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Abstract: In this paper, we study the high order rogue wave solutions, breathers and higher
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1 Introduction

In the field of the soliton theory, it is vital to find the exact solution of nonlinear evo-
lution equations, including soliton solutions, breathers solution, rogue wave solutions, lump
solutions, period line wave solutions, interaction solutions, etc. Among these exact solu-
tions, rogue wave solutions are a class of analytic rational solutions which can reach very
high amplitudes in a short time. Because of its great destructive power and unpredictability,
the rouge wave has been found in the ocean for a long time. As another non-linear scien-
tific revolution after soliton, the rouge wave has attracted wide attention of researchers, and
has gradually risen in the category of social and scientific contexts, such as Bose-Einstein
condensates[1–3], oceanic[4, 5], even in finance[6] and hydrodynamics[7]. In 1983, some ana-
lytical solutions of nonlinear system (NLS) equations were obtained by D. H. Peregrine[8, 9],
then the rouge wave solutions were researched for NLS equation[10, 11]. In recent years,
the rouge wave solution of the nonlinear Schrödinger equation [12] and the coupled Hirota
systems[13] have been studied. And the abound rogue wave type solutions to the extended
(3+1)-dimensional Jimbo–Miwa equation are obtained by Liu, Yang, et al. in[14]. Further-
more, breathers [15] are considered as a special type of soliton, which can periodically occur
and propagate in a localized and oscillatory way. Breathers can be divided into three types:
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generalized breathers, Akhmediev breathers[16] and Kuznetsov–Ma breathers[17, 18]. In
2019, Liu obtained breathers solution and higher order breathers solution of some equa-
tions in [19]. Recently, Mandel and Scheider[20] obtained the breathers solution of nonlinear
equation by variational method. And Guo and Scheider studied the higher order breathers
solutions of Jimbo-Miwa equation and the breathers solutions to the cubic Klein Gordon
equation in[21] and[22], respectively.

High rogue waves play an critical role in the study of phase shift, propagation direction,
shape and energy distribution, which makes the significance of these solutions a very practical
research topic. In addition, the dynamics feature has become a central subject because it
can reveal the collision, rebound and absorption characteristics of particles in the process of
interaction, as well as the underlying laws of physics.

In this paper, we would like to consider the (4+1)-dimensional nonlinear Fokas equation
as follows:

uxt − 1
4
uxxxy +

1
4
uxyyy +

3
2
(u2)xy − 3

2
uzw = 0. (1.1)

The nonelasticity of the equation (1.1) and the interaction between elasticity were
described[23, 24]. The meaning of the Fokas equation in water waves originates in the
physical application of Kadomtsev-Petviashvili (KP) equation and Davey-Stewartson (DS)
equation. The latter two equations are used to describe the surface wave and internal wave
in channel or straits with different depths and widths, respectively[25–28].

The (4+1)-dimensional Fokas Eq.(1.1) has been studied by different scholars. He et
al.[29, 30] obtained a few new exact solutions of Eq.(1.1) by applying extended F-expansion
method. Zhang et al.[31] constructed multiple-soliton of Eq.(1.1). And Two different meth-
ods are used to look for exact traveling wave solutions of a modified simple equation about
Eq.(1.1) in Ref [32]. More recently, Cheng et al.[33] have derived lump-type solutions of a
reduced Fokas equation utilizing the positive quadratic function method. Wazwaz[34] made
use of the simplified Hirota’s method[35], whereafter demonstrated a variety of multiple soli-
ton solutions. And the M-lump solutions of the Fokas equation are ascertained by taking
limit method on multi-soliton solutions by Zhang and Xia [36]. As far as we know, the high
order rogue wave solution, breathers solution and high order breathers solution of the Fokas
equation by the simplified Hirota’s method have not been given.

The paper is arranged as follows. Section 2, the (4 + 1)-dimensional Fokas equation is
transformed into a (1 + 1) dimensional equation by variable transformation. Then based on
the Hirota bilinear form of the (1+1)-dimensional equation, high order rogue wave solutions
are constructed. Further, their typical dynamics behaviors are analyzed and explained. In
Section 3, by means of the simplified Hirota’s method for the (4 + 1)-dimensional equation,
breathers solution and high order breathers solution are obtained, then the corresponding
dynamics behaviors are illustrated. Some conclusions will be given in the final section.

