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Abstract: In this paper we study the online quantile regression algorithm with varying thresh-
olds and non-identical sampling distributions, where at each time a sample is drawn independently
from different probability distributions and the threshold values decrease with the iteration pro-
cess. The learning rate of the algorithm is obtained under the assumption that the sequence of
marginal distribution converges polynomially fast in the dual of a Holder space. Several numerical
simulations are presented to support our results.
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1 Introduction

Quantile regression extends the classical least squares regression and provides more
information about the distributions of response variables such as stretching or compression
tails and multimodality. Since quantile regression can provide a more complete description
of the response distribution than a single estimate of the center, such as the mean or median,
it has received considerable study in the literature; see [1-3].

An initial form of online learning algorithm was proposed in [4]. It is a type of stochastic
gradient descent method, which is applicable to the situations where sample data is presented
in a sequential manner and the predictor is updated at each iteration. With linear complex-
ity, online learning provides an important family of efficient and scalable machine learning
algorithms for real applications. Thus, a variety of online learning paradigms have been
introduced, see [5—10]. Here we aim to study the online quantile regression algorithm gener-
ated from a stochastic gradient descent method of regularization schemes in a reproducing
Kernel Hilbert space (RKHS) associated with non-identical distributions.

In the literature on learning theory, samples are often drawn independently from an

identical distribution (i.i.d.). However, the data in practice are usually not from an identical
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distribution. The first case is when the sampling distribution is perturbed by some noise
and the noise level decreases as the learning time. The second case is generated by iterative
actions of an integral operator associated with a stochastic density kernel. The third case is
to induce distributions by dynamical systems. For details, we can refer to papers [11,12].
The rest of this paper is organized as follows. We begin with Section 2 by providing
necessary background and notations required for a precise statement of our algorithm. We
then present our main theorems on the learning ability of our algorithm. Sections 3 is
devoted to the proofs of our results. Lastly, we present simulation results in Section 4 to

further explore our theoretical results.

2 Backgrounds and Algorithm

In the standard framework of learning, let a separable metric space (X, d) be the input
space and ) C R be the output space. Kernel methods provide efficient non-parametric
learning algorithms to deal with data of nonlinear structures via feature mapping. Here we
shall use a reproducing Kernel Hilbert space (RKHS) as the hypothesis space in the design of
learning algorithms. A reproducing kernel K : X x X — R is a symmetric function such that
the matrix (K'(u;, u;))} ;_, is positive semidefinite for any finite set of points {u;};_, C X. A
RKHS (H, || - ||x) is the completion of the linear span of the function set {K, = K(z,-) :
x € X} with respect to the inner product given by (K,, K,)x = K(z,u), Vz,u € X. It

implies the reproducing property
<f7Kz>K:f(m)7 VfEHlﬁxGX‘ (21)
Throughout the paper, we assume that  := sup /K(z,z).
FEHK
2.1 Online Quantile Regression Algorithm
Let p be a Borel probability measure defined on Z := X x ). Denote by p, the
conditional distribution p at x € X. The goal of non-parametric quantile regression is to
learn a quantile function f,, : X — ) from the sample set z = {z;}7_; := {(@i,y:)} -, C Z,

whose value f, (x) is defined as the 7-quantile (0 < 7 < 1) of the conditional p, at z € X.

Here a T-quantile of p, means a value u € Y satisfying
plyeY :iy<u)>7 and p(yeY:y>u)>1-r1.

For quantile regression, the pinball loss ¢, : R — R, is usually taken as the corresponding

loss function in learning schemes, which is defined as

bla) = {(1 — P ifu>0,

—TU if u <0.
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To produce sparse estimators, the alternative e-insensitive pinball loss ¥¢ : R — Ry is
introduced in [5], that is,

I—7)(u—c¢€) ifu>e,
Yi(u) = —7(u+e) if u<—e (22)
0 otherwise,
where € > 0 is the insensitive parameter. This loss function has been applied to various

online and batch algorithms, see [6,13,14]. In the following, we consider the online learning

algorithm for quantile regression with a varying threshold sequence {e; > 0};.

