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Abstract: In this paper we study the online quantile regression algorithm with varying thresh-

olds and non-identical sampling distributions, where at each time a sample is drawn independently

from different probability distributions and the threshold values decrease with the iteration pro-

cess. The learning rate of the algorithm is obtained under the assumption that the sequence of

marginal distribution converges polynomially fast in the dual of a Hölder space. Several numerical

simulations are presented to support our results.
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1 Introduction

Quantile regression extends the classical least squares regression and provides more
information about the distributions of response variables such as stretching or compression
tails and multimodality. Since quantile regression can provide a more complete description
of the response distribution than a single estimate of the center, such as the mean or median,
it has received considerable study in the literature; see [1–3].

An initial form of online learning algorithm was proposed in [4]. It is a type of stochastic
gradient descent method, which is applicable to the situations where sample data is presented
in a sequential manner and the predictor is updated at each iteration. With linear complex-
ity, online learning provides an important family of efficient and scalable machine learning
algorithms for real applications. Thus, a variety of online learning paradigms have been
introduced, see [5–10]. Here we aim to study the online quantile regression algorithm gener-
ated from a stochastic gradient descent method of regularization schemes in a reproducing
Kernel Hilbert space (RKHS) associated with non-identical distributions.

In the literature on learning theory, samples are often drawn independently from an
identical distribution (i.i.d.). However, the data in practice are usually not from an identical
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distribution. The first case is when the sampling distribution is perturbed by some noise
and the noise level decreases as the learning time. The second case is generated by iterative
actions of an integral operator associated with a stochastic density kernel. The third case is
to induce distributions by dynamical systems. For details, we can refer to papers [11,12].

The rest of this paper is organized as follows. We begin with Section 2 by providing
necessary background and notations required for a precise statement of our algorithm. We
then present our main theorems on the learning ability of our algorithm. Sections 3 is
devoted to the proofs of our results. Lastly, we present simulation results in Section 4 to
further explore our theoretical results.

2 Backgrounds and Algorithm

In the standard framework of learning, let a separable metric space (X , d) be the input
space and Y ⊂ R be the output space. Kernel methods provide efficient non-parametric
learning algorithms to deal with data of nonlinear structures via feature mapping. Here we
shall use a reproducing Kernel Hilbert space (RKHS) as the hypothesis space in the design of
learning algorithms. A reproducing kernel K : X ×X → R is a symmetric function such that
the matrix (K(ui, uj))l

i,j=1 is positive semidefinite for any finite set of points {ui}l
i=1 ⊂ X . A

RKHS (HK , ‖ · ‖K) is the completion of the linear span of the function set {Kx = K(x, ·) :
x ∈ X} with respect to the inner product given by 〈Kx,Ku〉K = K(x, u), ∀x, u ∈ X . It
implies the reproducing property

〈f,Kx〉K = f(x), ∀f ∈ HK , x ∈ X . (2.1)

Throughout the paper, we assume that κ := sup
f∈HK

√
K(x, x).

2.1 Online Quantile Regression Algorithm

Let ρ be a Borel probability measure defined on Z := X × Y. Denote by ρx the
conditional distribution ρ at x ∈ X. The goal of non-parametric quantile regression is to
learn a quantile function fρ,τ : X → Y from the sample set z = {zi}T

i=1 := {(xi, yi)}T
i=1 ⊂ Z,

whose value fρ,τ (x) is defined as the τ -quantile (0 < τ < 1) of the conditional ρx at x ∈ X .
Here a τ -quantile of ρx means a value u ∈ Y satisfying

ρx(y ∈ Y : y ≤ u) ≥ τ and ρx(y ∈ Y : y ≥ u) ≥ 1− τ.

For quantile regression, the pinball loss ψτ : R → R+ is usually taken as the corresponding
loss function in learning schemes, which is defined as

ψτ (u) =

{
(1− τ)u if u > 0,

−τu if u ≤ 0.
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To produce sparse estimators, the alternative ε-insensitive pinball loss ψε
τ : R → R+ is

introduced in [5], that is,

ψε
τ (u) =





(1− τ)(u− ε) if u > ε,

−τ(u + ε) if u ≤ −ε,

0 otherwise,

(2.2)

where ε > 0 is the insensitive parameter. This loss function has been applied to various
online and batch algorithms, see [6,13,14]. In the following, we consider the online learning
algorithm for quantile regression with a varying threshold sequence {εt > 0}t.