2 Rogue Wave Solution

If one sets X = αx+βy + θt, Z = γz + εw in Eq.(1.1), Eq.(1.1) can be transformed into
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the following (1 + 1)-dimensional equation

θuXX +
1
4
β(β2 − α2)uXXXX + 3β(uuX)X − 3γε

2α
uZZ = 0, (2.1)

where α, β, θ, γ and ε are five real parameters.
Under the logarithmic transformation

u = (β2 − α2)(ln f)XX + u0, (2.2)

where |α| 6= |β| is a constant, the bilinear form to Eq.(2.1) is generated as

((θ + 3βu0)D2
X +

1
4
β(β2 − α2)D4

X − 3γε

2α
D2

Z)f · f = 0, (2.3)

where the bilinear operator[37] D is defined by

Dm
XDn

Zf(X, Z)g(X ′, Z ′) = ( ∂
∂X

− ∂
∂X′ )m( ∂

∂Z
− ∂

∂Z′ )
nf(X, Z)g(X ′, Z ′) |X′=X,Z′=Z , (2.4)

m and n are nonnegative integers. Eq.(2.1) is reduced to the bilinear equation

2(θ + 3βu0)(fXXf − f2
X)− 3γε

α
(fZZf − f2

Z) + 1
2
β(β2 − α2)(fXXXXf − 4fXXXfX + f2

XX) = 0.

(2.5)
An improved ansatz was proposed about multiple rogue solutions in 2018, as shown

below[13]

f = Fn+1(X, Z) + 2α1ZPn(X, Z) + 2β1XQn(X, Z) + (α2
1 + β2

1)Fn−1(X, Z), (2.6)

with

Fn(X, Z)=
n(n+1)/2∑

k=0

k∑
i=0

an(n+1)−2k,2iX
n(n+1)−2kZ2i,

Pn(X, Z) =
n(n+1)/2∑

k=0

k∑
i=0

bn(n+1)−2k,2iX
n(n+1)−2kZ2i,

Qn(X, Z) =
n(n+1)/2∑

k=0

k∑
i=0

cn(n+1)−2k,2iX
n(n+1)−2kZ2i,

(2.7)

F0 = 1, F−1 = P0 = Q0 = 0, where am,l, bm,l, cm,l(m, l ∈ {0, 2, 4, ..., n(n + 1)/2}) and
α1, β1 ∈ R. The coefficients am,l, bm,l, cm,l can be determined and the wave center can be
controlled by arbitrary constants α1, β1. Then by substituting these values into (2.2), some
rational solutions of the Eq. (1.1) are obtained. Rogue wave solutions come from these
solutions. And this kind of rogue wave is localized in X and Z.

Through research and Maple direct symbolic computations, we derive the central con-
trollable higher order rogue wave solutions of the Eq. (2.1).

2.1 The First Order Rogue Wave Solution

We will receive the first order rogue wave solution to the Eq.(2.1) if one sets n = 0 in
(2.6)
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f = F1(X, Z) = X2 + a0,2Z
2 + a0,0. (2.8)

Then substituting (2.8) into (2.5) and we conduct a direct symbolic computation, a polyno-
mial equation system is obtained. By solving the polynomial equations, we get

{a0,0 =
3β(α2 − β2)
4(3βu0 + θ)

, a0,2 = −2(3βu0 + θ)α
3γε

}. (2.9)

Further

f = F ′
1(X, Z) = (X − α1)2 − 2(3βu0 + θ)α

3γε
(Z − β1)2 +

3β(α2 − β2)
4(3βu0 + θ)

, (2.10)

is a solution to Eq. (2.5), where α1, β1 ∈ R .
When a0,0 = 3β(α2−β2)

4(3βu0+θ)
> 0 and a0,2 = 2(3βu0+θ)α

3γε
< 0, Eq.(2.5) will have a positive

polynomial solution. Substituting (2.10) into (2.2), the rogue wave solution of Eq. (2.1) is
obtained

u = u0 + (β2 − α2)(
2

F ′
1(X, Z)

− 4(X − α1)
2

F ′
1(X, Z)2

). (2.11)

figure 1: Plots of the first order rogue wave (2.1) with α = −5, β = 2, θ = 1, ε = 2, γ = 2, u0 = 2.