Definition 2.1 Given the sample set z = {(z;,v:)}’_, C Z, the online algorithm for
quantile regression is defined by f; = 0 and
ft+1 :ft_nt{(wit)i(ft(‘rt) _yt)K(If) +)‘tft}7 t= 1727"'7 (23)

where \; > 0 is a regularization parameter, 7, > 0 is a step size, (1)  is the left derivative

of 1¢, the insensitive parameters ¢; > 0 converge to zero as the learning step ¢ increases.
With (2.2), the learning sequence {f;} can be expressed as f; = 0 and

(L= Ane)fe — (L= 7)n Ko, i fi(ze) — e > &,
Jeor = 4 (0= M) fr + T, K, if fi(ze) —y < e, (2.4)
(1 = Xeme) f if —e < fi(we) —ye <.

The main purpose of this paper is to investigate how the output function fr,; given by
(2.3) converges to the quantile function f,, with the non-identical sampling process and
how explicit learning rates can be obtained with suitable choices of step sizes and threshold
values based on a prior conditions on sampling distributions.

2.2 Sampling with Non-Identical Distributions

In this work, the data pairs {z;}7_, := {(z;,y:)}_; C Z are drawn from a probability
distribution p® on Z at each step t = 1,2,.... The sampling sequence of probability
distributions {p} is independent but not identical. We assume the marginal distributions
sequence { p()?} converges polynomially on the dual of the Holder space C*(X) for some

0 < s < 1. Define Hélder space C*(X) is the span of all continuous functions on X with the

cax) = [[fllec) + [f Ce() 7= SUP,, LWL,

Definition 2.2 We say that the sequence {pgﬁ)}t:m,_“ converges polynomially to a
probability distribution py in (C*(X))*(0 < s < 1) if there exist C' > 0 and b > 0 such that

norm || f] c#(x) finite, where | f

1% = pallicexy- < Ct°, teN. (2.5)

The power index b measures the differences from non-identical sampling to i.i.d case and

impact on the learning rate of the online algorithm. Specially, when b = oo the sampling



No. 4 Online quantile regression with varying thresholds and non-identical sampling distributions 319

is the i.i.d case. For example, let h¥) be a sequence of bounded functions on X such that
sup |h(t) (z)| < Ct~". Then the sequence {pﬁé)}t:l,gw defined by dpgé) = dpx + h®(z)dpx

reX
satisfies the decay condition(2.5) for any 0 < s < 1. In this example, h(*) is the density

function of the noise distribution and we assume its noise level to decay polynomially as ¢

increases.
2.3 Learning Errors

Usually we measure the learning performance of algorithms by generalization errors. In
this paper, the generalization error E(f) of a function f : X — Y is defined by means of the
pinball loss 1, as

E(f) = /Z e (f () — y)dp.

Throughout the paper, we assume that f lyldp < oo and the value of the quantile regression
function f,  is uniquely determined at each x € X. With this assumption, if f is bounded
on X or f e L2, E(f) is finite since ¥, (u) < |u]. By decomposing the measure p into the
marginal distribution px and the conditional distribution p, at x € X', we see that f,, is
the only minimizer of £(f) among all measurable functions on X.

This work will investigate the approximation or learning ability of algorithm (2.3) by
the excess generalization error E(f) — E(f,-). To this end, we introduce some necessary
conditions. The first one is involved with the approximation ability of the hypothesis space
‘Hy, which is characterized by the approximation error.

Definition 2.3 The approximation error D(\) of the triple(K,V, p) is defined by

feEHK

D) = it {e(r) - £ + Gl ) (2:6)

and fy is a minimizer of (2.6), called the regularizing function.
A usual assumption on the regularization error D(\) which imposes certain smoothness

on Hg is
D(A) < Do\, VA>0 (2.7)

with some 0 < v < 1 and Dy > 0.