Definition 2.1 Given the sample set z = {(xi, yi)}T
i=1 ⊂ Z, the online algorithm for

quantile regression is defined by f1 = 0 and

ft+1 = ft − ηt{(ψεt
τ )

′
(ft(xt)− yt)K(xt) + λtft}, t = 1, 2, . . . , (2.3)

where λt > 0 is a regularization parameter, ηt > 0 is a step size, (ψεt
τ )

′
is the left derivative

of ψεt
τ , the insensitive parameters εt > 0 converge to zero as the learning step t increases.
With (2.2), the learning sequence {ft} can be expressed as f1 = 0 and

ft+1 =





(1− λtηt)ft − (1− τ)ηtKxt
if ft(xt)− yt > εt,

(1− λtηt)ft + τηtKxt
if ft(xt)− yt ≤ εt,

(1− λtηt)ft if − εt < ft(xt)− yt ≤ εt.

(2.4)

The main purpose of this paper is to investigate how the output function fT+1 given by
(2.3) converges to the quantile function fρ,τ with the non-identical sampling process and
how explicit learning rates can be obtained with suitable choices of step sizes and threshold
values based on a prior conditions on sampling distributions.

2.2 Sampling with Non-Identical Distributions

In this work, the data pairs {zi}T
i=1 := {(xi, yi)}T

i=1 ⊂ Z are drawn from a probability
distribution ρ(t) on Z at each step t = 1, 2, . . . . The sampling sequence of probability
distributions {ρ(t)} is independent but not identical. We assume the marginal distributions
sequence

{
ρ

(t)
X

}
converges polynomially on the dual of the Hölder space Cs(X ) for some

0 < s ≤ 1. Define Hölder space Cs(X ) is the span of all continuous functions on X with the
norm ‖f‖Cs(X) = ‖f‖C(X ) + |f |Cs(X ) finite, where |f |Cs(X ) := supx6=y

|f(x)−f(y)|
(d(x,y))s .

Definition 2.2 We say that the sequence {ρ(t)
X }t=1,2,... converges polynomially to a

probability distribution ρX in (Cs(X ))∗(0 ≤ s ≤ 1) if there exist C > 0 and b > 0 such that

‖ρ(t)
X − ρX‖(Cs(X ))∗ ≤ Ct−b, t ∈ N. (2.5)

The power index b measures the differences from non-identical sampling to i.i.d case and
impact on the learning rate of the online algorithm. Specially, when b = ∞ the sampling
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is the i.i.d case. For example, let h(t) be a sequence of bounded functions on X such that
sup
x∈X

|h(t)(x)| ≤ Ct−b. Then the sequence {ρ(t)
X }t=1,2,... defined by dρ

(t)
X = dρX + h(t)(x)dρX

satisfies the decay condition(2.5) for any 0 ≤ s ≤ 1. In this example, h(t) is the density
function of the noise distribution and we assume its noise level to decay polynomially as t

increases.

2.3 Learning Errors

Usually we measure the learning performance of algorithms by generalization errors. In
this paper, the generalization error E(f) of a function f : X → Y is defined by means of the
pinball loss ψτ as

E(f) =
∫

Z
ψτ (f(x)− y)dρ.

Throughout the paper, we assume that
∫ |y|dρ < ∞ and the value of the quantile regression

function fρ,τ is uniquely determined at each x ∈ X . With this assumption, if f is bounded
on X or f ∈ L2

ρX , E(f) is finite since ψτ (u) ≤ |u|. By decomposing the measure ρ into the
marginal distribution ρX and the conditional distribution ρx at x ∈ X , we see that fρ,τ is
the only minimizer of E(f) among all measurable functions on X .

This work will investigate the approximation or learning ability of algorithm (2.3) by
the excess generalization error E(f) − E(fρ,τ ). To this end, we introduce some necessary
conditions. The first one is involved with the approximation ability of the hypothesis space
HK , which is characterized by the approximation error.

Definition 2.3 The approximation error D(λ) of the triple(K, V, ρ) is defined by

D(λ) = inf
f∈HK

{
E(f)− E(fρ,τ ) +

λ

2
‖f‖2

K

}
(2.6)

and fλ is a minimizer of (2.6), called the regularizing function.
A usual assumption on the regularization error D(λ) which imposes certain smoothness

on HK is

D(λ) ≤ D0λ
γ , ∀λ > 0 (2.7)

with some 0 < γ < 1 and D0 > 0.