(a) Evolution graphs of the rogue wave with α1 = 0, β1 = 0. (b) The density plot of (a) ; (c)
Evolution graphs of the rogue wave with α1 = 10, β1 = 10. (d) The density plot of (c).

Figure. 1 shows the first order rogue wave. From the figure, we can clearly see that the
rogue wave has three peaks. Two of the peaks are higher and the other is lower than the
water level. Two parameters (α1, β1) are used to control the center of the rogue wave. By
computation we can find that when a0,0 = 3β(α2−β2)

4(3βu0+θ)
> 0 and a0,2 = 2(3βu0+θ)α

3γε
< 0. The

rogue wave reaches the peaks at the point (α1, β1) and (±3
√

β(3βu0+θ)(α2−β2)+(6βu0+2θ)α1

6βu0+2θ
, β1)

in the (X, Z)-plane, respectively. The first order rogue wave have extreme values 6βu0+θ
3β

and
−21βu0−8θ

3β
. In figures. 1 (a) and 1 (c), it is shown that the rogue waves are concentrated

near (0, 0) and (10, 10), respectively.

2.2 The Second Order Rogue Wave Solution

By (2.6) we can derive

f = F ′
2(X, Z) = F2(X, Z) + 2α1ZP1(X, Z) + 2β1XQ1(X, Z) + (α2

1 + β2
1)F0(X, Z), (2.12)
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where

F2(X, Z) = X6 + a4,0X
4 + a4,2Z

2X4 + (a2,0 + a2,2Z
2 + a2,4Z

4)X2 + a0,0 + a0,4Z
4 + a0,6Z

6,

P1(X, Z) = b0,0 + b0,2X
2 + b2,0Z

2, Q1(X, Z) = c0,0 + c0,2Z
2 + c2,0X

2,

F0(X, Z) = 1.

(2.13)
Substituting (2.12) into (2.5) and setting all the coefficients of the different powers of

ZpXq to zero. The set of solutions read as




a0,0 = 1
192α(3βu0+θ)3

(5625α3β3(α4 − 3α2β2 + 3β4)− 5625β9α− 192α(β2
1 + α2

1

−β2
1c

2
2,0)(3βu0 + θ)3 − 288εγα2

1b
2
2,0(βu0 + θ

3
)2), a0,2 = − 475α(α2−β2)

2
β2

24εγ(3βu0+θ)
,

a0,4 = 17(3βu0+θ)α2(α2−β2)β
9ε2γ2 , a2,0 = −125(α2−β2)

2
β2

16(3βu0+θ)2
, a0,6 = 8α3(3βu0+θ)3

−27γ3ε3 ,

a2,2 = 15βα(β2−α2)
εγ

, a2,4 = 4α2(3βu0+θ)2

3ε2γ2 , a4,0 = 25β(α2−β2)
4(3βu0+θ)

, b2,0 = b2,0,

b0,0 = 5β(α2−β2)b2,0

12(3βu0+θ)
, b0,2 = 2b2,0(3βu0+θ)α

9γε
, c0,0 = β(β2−α2)c2,0

4(3βu0+θ)
, c2,0 = c2,0,

c0,2 = 2α(3βu0+θ)c2,0

γε
, a4,2 = −2α(3βu0+θ)

γε
,




(2.14)

where b2,0, c2,0 ∈ C. The second order rogue wave solution of Eq. (2.1) is obtained by
Substituting (2.14) and (2.12) into (2.2).

u = u0 + (β2 − α2)(lnF ′
2(X, Z))XX (2.15)

in which X = αx + βy + θz, Z = γz + εw, α, β, θ, γ, ε, u0 ∈ C that guarantee the analyticity
of u. When α1 = β1 = 0, the generated rogue wave is shown in figure 2. The second order
rogue wave solution wave is concentrated around (0, 0). When the parameter values α1 and
β1 reach certain level, the second order waves begin to separate, forming three first order
rogue waves. The second-order rogue waves are drawn in figure 3. From (b) and (c) of figure
3, it has a clear display of three first-order rogue waves with three centers forming a triangle.
So the second order rogue wave is also called triplet lump wave.