The second one is respect to the continuity of the conditional distribution {p,}.ecx
introduced in [11].

Definition 2.4 We say that the set of conditional distributions {p, : * € X'} is
Lipschitz-s if there exists a constant C,, > 0 such that

pe{yeY:u<y<v}) <Clu—v]’, u<ve). (2.8)

Notice that if each density function d”;i;y)

exists and is uniformly bounded on Y by a
constant C, for each p,, then s =1 is valid.
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The third one is about the kernel condition of K, which is stated as follows.
Definition 2.5 We say a Mercer kernel K satisfies the kernel condition of order s if
K € C%(X x X) and for some ka5 > 0,

K (z,7) — 2K (z,2) + K (u,u)| < k3, (d(z,u))*, Vo,uc X. (2.9)

When 0 < s < 1 and K € C*(X x X), (2.9) holds true.

With these assumptions in place, we are now ready for the statements of our main
results.

Theorem 2.6 Suppose assumptions (2.5), (2.7), (2.8) and (2.9) hold. Take the pa-
rameters 1,, \;, €, as the form 7, = mt=%, A\, = Mt 7P, ¢, = et~ # with 7y, A\, e1,a,p, 3 > 0.
If

C[2+8 2 pB+1
2.1
0<p<m1n{ 5 5 3 s} (2.10)
and
2t py—3p 24+ —

p<a<min{ +pg . +52 3p,(5+1)s—2p}, (2.11)

then we have

min{";,ﬁsnm}

Eeyooor [E(frin) —E(fL)] <C'T (2.12)

where C’ is a constant independent of T' and
0" :=min{2 +py —3p—2a,2+ 3 —3p —20,2(B+ 1)s — 4p — 2cc,« — p, b — 2p}. (2.13)

Furthermore, we shall bound the difference between fr,; and f, - in some Banach space
by means of the noise condition.

Definition 2.7 Let 0 < ¢ < oo and £ > 1. Denote r = ¢&/(p + 1) > 0. We say that
p has a 7-quantile of p-average type £ if there exist two positive functions w, and b, on X
such that {b;ws™'}~! € L¥ and for any z € X and w € (0,w,(z)], there hold

pe{y : for(@) <y < for(z) +w}) 2 be(2)uw

and

px({y : for(z) —w <y < f,-(2)}) > bT(x)wgil'

Theorem 2.8 Let 0 < ¢ < oo and £ > 1. Denote r = p§/(¢ + 1) > 0. Assume the
measure p has a 7- quantile of p-average type £. Under the same conditions of Theorem 2.6
, we have

* —1—11 _
Eeoonlfrin = fprlliy, < Cllbrws™ I 777



No. 4 Online quantile regression with varying thresholds and non-identical sampling distributions 321

where C* is a constant independent of T" and

0—m1n{9 Ps—p pfy}
260 ¢ ¢

with 6* in (2.13).
3 Error Decomposition and Technical Estimates

In this section, we shall prove our main results in the previous section. By the standard

decomposition, we have that

E(fr1) = E(fp7) < wllfra = [Tl + KT = Pl + D). 3.1)

For the second term || fi” — fi, ||k, we can estimate it by the following proposition, whose
proof can be found in [5].

Proposition 3.1 If the family of conditional distributions p, at x € X is Lipschitz-s
for some s > 0, then for any 0 < v < p. we have

Coklp —v|?

7 = fle < S

(3.2)

In particular, when A > 0 and ¢, = e;¢ Pwith 3 > 0,¢ > 0, there holds

< Cpnﬁiﬂs2(ﬁ+1)s t—(5+1)s

4507 = £l < 22592 w2

Thus, our key error analysis is about the sample error || fr11 — f, || x. To this end, we
first estimate the error caused by the non-sampling process.