The second one is respect to the continuity of the conditional distribution {ρx}x∈X

introduced in [11].
Definition 2.4 We say that the set of conditional distributions {ρx : x ∈ X} is

Lipschitz-s if there exists a constant Cρ > 0 such that

ρx({y ∈ Y : u < y ≤ v}) ≤ Cρ|u− v|s, u < v ∈ Y. (2.8)

Notice that if each density function dρx(y)
dy

exists and is uniformly bounded on Y by a
constant Cρ for each ρx, then s = 1 is valid.
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The third one is about the kernel condition of K, which is stated as follows.
Definition 2.5 We say a Mercer kernel K satisfies the kernel condition of order s if

K ∈ Cs(X × X ) and for some κ2s > 0,

|K(x, x)− 2K(x, x) + K(u, u)| ≤ κ2
2s(d(x, u))2s, ∀x, u ∈ X . (2.9)

When 0 < s ≤ 1
2

and K ∈ C2s(X × X ), (2.9) holds true.
With these assumptions in place, we are now ready for the statements of our main

results.
Theorem 2.6 Suppose assumptions (2.5), (2.7), (2.8) and (2.9) hold. Take the pa-

rameters ηt, λt, εt as the form ηt = η1t
−α, λt = λ1t

−p, εt = ε1t
−β with η1, λ1, ε1, α, p, β > 0.

If

0 < p < min
{

2 + β

5
,

2
5− γ

,
β + 1

3
s

}
(2.10)

and

p < α < min
{

2 + pγ − 3p

2
,
2 + β − 3p

2
, (β + 1)s− 2p

}
, (2.11)

then we have

Ez1,...,zT

[E(fT+1)− E(f εt

λT
)
] ≤ C ′T

−min

{
θ∗
2 ,βs−p,pγ

}

(2.12)

where C ′ is a constant independent of T and

θ∗ := min{2 + pγ − 3p− 2α, 2 + β − 3p− 2α, 2(β + 1)s− 4p− 2α, α− p, b− 2p}. (2.13)

Furthermore, we shall bound the difference between fT+1 and fρ,τ in some Banach space
by means of the noise condition.

Definition 2.7 Let 0 < ϕ ≤ ∞ and ξ > 1. Denote r = ϕξ/(ϕ + 1) > 0. We say that
ρ has a τ -quantile of ϕ-average type ξ if there exist two positive functions wτ and bτ on X

such that {bτwξ−1
τ }−1 ∈ Lϕ

ρX
and for any x ∈ X and w ∈ (0, wτ (x)], there hold

ρx({y : fρ,τ (x) < y < fρ,τ (x) + w}) ≥ bτ (x)wξ−1

and

ρx({y : fρ,τ (x)− w < y < fρ,τ (x)}) ≥ bτ (x)wξ−1.

Theorem 2.8 Let 0 < ϕ ≤ ∞ and ξ > 1. Denote r = ϕξ/(ϕ + 1) > 0. Assume the
measure ρ has a τ - quantile of ϕ-average type ξ. Under the same conditions of Theorem 2.6
, we have

Ez1,...,zT
‖fT+1 − fρ,τ‖Lr

ρX
≤ C∗‖bτwξ−1

τ

−1‖1/ξ

Lϕ
ρX

T−θ
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where C∗ is a constant independent of T and

θ = min
{

θ∗

2ξ
,
βs− p

ξ
,
pγ

ξ

}

with θ∗ in (2.13).

3 Error Decomposition and Technical Estimates

In this section, we shall prove our main results in the previous section. By the standard
decomposition, we have that

E(fT+1)− E(fρ,τ ) ≤ κ‖fT+1 − f εT

λT
‖K + κ‖f εT

λT
− fλT

‖K +D(λT ). (3.1)

For the second term ‖f εT

λT
− fλT

‖K , we can estimate it by the following proposition, whose
proof can be found in [5].