2.3 The Third Order Rogue Wave Solution

To construct the third order rogue wave solutions to the equation (2.1), we set the
function f as

f = F ′
3(X, Z) = F3(X, Z) + 2α1ZP2(X, Z) + 2β1XQ2(X, Z) + (α2

1 + β2
1)F1(X, Z), (2.16)

with

F3(X, Z) = X12 + (a10,0 + a10,2Z
2)X10 + (a8,0 + a8,2Z

2 + a8,4Z
4)X8 + (a6,0

+a6,2Z
2 + a6,4Z

4 + a6,6Z
6)X6 + (a4,0 + a4,2Z

2 + a4,4Z
4 + a4,6Z

6 + a4,8Z
8)X4

+(a2,0 + a2,2Z
2 + a2,4Z

4 + a2,6Z
6 + a2,8Z

8 + a2,10Z
10)X2 + a0,0 + a0,2Z

2

+a0,4Z
4 + a0,6Z

6 + a0,8Z
8 + a0,10Z

10 + a0,12Z
12,

P2(X, Z) = Z6 + (b4,0 + b4,2X
2)Z4 + (b2,0 + b2,2X

2 + b2,4X
4)Z2

+(b0,0 + b0,2X
2 + b0,4X

4 + b0,6X
6),
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Q2(X, Z) = X6 + (c4,0 + c4,2Z
2)X4 + (c2,0 + c2,2Z

2 + c2,4Z
4)X2

+(c0,0 + c0,2Z
2 + c0,4Z

4 + c0,6Z
6),

F1(X, Z) = X2 − 2(3βu0 + θ)α
3γε

Z2 +
3β(α2 − β2)
4(3βu0 + θ)

. (2.17)

figure 2: Plots of the rogue wave (2.15) with
α = −5, β = 2, θ = 1, γ = 2, ε = 2, u0 = 2, c2,0 = 5, b2,0 = 6, α1 = 0, β1 = 0. (a) Evolution graphs

of the wave u(X, Z). (b) The density plot. (c) The contour plot.

figure 3: Plots of the rogue wave (2.15) with
α = −5, β = 2, θ = 1, γ = 2, ε = 2, u0 = 2, c2,0 = 5, b2,0 = 6, α1 = 222, β1 = 222. (a) Evolution

graphs of the wave u(X, Z). (b) The density plot. (c) The contour plot.

figure 4: Plots of the rogue wave (2.19) with
α = −5, β = 2, θ = 1, γ = 2, ε = 2, u0 = 2, α1 = 0, β1 = 0. (a) Evolution graphs of the wave

u(X, Z). (b) The density plot. (c) The contour plot.

Similarly, substituting (2.16) into (2.5), we can obtain the following set of constraining
equations for the parameters
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figure 5: Plots of the rogue wave (2.19) with
α = −5, β = 2, θ = 1, γ = 2, ε = 2, u0 = 2, α1 = 1200000, β1 = 1200000. (a) Evolution graphs of

the wave u(X, Z). (b) The density plot. (c) The contour plot.





a0,0 = 6561(α2−β2)
2α43β19

[
70212289292481875A

120932352
− 878826025β15

13436928
+ (β2

1 + α2
1
2

)(u0β + θ
3
)5α7

−γ7α2
1ε7

256

]
, a0,2 = B− 145

77 A

2304γε(3u0β+θ)6α6 , a0,4 = 16391725α11β9D4

1728γ2ε2C
, a0,6 = 199745D3α3β3

162γ3ε3 ,

a0,8 = 1445D2Cα5β3

27γ4ε4 , a0,10 = 464C2D2

243γ5ε5α13β9 , a0,12 = 46656α33β15

C3γ6ε6 , a2,8 = 760DC
−9α5β4γ4ε4 ,

a2,0 = A−B
1536α7(3u0β+θ)7

, a2,2 = 94325D4αβ4

−64γε(3u0β+θ)3
, a2,4 = 1225D3α6β5

−12γ2ε2

√
αβ
C

,

a2,6 = 17710D2

−27αγ3ε3

√
C
αβ

, a2,10 = 192(u0β+ θ
3 )

