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Abstract: Variable selection is commonly employed when the true underlying model has a

sparse representation. Identifying significant predictors will enhance the prediction performance

of the fitted model. To solve this problem, among others, Zhang and Lu [1] developed a variable

selection method under the framework of the proportional hazards model when one observes right-

censored data. In this paper, We consider the variable selection problem for the additive hazards

model when one faces current status data. Motivated by Zhang and Lu [1], we develop an adaptive

Lasso method for this problem. Some theoretical properties, including consistency and oracle prop-

erties are established under some weak regularity conditions. An extensive simulation is performed

to show that the method performs competitively. This method is also applied to a real data set

from a tumorigenicity study.
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1 Introduction

Current status data or Case I interval-censored failure time data occur frequently in
survival analysis when an exact event time of interest is not available, and only whether or not
the event has occurred up to a certain random monitoring time. That event’s current status’
is known. This kind of data are often encountered in epidemiological studies, carcinogenicity
experiments, econometrics and reliability studies among others. Regression analysis of failure
time data is one of the main objectives in survival analysis. In regression analysis, an
important and challenging task is to identify the risk factors and their risk contributions.
Often, not all the collected covariates may contribute to the predication of outcomes and we
need to remove some unimportant covariates.

There are many variable selection techniques in linear regression models. Some of them
have been extended to the survival analysis, for example, Bayesian variable selection methods
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for censored survival data were proposed by Faraggi and Simon [2]. However, the sampling
properties of this selection methods are largely unknown(see Fan and Li [3]). The least
absolute shrinkage and selection operator (Lasso), proposed by Tibshirani [4], is a member
of variable selection family based on a penalized likelihood approach with the L1-penalty. It
can delete insignificant variables by estimating their coefficients as 0. Tibshirani [5] proposed
using the Lasso for estimation and variable selection under the Cox model. However, the
Lasso estimator does not possess the oracle properties(see [3]). Many other variable selection
methods have been developed following Tibshirani [4]. For example, the smoothly clipped
absolute derivation (SCAD) by Fan and Li [6] and the adaptive Lasso (aLasso) by Zou [7].
Both of them have nice properties.

So far many literatures have developed variable selection methods for right-censored
data (see for example, [3], [5], [8]). In particular, some penalized methods have been estab-
lished under the Cox’s proportional hazards model. For example, Tibshirani [5] proposed
using the Lasso for the variable selection under the Cox model and right-censored data. Fan
and Li [3] generalized the SCAD to the Cox model with right-censored data. The aLasso
method also has been extended to the context of proportional hazards model when one ob-
serves right-censored data by Zhang and Lu [1]. Huang et al. [9] studied the Lasso estimator
in sparse, high-dimensional Cox model. Zhao et al [10] studied the simultaneous estimation
and variable selection for interval-censored data under the Cox model.

The additive hazards model as an alternative model, which describes a different aspect
of the association between the failure time and covariates than the proportional hazards
model, is another commonly used regression model in survival analysis. A lot of theoretical
results of the estimated regression parameters under additive hazards model have been well
established (see for example, [11–13] ). It is well-known that many efforts have been focused
on the methods of variable selection for Cox model with right-censored observation data.
However, as mentioned by Zhao et al [10], there exists little literature on variable selection for
interval-censored data. There are relatively less studies developed for the additive hazards
model with interval-censored data. This paper considers the variable selection method for
case I interval-censored data under the additive hazards model.

The remainder of the paper is organized as follows. In Section 2, we will introduce
some notations and assumptions that will be used in this paper. In Section 3, we develop an
adaptive lasso method, and give its statistical properties. Section 4 gives some details about
the ADMM algorithm that will be applied to solve the adaptive lasso. Section 5 provides
some numerical results from an extensive simulation study to assess the performance of the
proposed method, and Section 6 applies the proposed method to a real data set from a
tumorigenicity study.

2 Notations and Models

Consider a random sample of n independent subjects. For i = 1, . . . , n, let Ti and
Ci denote the failure time of interest and censoring time of the i-th subject, and Zi(t) =
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(Zi1(t), . . . , Zip(t))′ be the vector of possibly time-dependent covariates. Furthermore, since
only current status data are available for failure time Ti’s, the observed data are given by
{Ci, δi = I(Ti ≥ Ci), Zi(t), i = 1, . . . , n} . In the next section, we present methods for the
cases in which the monitoring time C is independent or dependent of T and Z.

