. It suffices to show that (1.2) has a upper solution (u, v).

Lemma 4.2 The set D1 is not empty when λ and µ are properly small.
Proof Let BR be a ball of radius R centered at 0 such that Ω ⊂ BR. Denote β1 > 0

the first eigenvalue of Laplace operator in BR with Dirichlet boundary condition and φ the
corresponding eigenfunction which satisfies 0 < φ ≤ 1 in BR. We can choose a constant
θ ∈ (0, 1) such that 0 < ψ = θφ < 1 in BR. Now we wish (ψ, ψ) is a upper solution of (1.2),
which means {

−∆ψ = β1θφ ≥ λ(1+δ|∇ψ|2)
(1−θφ)p ≥ λ

(1−θφ)p , in Ω,

−∆ψ = β1θφ ≥ µ(1+δ|∇ψ|2)
(1−θφ)p ≥ µ

(1−θφ)p , in Ω.
(4.5)

This happens if λ ≤ β1θφ(1 − θφ)p and µ ≤ β1θφ(1 − θφ)p. Since 0 < θφ < 1 in Ω, we can
choose λ, µ > 0 small enough such that (4.5) holds and (ψ, ψ) is a upper solution of (1.2).
Then due to Lemma 4.1, the system (1.2) must have a solution.

Lemma 4.3 The set D1 is contained in a bounded region.
Proof If the system (1.2) has a solution (u, v), then

{
β1|Ω| ≥

∫
Ω
−∆uφ dx =

∫
Ω

λ(1+δ|∇u|2)
(1−v)p φdx ≥ λ|Ω|, in Ω,

β1|Ω| ≥
∫
Ω
−∆vφ dx =

∫
Ω

µ(1+δ|∇v|2)
(1−u)p φdx ≥ µ|Ω|, in Ω.
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This implies λ ≤ β1 and µ ≤ β1. Hence D1 ⊂ (0, β1]× (0, β1] is bounded.
Lemma 4.4 If the system (1.2) has a solution with the parameter pair (λ, µ) ∈ D1,

then (λ′, µ′) is still in D1 for any λ′ ≤ λ, µ′ ≤ µ.

Proof It is easy to verify that the solution (u, v) with the parameter pair (λ, µ) is a
upper solution of the system (1.2) with the pair (λ′, µ′). Then by Lemma 4.1 we know the
system (1.2) must have at least one solution.

Based on the above-mentioned argument, we can find a curve Γ in the first quadrant
of (λ, µ)-plane such that the existence of (1.2) depends on the region divided by Γ. More
precisely, for any σ > 0, we define

λ∗(σ) = sup{λ > 0 | (λ, σλ) ∈ D1}.

It is obvious that {(λ, σλ) ∈ R+×R+ | 0 < λ ≤ λ∗(σ)} ⊂ D1 and {(λ, σλ) ∈ R+×R+ | λ >

λ∗(σ)} ∩D1 = ∅. We also can define µ∗(σ) = σλ∗(σ).
Lemma 4.5 The curve Γ(σ) = (λ∗(σ), µ∗(σ)) is continuous.
Proof We prove this by contradiction. Suppose that Γ(σ) is not continuous at some

σ0 > 0. Then there exists ε0 > 0 such that for any η > 0, when 0 < |σ − σ0| < η we have
|Γ(σ)− Γ(σ0)| > ε0. This implies either the case λ∗(σ) > λ∗(σ0), µ∗(σ) > µ∗(σ0) or the case
λ∗(σ) < λ∗(σ0), µ∗(σ) < µ∗(σ0) appears. Without loss of generality, we just discuss the first
case. Let λ1, λ2 > 0 such that λ∗(σ) > λ2 > λ1 > λ∗(σ0), µ∗(σ) > σλ2 > σ0λ1 > µ∗(σ0). By
the definition of λ∗(σ), we obtain





−∆u = λ2(1+δ|∇u|2)
(1−v)p , in Ω,

−∆v = σλ2(1+δ|∇v|2)
(1−u)p , in Ω,

0 ≤ u, v < 1, in Ω,

u, v = 0, on ∂Ω,

then we have a solution (uλ2 , vλ2). Obviously it is a upper solution of the system (1.2) when
parameter pair equals to (λ1, σ0λ1). This implies λ1 ≤ λ∗(σ0) which contradicts with the
assumption λ1 > λ∗(σ0).

Lemma 4.6 λ∗(σ) is decreasing and µ∗(σ) is increasing with respect to σ.
Proof (i) We first show that λ∗(σ) is decreasing. We argue by contradiction. Suppose

that λ∗(σ1) < λ∗(σ2) for σ1 < σ2. Then µ∗(σ1) = σ1λ
∗(σ1) < σ2λ

∗(σ2) = µ∗(σ2). We can
choose two constants λ1, λ2 such that λ∗(σ1) < λ1 < λ2 < λ∗(σ2) and σ1λ

∗(σ1) < σ1λ1 <

σ2λ2 < σ2λ
∗(σ2). Similar to the proof process as in Lemma 4.5, we can obtain λ∗(σ1) ≥ λ1

which is contradicted with λ∗(σ1) < λ1. Hence the hypothesis is not valid and λ∗(σ) is
decreasing.
(ii) We next show that µ∗(σ) is increasing. We argue again by contradiction. Suppose that
µ∗(σ1) = σ1λ

∗(σ1) > µ∗(σ2) = σ2λ
∗(σ2) for σ1 < σ2. By (i), we know λ∗(σ1) > λ∗(σ2).

Therefore we can choose two proper constants λ1, λ2 > 0 such that λ∗(σ1) > λ1 > λ2 >

λ∗(σ2) and σ1λ
∗(σ1) > σ2λ1 > σ2λ2 > σ2λ

∗(σ2). By Lemma 4.4, we conclude the system
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(1.2) has one solution with parameter pair (λ2, σ2λ2). This implies λ2 ≤ λ∗(σ2) which
contradicts with λ2 > λ∗(σ2). We finish the proof.

Now we can give the proof of Theorem 1.2.
Proof of Theorem 1.2 By Lemma 4.2, 4.3, 4.5 and 4.6, if we take µ∗(σ) as horizontal

axis and λ∗(σ) as vertical axis, then the curve Γ(σ) = (λ∗(σ), µ∗(σ)) splits the first quadrant
of (µ∗(σ), λ∗(σ))-plane into two connected parts. When the parameter pair is above the
curve Γ, there is no solution of (1.2). While the parameter pair is below the curve, there
exists at least one solution of (1.2).
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一类带扰动项的MEMS模型的存在性定理

吕佳琦1, 陈南博2, 刘晓春1

(1. 武汉大学数学与统计学院,湖北武汉 430072)

(2. 桂林电子科技大学数学与计算科学学院,广西桂林 541004)

摘要: 本文研究了一类带扰动项的MEMS模型. 利用上下解和变分的方法, 获得了该模型的存在性和

多解的结果. 特别地, 对一个MEMS系统, 根据解的存在性, 我们找到了一条曲线将第一象限的参数区域划分

成两部分. 推广了已有文献在MEMS模型方面的研究
关键词: MEMS模型; 扰动项; 变分法; 上下解
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