3.1 Error Caused by Sampling with Non-Identical Distribution

When we take the expectation with respect to z; = (x4, y;) drawn from the non-identical
distribution, we get / Yt (u)dp™® instead of / Y (u)dp, in this case, an extra error term
z z

A, in (3.3) involving the different measure p*) — p shows up

m—/fwnm—%)u)( )}l — g, (3.3)

Lemma 3.2 Let h,g € C*(X). If the family of conditional distributions {p,},ex is
Lipschitz-s, then we have

“(y — h(x)) — e (y — g(2))d [p9 — p] | < M,[Ip% — pxllosxy-

where M,, By, ; and N 4 are given by

M, = {Bhyg(||h| cs(x) t ”gHCS(X)) + QCpNh,g} )
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and

By =sup {(|02) (y — f)| : y € Y, |f| < max{||hllccx), lgllc }}

and

Nig = sup {[1¥2) (w = f)llc= ) : [f] < max{[[hllocx), lgllocn }} -
The proof of Lemma 3.2 can be found in [5].

3.2 One-Step Analysis

Now we turn to bound the sample error |[fry1 — fiI[|x. This will be conducted by
. . . . . . . €t —
one-step iteration analysis which aims at bounding || f;41 — f}![|x in terms of [|f; — £/} || k-
We define the errors caused by the changing parameters e¢; and ;.

Definition 3.3 The insensitive error is defined as
he=Ilfx2) = £k, teN (3.4)
The drift error is defined as
dy =I5, — fllx, teN (3.5)

Now we bound the sample error || fri1 — fi%||x through || fr — f%|k, he, di and A,.
Lemma 3.4 Define {f;} by (2.4). Then we have

E. ([ frer = [ N1%) <= mA) (1 + Ard? ) (1 + Aoh{)[| fr = fr 1% + 2mA + n7E., |Gl
+ (1+ Ayd) (B> JAy + B7) + di =" Ay + (3.6)
where G, is defined as

’

Gy = (W2)_(fe(w) — ye) Koy + A fr

Proof First, we claim that || f;|| < -, Vt € N. It can be easily seen by induction from
fi =0 and the following estimate is derived from (2.2)

K K K
[feralle < (L= Am)l[fellx +ner < (L= Ame) = + ek = +— < :
At At At41
From (2.3), we see by inner products that
I ferr = Fllie = Ife = Filli + 2ne(F50 = fo, Go) i + 0 [1Gell - (3.7)

By the reproducing property (2.1),

’

<f,€\i - ft,Gt>K = (Y5") (fe(ze) — Z/t){f;\i (7¢) — ft(ﬂft)} + )\t<f)€\1 = fo, f) k.
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The convexity of the loss function ¢ tells us that

(W) (felwe) =y Uf5e () = folae)} =(5) (felwe) = yo{[f5: (@) = we] = [fulwe) = yel}
<Prt (s (@) = ye) = 7 (fe(e) — w)-

Also,

€ €t A € A
Mlfe = fo For < Ml fell e = Aell fellie < él!fxtﬂi - ijtH?c
Thus,
€t €t €t )‘t €t (|2 /\t 2
(3= o G SR (£ () = we) = 2 (ful@e) =) + S IR = 5 [ fell-
Taking expectation with respect to z;, we get by Lemma 3 in [15]
€t >\t € (12

E. (f\ = fi,Gi)x <Ay — ?”ft — k-

Together with (3.7)

Bl ferr = Fllie < (0= dmo)llfe = £l +nZ1G + 2meAe.

Note that [|(<)

o <1 and |G|k < 2k. We get

E. [[fisr — Fi i < (L= Xemo) |l fe — f2 1% + 46707 + 2m A (3.8)

Decompose || fy — fy' % as [[fi = fx_, + £, — fxi % Using the elementary inequality 2ab <
Aa’b?4-b>"1/Awith 0 < ¢ <2, A > 0tothecaseof a = || fi—fY [k, b=di, A= A1,q=q,
we obtain

|| fe _f,iiH%( <\fe = £ 1||K+A1||ft Ia 1||qu1 +d7 AL+ dy.