2.1 Independent Censoring

In this subsection, we suppose that C is independent of T and Z. To model the covariate
effect, we assume that the hazard function of T at time t, given the history of a p-dimensional
covariate process Z(·) up to t, has the form

λ(t|Z) = λ0(t) + β
′
0Z(t), (2.1)

where λ0(t) is an unspecified baseline hazard function, and β0 is a p-vector of unknown
regression parameters.

For i = 1, . . . , n, define Ni(t) = δiI(Ci ≤ t), and Yi(t) = I(Ci ≥ t). It can be shown that
the counting process Ni(t) has the Cox type intensity process as follows

dHi(t) = e−β′0Z∗i (t)dH0(t), (2.2)

where dH0(t) = e−Λ0(t)dΛc(t), Λ0(t) =
∫ t

0
λ0(s)ds, Λc(t) =

∫ t

0
λc(s)ds, Z∗

i (t) =
∫ t

0
Zi(s)ds,

and λc(t) is the hazard function of C. Therefore,

Mi(t) = Ni(t)−
∫ t

0

Yi(s)e−β′0Z∗i (s)dH0(s), i = 1, . . . , n

are martingales with respect to the σ-filtration Ft = σ{Ni(s), Yi(s), Zi(s) : s ≤ t, i =
1, . . . , n}. Thus, we can make inferences about β0 by applying the partial likelihood principle
to model (2.2). For this, we first define the partial likelihood function as follows

L1(β) =
n∏

i=1

(
e−β′Z∗i (Ci)

∑n

j=1 Yj(Ci)e−β′Z∗j (Ci)

)δi

.

Taking logarithm of it yields that

l1(β) = log L1(β) =
n∑

i=1

∫ τ

0

−β′Z∗i (t)dNi(t)−
∫ τ

0

log

(
n∑

j=1

Yj(t)e−β′Z∗j (t)

)
dN̄(t),

where N̄(t) =
∑n

i=1 Ni(t), and τ is the longest follow-up time. For k = 0, 1, 2, we also
define S(k)(t, β) =

∑n

j=1(Z
∗
j (t))⊗kYj(t)e−β′Z∗j (t), where Z⊗0 = 1, Z⊗1 = Z, Z⊗2 = ZZ ′. By

differentiation and rearrangement of terms, the gradient of ln(β) is

U1(β) =
∂l1(β)

∂β
=

n∑
i=1

∫ τ

0

(
−Z∗i (t) +

S(1)(t, β)
S(0)(t, β)

)
dNi(t),
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and the Hessian matrix is

H1(β) =
∂2l1(β)
∂β∂β′

= −
n∑

i=1

∫ τ

0

(
Z∗i (t)− S(1)(t, β)

S(0)(t, β)

)⊗2

Yi(t)e−β′Z∗i (t) dN̄(t)
S(0)(t, β)

.

It can be seen that the Hessian matrix of l1(β) is negative definite, so l1(β) is concave in β,

that is, l1(β) has a unique maximizer β̃. The estimate β̃ of β0 can be obtained by maximizing
the function l1(β), or solving the equation U1(β) = 0.

2.2 Dependent Censoring

When the censoring time C is not independent of the covariate vector Z, we describe
the relationship between C and Z by the following hazards model,

dΛc(t|Z) = eγ′0Z(t)dΛc0(t) := λc0e
γ′0Z(t)dt, (2.3)

where Λc0(t) is an unknown cumulative baseline hazard function, and γ0 is a p-vector of
unknown regression parameters. We assumed that C is conditionally independent of T

given the covariate vector Z.

By the arguments leading to (2.2), it can be shown that, under model (2.1) and (2.3),
the compensated counting processes

M̃i(t) = Ni(t)−
∫ t

0

Yi(s)e−β′0Z∗i (s)+γ′0Zi(s)dH0(s), i = 1, . . . , n (2.4)

are martingales with respect to the σ-filtration Ft. The notations Ni(t) and H0(t) are the
same as those defined in subsection 2.1. We can also apply the partial likelihood principle
to model (2.4) to make inferences for the unknown parameters β0 and γ0. That is, we can
consider the following partial likelihood function

L2(β, γ) =
n∏

i=1

(
e−β′Z∗i (Ci)+γ′Zi(Ci)

∑n

j=1 Yj(Ci)e−β′Z∗j (Ci)+γ′Zj(Ci)

)δi

.