5
α5

−γ5ε5 , a4,0 = 5187875D4β12α16

−768C2 .

a4,2 = 18375D3α10β8

−8γεC
, a4,4 = 18725D2α2β2

18γ2ε2 , a4,6 = 2920DC
−27γ3ε3α6β4 , a4,8 = 80C2

27α14β10γ4ε4 ,

a6,0 = 18865D3β3

48(3u0β+θ)3
, a6,2 = 4655D2αβ2

−6(3u0β+θ)γε
, a6,4 = 1540D

9α2βγ2ε2

√
C
αβ

, a8,0 = 735D2β7α9

16C
,

a6,6 = 160α3(u0β+ θ
3 )

3

−γ3ε3 , a8,2 = 115Dαβ
−γε

, a8,4 = 20C
3αγ2ε2β5 , a10,0 = 49βDα4β2

2(3u0β+θ)

√
αβ
C

,

a10,2 = −4(3u0β+θ)α
γε

, b0,0 = 169785D3α24β15γ3ε3

512C3 , b0,2 = 17955D2β2γ3ε3

128(3u0β+θ)5α3 ,

b0,4 = 2835Dα15β10γ3ε3

32C
, b0,6 = 135γ3ε3

8(3u0β+θ)3α3 , b2,0 = 2205D2β8α16γ2ε2

64C2 ,

b2,2 = 855Dβγ2ε2

8(3u0β+θ)3α2 , b2,4 = −45γ2ε2

4β5α11 , b4,0 = 21Dγεα8β6

8C
, c2,0 = 245D2β7α9

−16C
,

b4,2 = 27α8β5γε
2C

, c0,0 = 12005D3β3

192(3u0β+θ)3
, c0,2 = 535D2αβ2

−24(3u0β+θ)γε
, c0,4 = 5D

α2βγ2ε2

√
C
αβ

,

c0,6 = 40(u0β+ θ
3 )

3
α3

−γ3ε3 , c2,2 = 115Dαβ
3γε

, c2,4 = 20C
9α5β7γ2ε2 , c4,0 = 13Dβ

4(3u0β+θ)
,

c4,2 = 6
α3β2γε

√
C
αβ

, A = 79893275C(α8 − 5α6β2 + 10α4β4 − 10α2β6 + 5β8),

B = 373248 C
β5α9 ( 79893275β15

373248
+ Cα2

1
9β5α9 )α7 + 26244γ7α2

1ε
7,

C = α9β5(3u0 + θ)2, D = β2 − α2,





(2.18)

where α, β, θ, γ, ε, u0, α1, β1 are arbitrary constants. Similarly, substituting (2.16) and (2.18)
into (2.2), we have the rogue wave solution of Eq.(2.1) as

u = u0 + 2 ln (F ′
3(X, Z))XX . (2.19)

When α = −5, β = 2, θ = 1, ε = 2, γ = 2, u0 = 2, α1 = 0 and β1 = 0 , from the figure 4
we find that the third order rogue wave has four peaks of wave and three troughs of wave.
When we take α1 = β1 = 1200000 in figure 5, the rogue wave (figure 4) will gradually split
into six first order rogue waves. In this case, from the figure, it is found that the structure
has six peaks, which form a pentagram.
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3 Breathers Solution

In this section, We apply the simplified Hirota’s bilinear method to investigate the
breathers solution of the Eq.(1.1). Substituting

u = eθi , θi = kix + riy + siz + qiw − cit, i = 1, 2, ..., N, (3.1)

into the linear terms of (1.1) and solve it. We find that there exists the soliton solution when
the following relation is satisfied

ci = −k3
i ri − kir

3
i + 6siqi

4ki

, i = 1, 2, ..., N. (3.2)