Applying the same inequality to the case a = || f; — f;’ Nx,b = hyy A = As,q = qo, We see
that
1fe = £ % < W= £ + Aol fo = fR i 5chE + By As + B3

Combining the two estimates, we obtain

1fe = fxll
<(14 Ard?)(1+ Ash®)||fr — £ 15 + (L + Ardf) (B 7% JAs + hi) + di” " JA; + d.

Putting it into (3.8), we get the desired bound (3.6).
3.3 Bounding the Sample Error

Now we can state our estimate for the sample error as follows.
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Proposition 3.5 Suppose (2.5), (2.7), (2.8) and (2.9) hold. Take the parameters

Nty Aty € as the same form in Theorem 2.6, then we have
e |2 1"—6*
]Ezl,.,.,zT HfT-‘rl - f)\T HK S C T (39)

where C” is a constant independent of 7" and 6* is given in (2.13).
To prove this proposition, we need the following lemma, whose proof can be found in
[12].

Lemma 3.6 If K satisfies the kernel condition of order s, then we have

lgllcsx) < (K + rao)llgllx, Vg € Hi.

Now we proceed proving Proposition 3.5.
Proof To apply the estimate in Lemma 3.4, we need to explicit bounds for d; and h;.

According to Lemma 3 in [5], we find

d, < dlt*min{l*P/2+P’Y/271*P/2+ﬁ/2}’ vt € N.

where d; = p2P™1\/(2DgA] + 4€1)/A1. Using Proposition 1 in [5] with A = \,_1, we obtain
hy < hyt?P~ B+ v e N.

where hy = C,re; 3200+ /),
Now we apply Lemma 3.4. Take

a+p . a+p
min{l — p/2+py/2. 1 —p/2+B/2) P T B+ 1)s—p

q1 =

and

A A
A, = d;‘thm >0, Ay= hl_‘”min{ 16771 , 1} > 0.

From the restrictions (2.10) and (2.11), we see that 0 < ¢; < 2 and 0 < g2 < 2. Then the
coefficient of the first term of bound (3.6) can be bounded as

(1= M) (14 Ayd?) (1 4 Axh®) <1+ (Ard? + Ah? + Ay Apd? hP)t=oFP) — )\,

<1 = Aoy,
2
Thus by Lemma 3.4, we have
Em,...,szle - f;i”%(
A . _
< (1 - —7712 1tap> Bz e = ) % + Ast™" + 2n, A, (3.10)
where

01 =min{2+py—2p—,2+ 5 —2p—a,2(f+1)s — 3p — a, 2}
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and
Ay = (1+ Ad{)(hi % /Ay + hT) + di " JA; + df + 4K%n]

Next we bound A,. From the Lemma 3 in [5], we have that

Ik <V @2D(A) +4e) /A, t=1,...,T,

and || fe||x < 5. By Lemma 3.2 and Lemma 3.6,

A < By i= { (5 + ka) (VDO + 4e) /A0 + K /20) +2C, /M HIo = pxlce -

Applying condition (2.5), we can bound B; as

Br < AjP where Ay = C{(n + k2s)(V/ (2D + den) M + 1/ A) + QCp/Al}.
Therefore, for the one-step iteration, we have for each t =1,...,T,
B = 50 < (1= 2 ) B o = )+ At
where A5 = A3 + 2n A4 and
O =min{2+py—2p— 0,2+ —2p—a,2(+1)s — 3p — a,2a, &« — p + b}.

Applying this bound iteratively for t = 1,...,7T implies

T T M )\
LAL 5 —a—py4—6;
Eeyoooor (1frsn = 50 M5 < Z H o).