However, the function L2(β, γ) above utilizes only the information of Ci’s with non zero δi’s,
and we mainly focus on β, it would be more efficient to estimate γ0 by applying the partial
likelihood theory directly to the model (2.3). Hence, for the estimate of γ0, we first consider
the following partial likelihood function

L3(γ) =
n∏

i=1

(
eγ′Zi(Ci)

∑n

j=1 Yj(Ci)eγ′Zj(Ci)

)
.

The maximum partial likelihood estimator γ̂ of γ0 can be obtained by maximizing the func-
tion L3(γ). Of course, γ̂ can also be obtained by solving the score equation Uγ(γ) = 0,

where

Uγ(γ) =
n∑

i=1

(
Zi −

∑n

j=1 Yj(Ci)eγ′Zj(Ci)Zj(Ci)∑n

j=1 Yj(Ci)eγ′Zj(Ci)

)
. (2.5)
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Given γ̂, we estimate β0 by the following function

L2(β, γ̂) =
n∏

i=1

(
exp(−β′Z∗i (Ci) + γ̂′Zi(Ci))∑n

j=i Yj(Ci) exp(−β′Z∗j (Ci) + γ̂′Zj(Ci))

)δi

.

The estimate β̂ of β0 can be obtained by maximizing the function L2(β, γ̂) or l2(β), where
l2(β) is defined as

l2(β) = log L2(β, γ̂) =
n∑

i=1

∫ τ

0

(−β′Z∗i (t) + γ̂′Zi(t))dNi(t)−
∫ τ

0

log

(
n∑

j=1

Yj(t)e
−β′Z∗j (t)+γ̂′Zj(t)

)
dN̄(t).

For k = 0, 1, 2, define S̃(k)(t, β, γ) =
∑n

j=1(Z
∗
j (t))⊗kYj(t)e−β′Z∗j (t)+γ′Zj(t). Similar to the

process above, we can get the following score function

U2(β) =
∂l2(β)

∂β
=

n∑
i=1

∫ τ

0

(
−Z∗i (t) +

S̃(1)(t, β, γ̂)
S̃(0)(t, β, γ̂)

)
dNi(t).

The estimate β̂ also can be obtained by solving the equation U2(β) = 0.

In the following, we will discuss the development of a penalized or regularized procedure
for covariate selection based on the functions l1(β) and l2(β).

3 Adaptive Lasso Estimation Procedure

We assume that one observes right-censored data, to select and estimate important
variables under the proportional hazards model, Zhang and Lu [1] proposed to minimize the
penalized log partial likelihood function,

− 1
n

l∗n(β) + λ

p∑
j=1

|βj |/|β̌j |

where l∗n(β) denotes the log partial likelihood based on the right-censored data and the
proportional hazards model, the positive weights β̌ = (β̌1, . . . , β̌p)′ is the maximizer of the
log partial likelihood, λ is a nonnegative penalization tuning parameter.

Consider the current status data under model (2.1), note that the intensity process of the
counting process Ni(t) also satisfies Cox type. This suggests that we can select variables by
employing a similar method of Zhang and Lu [1]. We propose the adaptive Lasso estimator
β̂n as follows,

β̂n = arg min
β

{
− 1

n
l1(β) + λn

p∑
j=1

|βj |ωj

}
, (3.1)

or

β̂n = arg min
β

{
− 1

n
l2(β) + λn

p∑
j=1

|βj |ωj

}
. (3.2)

The values of ωj ’s can be chosen by different ways. In this paper, we specify ωj = 1/|β̃j |,
where β̃ = (β̃1, . . . , β̃p)′ is the maximizer of the log partial likelihood li(β), i = 1, 2.
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To study the oracle properties of the estimators, we first consider the penalized log
partial likelihood function

Qi(β) = li(β)− nλn

p∑
j=1

|βj |/|β̃j |, i = 1, 2. (3.3)

Let β0 = (β′10, β
′
20)

′ denote the true parameter vector, where β10 consists of all q nonzero
components and β20 consists of the remaining zero components. Similarly, we use β̂n =
(β̂′1n, β̂′2n)′ to denote the maximizer of (3.1) or (3.2). In the case of independent censoring,
we can get the Fisher information matrix Ω(β0), which is the limit of n−1(−H1(β)). As
usual, we assume that Ω(β0) is nonsingular. In the case of dependent censoring, let