Under the transformations

u(x, y, z, w, t) = R(ln f(x, y, z, w, t))xx, (3.3)

where
f = 1 + ek1x+r1y+s1z+q1w+

k3
1r1−k1r3

1+6s1q1
4k1

t. (3.4)

Substituting (3.4) into Eq.(1.1), we find that

mk1
2 = r1

2,m = R + 1,m 6= −1, (3.5)

further

θi = kix +
√

mkiy + siz + qiw +
√

m(1−m)k4
i + 6siqi

4ki

t, (3.6)

under the constraint (3.3). Through the above calculation, we obtain the following two-
soliton solution

f = 1 + eθ1 + eθ2 + a12e
θ1+θ2 . (3.7)

Therefore, the solution (3.3) can also be written as

u(x, y, z, w, t) = (m− 1)(ln f(x, y, z, w, t))xx. (3.8)

Based on (3.7),(3.8), the a12 is expressed as

a12 =
−k2

1k
2
2(k1 − k2)

2
m

3
2 + k2

1k
2
2(k1 − k2)

2
m

1
2 − 2(k1s2 − k2s1)(k1q2 − k2q1)

−k2
1k

2
2(k1 + k2)

2
m

3
2 + k2

1k
2
2(k1 + k2)

2
m

1
2 − 2(k1s2 − k2s1)(k1q2 − k2q1)

, (3.9)

and the phase shift can be generalized in the following ways

aij =
−k2

i k
2
j (ki − kj)

2
m

3
2 + k2

i k
2
j (ki − kj)

2
m

1
2 − 2(kisj − kjsi)(kiqj − kjqi)

−k2
i k

2
j (ki + kj)

2
m

3
2 + k2

i k
2
j (ki + kj)

2
m

1
2 − 2(kisj − kjsi)(kiqj − kjqi)

. (3.10)

The breathers solution to the Fokas equation can be presented by choosing

k1 = k∗2 = a1 + b1I, s1 = s∗2 = a2 + b2I, q1 = q∗2 = a3 + b3I, (3.11)
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where ∗ denotes the conjugate operator and I2 = −1.

Setting k1 = I, s1 = 2 + I, q1 = 2,m = 1, the f can be expressed as

f = 1 + 2(cosh(2z + 2w + 3t) + sinh(2z + 2w + 3t)) cos(
t + 4y

4

√
2− 6t + x + z)

+(1 +
√

2
8

)(cosh(4z + 4w + 6t) + sinh(4z + 4w + 6t). (3.12)

figure 6: (a) The General breather solution of Eq.(1.1) for the values x = y = w = 0. (b)
Overhead view of the wave (a). (c) The Akhmediev breather solution of Eq.(1.1) for the values
x = z = w = 0. (d) Overhead view of the wave (c). When y = z = w = 0, the plot is similar to

(c) also (not shown here).

By analyzing function f (Eq. (3.12)), we can see that the spatial variables x and y are
similar, but the spatial variable z is essentially different from the spatial variables x and
y when w = 0. Eq. (3.12) constitutes the general solution of the Fokas Eq.(1.1). Figure
6(a) shows that the behavior of the general breathers is periodic in both space and time.
The solution shown in Figure 6 is Akhmediev breather solution, which is periodic in x and
localized in t.

To acquire the high order breathers solution of the Eq.(1.1), we analyse the following
four-soliton solution

f = 1 + eθ1 + eθ2 + eθ3 + eθ4 + a12e
θ1+θ2+a13e

θ1+θ3+a14e
θ1+θ4 + a23e

θ2+θ3

+a24e
θ2+θ4 + a34e

θ3+θ4 + a123e
θ1+θ2+θ3 + a124e

θ1+θ2+θ4 + a134e
θ1+θ3+θ4

+a234e
θ2+θ3+θ4 + a1234e

θ1+θ2+θ3+θ4 , (3.13)

where
a123 = a12a13a23, a124 = a12a14a24, a134 = a13a14a34,

a234 = a23a24a34, a1234 = a12a13a14a23a24a34.
(3.14)

Meanwhile θi, 1 ≤ i ≤ 4, and aij , 1 ≤ i < j ≤ 4 are given in (3.1),(3.10), respectively.