Proposition 3.1 If the family of conditional distributions ρx at x ∈ X is Lipschitz-s
for some s > 0, then for any 0 ≤ ν < µ. we have

‖fµ
λ − fν

λ‖K ≤ Cρκ|µ− ν|s
λ

. (3.2)

In particular, when λ > 0 and εt = ε1t
−βwith β > 0, ε ≥ 0, there holds

‖f εt−1
λ − f εt

λ ‖K ≤ Cρκεs
1β

s2(β+1)s

λ
t−(β+1)s, ∀t ≥ 2.

Thus, our key error analysis is about the sample error ‖fT+1 − fρ,τ‖K . To this end, we
first estimate the error caused by the non-sampling process.

3.1 Error Caused by Sampling with Non-Identical Distribution

When we take the expectation with respect to zt = (xt, yt) drawn from the non-identical

distribution, we get
∫

Z
ψεt

τ (u)dρ(t) instead of
∫

Z
ψεt

τ (u)dρ, in this case, an extra error term

∆t in (3.3) involving the different measure ρ(t) − ρ shows up

∆t =
∫

Z
{ψεt

τ (f εt

λt
− yt)− ψεt

τ (ft − yt)}d[ρ(t) − ρ]. (3.3)

Lemma 3.2 Let h, g ∈ Cs(X ). If the family of conditional distributions {ρx}x∈X is
Lipschitz-s, then we have

∣∣∣∣
∫

Z
ψεt

τ (y − h(x))− ψεt
τ (y − g(x))d

[
ρ(t) − ρ

]∣∣∣∣ ≤ Mρ‖ρ(t)
X − ρX‖Cs(X ))∗

where Mρ, Bh,g and Nh,g are given by

Mρ =
{
Bh,g(‖h‖Cs(X ) + ‖g‖Cs(X )) + 2CρNh,g

}
,
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and

Bh,g = sup
{
(|ψεt

τ )′(y − f)| : y ∈ Y, |f | ≤ max{‖h‖C(X ), ‖g‖C(X )}
}

,

and

Nh,g = sup
{‖ψεt

τ )′(u− f)‖Cs(Y) : |f | ≤ max{‖h‖C(X ), ‖g‖C(X )}
}

.

The proof of Lemma 3.2 can be found in [5].

3.2 One-Step Analysis

Now we turn to bound the sample error ‖fT+1 − f εT

λT
‖K . This will be conducted by

one-step iteration analysis which aims at bounding ‖ft+1 − f εt

λt
‖K in terms of ‖ft − f

εt−1
λt−1

‖K .
We define the errors caused by the changing parameters εt and λt.

Definition 3.3 The insensitive error is defined as

ht = ‖f εt−1
λt−1

− f εt

λt−1
‖K , t ∈ N. (3.4)

The drift error is defined as

dt = ‖f εt

λt−1
− f εt

λt
‖K , t ∈ N. (3.5)

Now we bound the sample error ‖fT+1 − f εT

λT
‖K through ‖fT − f εT

λT
‖K , ht, dt and ∆t.

Lemma 3.4 Define {ft} by (2.4). Then we have

Ezt
(‖ft+1 − f εt

λt
‖2

K) ≤(1− ηtλt)(1 + A1d
q1
t )(1 + A2h

q2
t )‖ft − f

εt−1
λt−1

‖2
K + 2ηt∆t + η2

tEzt
‖Gt‖2

K

+ (1 + A1d
q1
1 )(h2−q2/A2 + h2

t ) + d2−q1
t /A1 + d2

t , (3.6)

where Gt is defined as

Gt = (ψεt
τ )

′
(ft(xt)− yt)Kxt

+ λtft.

Proof First, we claim that ‖ft‖ ≤ κ
λt

,∀t ∈ N. It can be easily seen by induction from
f1 = 0 and the following estimate is derived from (2.2)

‖ft+1‖K ≤ (1− λtηt)‖ft‖K + ηtκ ≤ (1− λtηt)
κ

λt

+ ηtκ =
κ

λt

≤ κ

λt+1

.

From (2.3), we see by inner products that

‖ft+1 − f εt

λt
‖2

K = ‖ft − f εt

λt
‖2

K + 2ηt〈f εt

λt
− ft, Gt〉K + η2

t ‖Gt‖2
K . (3.7)

By the reproducing property (2.1),

〈f εt

λt
− ft, Gt〉K = (ψεt

τ )
′
(ft(xt)− yt){f εt

λt
(xt)− ft(xt)}+ λt〈f εt

λt
− ft, ft〉K .
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The convexity of the loss function ψεt
τ tells us that

(ψεt
τ )

′
(ft(xt)− yt){f εt

λt
(xt)− ft(xt)} =(ψεt

τ )
′
(ft(xt)− yt){[f εt

λt
(xt)− yt]− [ft(xt)− yt]}

≤ψεt
τ (f εt

λt
(xt)− yt)− ψεt

τ (ft(xt)− yt).