Applying the following elementary inequality in [12] with 0 < a1 < 1,c¢,a2 >0 and t € N

t—1 t (14a2)/(1+a1)
9aitaz 1+ as
E - —ao _ § s—aq < ta1+a2
Z eXp{ c } - { c (ec(l —2u1)

i=1 j=i+1

to the case of a; = a+p < 1,a3 = 03 and ¢ = 1\ /2, we see that

T T A
Z H 771 1 G P)t—92 < A6Tp+a—92’

t=1 j=t+1
where
2a+p+02+1 2 + 20 146
Ag="—— +14( 2 )T
mA emAi(1 —2otp-1)

With the above estimate, we can get the desired bound (3.9) with 6* = 65 — p — « and the
constant C" = AsAg.
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3.4 Estimating Total Error

This section is devoted to proving the main results in Section 2.3.

Proof of Theorem 2.6 By (3.1), we can get the statement by applying Propositions
3.1, 3.5 and (2.7).

To prove Theorem 2.8, we shall make use of the following comparison theorem [16].

Lemma 3.7 Let 0 < ¢ < oo and £ > 1. Denote r = p&/(p + 1) > 0. Assume the
measure p has a 7- quantile of p-average type £, then for any measurable function on X, we
have

1 = Forllg, < 25 VE€VE (bt 1S {e(f) — e(fp)}

Proof of Theorem 2.8 It is trivial to get the desired conclusion by Lemma 3.7 and
Theorem 2.8.

4 Simulations

In this section we further discuss and demonstrate our theoretical results by illustrative
examples.

Consider the models as follows. Let X = [0, 1]*°, px be the Lebesgue measure on [0, 1]*°
then the marginal distribution sequence {pg)} satisfies dp()? = dpx + Ct’dpy, and for each
x € X, the conditional distribution py is noised by the uniform distribution on [—0.5,0.5]

around the regression function value where the parameters are described in Table 1.

ZAeXp P| —).

Table 1 Parameters

i Coefficient A; Variation v? Center P;

1 2.0 0.622 (0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
2 3.5 0.642 (0.6,0.6,0.6,0.6, 0.6, 0.6,0.6,0.6,0.6, 0.6)
3 0.7 0.652 $(0.9,1.7,2.5,3.3,4.1,4.9,5.7,6.5,7.3,8.1)

We take the Gaussian kernel K (z,u) = exp{—|z — u|*/20?} with variance o2 = 0.62.
When 7 = 0.5, s = 1 is valid. Meantime, the measure p has a f-quantlle of co-average type

2. In our simulations, we compare mean square error in each numerical experiment.

MSE(T MZ&MJA&MW

where M is the sample size and {¢;} is an unlabelled sample set drawn from non-identical
distribution.
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Figure 1 Simulation

For the sparsity caused by varying e;-insensitive loss, by (2.4), we can express the output
function fr as fr = 23;1 a;K,,,a = {a;}_, € R”. Here, the degree of the sparsity of the
online learning algorithm is measured by ||a||o, the proportion of non-zero coefficients in a.
Take 7 = 0.5, n; = 0.4, \; = 0.001, ¢, = 7.1, « = 0.1, 6 = 0.8, p = 0.04. Note that ¢, =0
corresponds to the online quantile regression without threshold. We compare their sparsity
and mean squared errors in Figure 1(a). Obviously, the red curve of ¢, = 7.1¢7°%% has more

sparsity than the blue one of ¢, = 0.

In Figure 1(b) and (c), we show how the sparsity power [ affects the mean square error
and sparsity. As we see, if § increases, the mean square error will decrease while ||a||o will
become larger. Thus, the choice of 3 should balance the mean square error and sparsity. It

confirms our theoretical results in Theorems 2.6 and 2.8.

In Figure 1(d), we report the change of the mean squared error as the power index b
increases. We set the sample size M = 200, number of iterations 7' = 3000 and n; = 0.4,
A=0.001,¢, =71, a=0.1, 8 = 0.8 and p = 0.02. We plot mean squared errors from 0.5
to 3.2. At the beginning, the error decreases as b increases, but when b is larger than 1.7,
the error does not change. This phenomenon coincides with our theoretical results that the
non-identical sampling does not affect on the learning ability if the dependence between the
samples is weak.
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