In a similar way, by choosing the following parameters

k1 = k∗2 = a1 + b1I, k3 = k∗4 = a2 + b2I, s1 = s∗2 = a3 + b3I, s3 = s∗4 = a4 + b4I,

q1 = q∗2 = a5 + b5I, q3 = q∗4 = a6 + b6I.
(3.15)
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And by the Eq. (3.13), the high order breathers solution are obtained. As shown

f =
1

17904
√

2 + 43832

(
2(8408 + 7920

√
2) cos(

(9t + 12y)
√

2
4

− 15t

2
+ 3x + 2z)

×e3z+4w+ 9t
2 − 2(408 + 1888

√
2) sin(

(9t + 12y)
√

2
4

− 15t

2
+ 3x + 2z)e3z+4w+ 9t

2

+2(18612 + 13719
√

2) cos((2t + 2y)
√

2− 3t

2
+ 2x + z)e5z+6w+ 15t

2

−2(4512 + 3168
√

2) sin((2t + 2y)
√

2− 3t

2
+ 2x + z)e5z+6w+ 15t

2

+2(110520 + 77520
√

2) cos(
(t + 4y)

√
2

4
− 6t + x + z)e4z+6w+6t

−2(11712 + 5184
√

2) sin(
(t + 4y)

√
2

4
− 6t + x + z)e4z+6w+6t (3.16)

+2(59544 + 39408
√

2) cos(
(7t + 4y)

√
2

4
+ x +

9
2
t)e3z+4w+ 9

2 t

−2(2592 + 4128
√

2) sin(
(7t + 4y)

√
2

4
+ x +

9
2
t)e3z+4w+ 9

2 t

+2(43832 + 17904
√

2) cos(
(t + 4y)

√
2

4
+ x + z − 6t)e2z+2w+3t

+(193232
√

2 + 187064)e2z+4w+3t + 17904
√

2 + 43832 + (23383
√

2 + 48308)e6z+8w+9t),

by taking
k1 = I, k3 = 2I, s1 = 2 + I, s3 = 1 + I, q1 = 2, q3 = 2. (3.17)

The corresponding dynamics characteristics of solution u are shown in figure 7.

figure 7: The two breathers solution of Eq.(1.1): (a) The General breather solution of Eq.(1.1)
for the values x = y = w = 0. (b) Overhead view of the wave (a). (c) The Akhmediev breather
solution of Eq.(1.1) for the values y = z = w = 0. (d) Overhead view of the wave (c). When

x = z = w = 0, the plot is similar to (c) also (not shown here).

The high order general breathers solution of the Fokas Eq. (1.1) are shown in figure 7(a)
that the behavior of the general breathers is periodic in both space and time. The solution
shown in figure 7(c) is Akhmediev breather solution, which is periodic in x and localized in
t.

Remark In this paper, based on the bilinear form of the (4 + 1)-dimensional Fokas
equation, the rogue wave solution and breathers solution of Eq. (2.1) were constructed. And
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high order rogue wave solutions and high order breathers solution were presented also. The
correctness of the results in this work has been verified. The results of this paper enrich the
types of solutions of the (4+1)-dimensional Fokas equation, which is helpful to promote our
understanding of various kinds wave phenomena in fluid dynamics, natural phenomenon and
science problems.

The mechanism of more new kinds of hybrid solutions for different nonlinear partial
differential equations will be studied in the future.
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(4+1)维Fokas方程的怪波解和呼吸子解

孙艳芳,田宏菲,哈金婷,张辉群

(青岛大学(数学与统计学院), 山东 青岛 266071)

摘要: 本文研究了（4+1）维Fokas方程的多阶怪波解, 呼吸子解和高阶呼吸子解. 利用Hirota双线性

形式和简化的Hirota双线性形式, 丰富了（4+1）维Fokas方程的解的多样性. 最后分析了精确解的动力学行

为.
关键词: (4+1)-维Fokas方程; 高阶怪波解; 呼吸子解; 高阶呼吸子解
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