Also,

λt〈f εt

λt
− ft, ft〉K ≤ λt‖f εt

λt
‖K‖ft‖K − λt‖ft‖2

K ≤ λt

2
‖f εt

λt
‖2

K − λt

2
‖ft‖2

K .

Thus,

〈f εt

λt
− ft, Gt〉K ≤ ψεt

τ (f εt

λt
(xt)− yt)− ψεt

τ (ft(xt)− yt) +
λt

2
‖f εt

λt
‖2

K − λt

2
‖ft‖2

K .

Taking expectation with respect to zt, we get by Lemma 3 in [15]

Ezt
〈f εt

λt
− ft, Gt〉K ≤ ∆t − λt

2
‖ft − f εt

λt
‖2

K .

Together with (3.7)

Ezt
‖ft+1 − f εt

λt
‖2

K ≤ (1− λtηt)‖ft − f εt

λt
‖2

K + η2
t ‖Gt‖2 + 2ηt∆t.

Note that ‖(ψεt
τ )

′‖∞ ≤ 1 and ‖Gt‖K ≤ 2κ. We get

Ezt
‖ft+1 − f εt

λt
‖2

K ≤ (1− λtηt)‖ft − f εt

λt
‖2

K + 4κ2η2
t + 2ηt∆t. (3.8)

Decompose ‖ft−f εt

λ ‖2
K as ‖ft−f εt

λt−1
+f εt

λt−1
−f εt

λt
‖2

K . Using the elementary inequality 2ab ≤
Aa2bq +b2−q/A with 0 < q < 2, A > 0 to the case of a = ‖ft−f εt

λt−1
‖K , b = dt, A = A1, q = q1,

we obtain

‖ft − f εt

λt
‖2

K ≤ ‖ft − f εt

λt−1
‖2

K + A1‖ft − f εt

λt−1
‖2

Kdq1
t + d2−q1

t /A1 + d2
t .

Applying the same inequality to the case a = ‖ft − f
εt−1
λt−1

‖K , b = ht, A = A2, q = q2, we see
that

‖ft − f εt

λt−1
‖2

K ≤ ‖ft − f
εt−1
λt−1

‖2
K + A2‖ft − f

εt−1
λt−1

‖2
Khq2

t + h2−q2
t /A2 + h2

t .

Combining the two estimates, we obtain

‖ft − f εt

λt
‖2

K

≤(1 + A1d
q1
t )(1 + A2h

q2
t )‖ft − f

εt−1
λt−1

‖2
K + (1 + A1d

q1
t )(h2−q2

t /A2 + h2
t ) + d2−q1

t /A1 + d2
t .

Putting it into (3.8), we get the desired bound (3.6).

3.3 Bounding the Sample Error

Now we can state our estimate for the sample error as follows.



324 Journal of Mathematics Vol. 41

Proposition 3.5 Suppose (2.5), (2.7), (2.8) and (2.9) hold. Take the parameters
ηt, λt, εt as the same form in Theorem 2.6, then we have

Ez1,...,zT

∥∥fT+1 − f εt

λT

∥∥2

K
≤ C ′′T−θ∗ (3.9)

where C ′′ is a constant independent of T and θ∗ is given in (2.13).
To prove this proposition, we need the following lemma, whose proof can be found in

[12].
Lemma 3.6 If K satisfies the kernel condition of order s, then we have

‖g‖Cs(X) ≤ (κ + κ2s)‖g‖K , ∀g ∈ HK .

Now we proceed proving Proposition 3.5.
Proof To apply the estimate in Lemma 3.4, we need to explicit bounds for dt and ht.

According to Lemma 3 in [5], we find

dt ≤ d1t
−min{1−p/2+pγ/2,1−p/2+β/2}, ∀t ∈ N.

where d1 = p2p+1
√

(2D0λ
γ
1 + 4ε1)/λ1. Using Proposition 1 in [5] with λ = λt−1, we obtain

ht ≤ h1t
p−(β+1)s, ∀t ∈ N.

where h1 = Cρκεs
1β

s2(β+1)s/λ1.

Now we apply Lemma 3.4. Take

q1 =
α + p

min{1− p/2 + pγ/2, 1− p/2 + β/2} , q2 =
α + p

(β + 1)s− p

and

A1 = d−q1
1

λ1η1

6
> 0, A2 = h−q2

1 min
{

λ1η1

6
, 1

}
> 0.

From the restrictions (2.10) and (2.11), we see that 0 < q1 < 2 and 0 < q2 < 2. Then the
coefficient of the first term of bound (3.6) can be bounded as

(1− λtηt)(1 + A1d
q1
t )(1 + A2h

q2
t ) ≤1 + (A1d

q1
t + A2h

q2
t + A1A2d

q1
t hq2

t )t(−α+p) − λtηt

≤1− η1λ1

2
t−α−p.

Thus by Lemma 3.4, we have

Ez1,...,zt
‖ft+1 − f εt

λt
‖2

K

≤
(

1− η1λ1

2
t−α−p

)
Ez1,...,zt−1‖ft − f

εt−1
λt−1

‖2
K + A3t

−θ1 + 2ηt∆t, (3.10)

where

θ1 = min{2 + pγ − 2p− α, 2 + β − 2p− α, 2(β + 1)s− 3p− α, 2α}
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and

A3 = (1 + A1d
q1
1 )(h2−q2

1 /A2 + h2
1) + d2−q1

1 /A1 + d2
1 + 4κ2η2

1 .

Next we bound ∆t. From the Lemma 3 in [5], we have that

‖f εt

λt
‖K ≤

√
(2D(λt) + 4εt)/λt, t = 1, . . . , T,

and ‖ft‖K ≤ κ
λt

. By Lemma 3.2 and Lemma 3.6,

∆t ≤ B∗
t :=

{
(κ + κ2s)(

√
(2D(λt) + 4εt)/λt + κ/λt) + 2Cρ/λt

}
‖ρ(t)

X − ρX‖(Cs(X))∗ .

Applying condition (2.5), we can bound B∗
t as

B∗
t ≤ A4t

p−b where A4 = C
{

(κ + κ2s)(
√

(2D0 + 4ε1)λ1 + κ/λ1) + 2Cρ/λ1

}
.

Therefore, for the one-step iteration, we have for each t = 1, . . . , T,

Ez1,...,zt
(‖ft+1 − f εt

λt
‖2

K) ≤
(

1− η1λ1

2
t−α−p

)
Ez1,...,zt−1(‖ft+1 − f

εt−1
λt−1

‖2
K) + A5t

−θ2

where A5 = A3 + 2η1A4 and

θ2 = min{2 + pγ − 2p− α, 2 + β − 2p− α, 2(β + 1)s− 3p− α, 2α, α− p + b}.

Applying this bound iteratively for t = 1, . . . , T implies

Ez1,...,zT
(‖fT+1 − f εt

λT
‖2

K) ≤ A5

T∑
t=1

T∏
j=t+1

(1− η1λ1

2
j−α−p)t−θ2 .

Applying the following elementary inequality in [12] with 0 < a1 < 1, c, a2 > 0 and t ∈ N
t−1∑
i=1

i−a2exp
{
− c

t∑
j=i+1

j−a1

}
≤

{
2a1+a2

c
+

(
1 + a2

ec(1− 2a1−1)

)(1+a2)/(1+a1)}
ta1+a2

to the case of a1 = α + p < 1, a2 = θ2 and c = η1λ1/2, we see that

T∑
t=1

T∏
j=t+1

(1− η1λ1

2
j−α−p)t−θ2 ≤ A6T

p+α−θ2 ,

where

A6 =
2α+p+θ2+1

η1λ1

+ 1 + (
2 + 2θ2

eη1λ1(1− 2α+p−1)
)

1+θ2
1−p−α .

With the above estimate, we can get the desired bound (3.9) with θ∗ = θ2 − p− α and the
constant C ′′ = A5A6.
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3.4 Estimating Total Error

This section is devoted to proving the main results in Section 2.3.
Proof of Theorem 2.6 By (3.1), we can get the statement by applying Propositions

3.1, 3.5 and (2.7).
To prove Theorem 2.8, we shall make use of the following comparison theorem [16].
Lemma 3.7 Let 0 < ϕ ≤ ∞ and ξ > 1. Denote r = ϕξ/(ϕ + 1) > 0. Assume the

measure ρ has a τ - quantile of ϕ-average type ξ, then for any measurable function on X, we
have

‖f − fρ,τ‖Lr
ρX
≤ 21−1/ξξ1/ξ‖{bτwξ−1

τ }−1‖1/ξ

Lϕ
ρX

{ε(f)− ε(fρ,τ )}1/ξ.

Proof of Theorem 2.8 It is trivial to get the desired conclusion by Lemma 3.7 and
Theorem 2.8.

4 Simulations

In this section we further discuss and demonstrate our theoretical results by illustrative
examples.

Consider the models as follows. Let X = [0, 1]10, ρX be the Lebesgue measure on [0, 1]10,
then the marginal distribution sequence {ρ(t)

X } satisfies dρ
(t)
X = dρX + Ct−bdρX , and for each

x ∈ X , the conditional distribution ρX is noised by the uniform distribution on [−0.5, 0.5]
around the regression function value where the parameters are described in Table 1.

fρ(x) =
3∑

i=1

Aiexp(−|x− Pi|2
2v2

i

).

Table 1 Parameters
i Coefficient Ai Variation v2

i Center Pi

1 2.0 0.622 (0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
2 3.5 0.642 (0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6)
3 0.7 0.652 1

9(0.9, 1.7, 2.5, 3.3, 4.1, 4.9, 5.7, 6.5, 7.3, 8.1)

We take the Gaussian kernel K(x, u) = exp{−|x − u|2/2σ2} with variance σ2 = 0.62.
When τ = 0.5, s = 1 is valid. Meantime, the measure ρ has a 1

2
-quantile of ∞-average type

2. In our simulations, we compare mean square error in each numerical experiment.

MSE(T ) = (
1
M

M∑
j=1

(fT+1(ξj)− fρ,τ (ξj))2)1/2

where M is the sample size and {ξj} is an unlabelled sample set drawn from non-identical
distribution.



No. 4 Online quantile regression with varying thresholds and non-identical sampling distributions 327

(a) (b)

(c) (d)

Figure 1 Simulation

For the sparsity caused by varying εt-insensitive loss, by (2.4), we can express the output
function fT as fT =

∑T

i=1 aiKxi
,a = {ai}T

i=1 ∈ RT . Here, the degree of the sparsity of the
online learning algorithm is measured by ‖a‖0, the proportion of non-zero coefficients in a.
Take τ = 0.5, η1 = 0.4, λ1 = 0.001, ε1 = 7.1, α = 0.1, β = 0.8, p = 0.04. Note that εt ≡ 0
corresponds to the online quantile regression without threshold. We compare their sparsity
and mean squared errors in Figure 1(a). Obviously, the red curve of εt = 7.1t−0.8 has more
sparsity than the blue one of εt ≡ 0.

In Figure 1(b) and (c), we show how the sparsity power β affects the mean square error
and sparsity. As we see, if β increases, the mean square error will decrease while ‖a‖0 will
become larger. Thus, the choice of β should balance the mean square error and sparsity. It
confirms our theoretical results in Theorems 2.6 and 2.8.

In Figure 1(d), we report the change of the mean squared error as the power index b

increases. We set the sample size M = 200, number of iterations T = 3000 and η1 = 0.4,
λ = 0.001, ε1 = 7.1, α = 0.1, β = 0.8 and p = 0.02. We plot mean squared errors from 0.5
to 3.2. At the beginning, the error decreases as b increases, but when b is larger than 1.7,
the error does not change. This phenomenon coincides with our theoretical results that the
non-identical sampling does not affect on the learning ability if the dependence between the
samples is weak.
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多阈值和非独立同分布的在线分位数学习算法

蒋铭勤

(武汉大学数学与统计学院, 湖北 武汉 430072)

摘要: 本文研究了多阈值和非一致分布下的在线分位数回归算法, 在每一次迭代中, 样本会来自不同

的分布和取不同的阈值. 利用边缘分布在对偶空间中多项式收敛的性质, 我们得到了算法的学习速度, 并且

做了相应的数值模拟来支持我们的结论.
关键词: 非一致分布; 在线学习; 分位数回归; 再生核希尔伯特空间
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