Ω̂β(β; γ) = −n−1 ∂U2(β; γ)
∂β′

, Ω̂βγ(β; γ) = n−1 ∂U2(β; γ)
∂γ′

, D̂γ(γ) = −n−1 ∂Uγ(γ)
∂γ′

,

and let Ωβ, Ωβγ and Dγ denote their limits at β = β0 and γ = γ0.
Using some similar arguments as those of Lin et al [11], we can prove that the ran-

dom vectors n−
1
2 U2(β0; γ̂) and n

1
2 (β̃ − β0) converge in distribution to zero-mean normal

random vectors with covariance matrices M(β0) = Ωβ − ΩβγD−1
γ Ω′βγ and V (β0) = Ω−1

β −
Ω−1

β ΩβγD−1
γ Ω′βγΩ−1

β , respectively.
Let Ω1(β10) = Ω11(β10, 0), where Ω11(β10, 0) is the leading q × q submatrix of Ω(β0)

with β20 = 0 and V1(β10) = V11(β10, 0), where V11(β10, 0) is the leading q × q submatrix of
V (β0) with β20 = 0. The following theorem shows that β̂n is root-n consistent if λn → 0 at
an appropriate rate.

Theorem 3.1 Assume that (Z1, T1, C1), . . . , (Zn, Tn, Cn) are independently and inden-
tically distributed, and that Ci is independent of Ti or conditionally independent of Ti given
Zi. If

√
nλn = Op(1), then the adaptive Lasso estimator satisfies ||β̂n − β0|| = Op(n−1/2).

Proof As mentioned earlier, in the case of independent censoring, the log partial
likelihood is

l1(β) =
n∑

i=1

∫ τ

0

−β′Z∗i (t)dNi(t)−
∫ τ

0

log

(
n∑

i=1

Yi(t)e−β′Z∗i (t)

)
dN̄(t). (3.4)

By Theorem 4.1 and Lemma 3.1 of Andersen and Gill [14], it follows that for each β in a
neighbourhood of β0,

l1(β)− l1(β0)
n

=
∫ τ

0

[
(β − β0)′s(1)(β0, t)− log

(
s(0)(β, t)
s(0)(β0, t)

)
s(0)(β0, t)

]
λ0(t)dt+Op

(||β − β0||√
n

)
.

It is sufficient to show that for any given ε > 0, there exists a large constant K such that

P

{
sup

||u||=K

Q1(β0 + n−1/2u) < Q1(β0)

}
≥ 1− ε. (3.5)

where u = (u1, . . . , up)′. This implies with probability at least 1− ε that there exists a local
maximum in the ball Bn(K) = {β0 + n−1/2u, ||u|| ≤ K}, K > 0. Hence, there exists a local
maximizer such that ||β̂ − β0|| = Op(n−1/2).
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In the case of independent censoring, because U1(β0)/
√

n → N{0,Ω(β0)} in distribution
and −H1(β0)/n → Ω(β0) in probability, we can get U1(β0)/

√
n = Op(1) and −H1(β0)/n =

Ω(β0) + op(1). For any β ∈ ∂Bn(K), where ∂Bn(K) denotes Bn(K)’s boundary, by the
second-order Taylor expansion of the log partial likelihood, we have

1
n

(
l1(β0 + n−1/2u)− l1(β0)

)
=

1
n

U ′
1(β0)n−1/2u− 1

2n
u′{−H1(β0)/n}u +

1
n

u′op(1)u

= − 1
2n

u′{Ω(β0) + op(1)}u +
1
n

Op(1)
p∑

j=1

|uj |.

Then we have

1
n

(
Q1(β0 + n−1/2u)−Q1(β0)

)

=
1
n
{l1(β0 + n−1/2u)− l1(β0)} − λn

p∑
j=1

( |βj0 + n−1/2uj |
|β̃j |

− |βj0|
|β̃j |

)

≤ 1
n
{l1(β0 + n−1/2u)− l1(β0)} − λn

q∑
j=1

(|βj0 + n−1/2uj | − |βj0|)/|β̃j |

≤ 1
n
{l1(β0 + n−1/2u)− l1(β0)}+ n−1/2λn

q∑
j=1

|uj |/|β̃j |

=− 1
2n

u′{Ω(β0) + op(1)}u +
1
n

Op(1)
p∑

j=1

|uj |+ 1√
n

λn

q∑
j=1

|uj |/|β̃j |. (3.6)

In the case of dependent censoring, we can write

1
n

(
l2(β0 + n−1/2u)− l2(β0)

)
= − 1

2n
u′ (Ωβ + op(1))u +

1
n

Op(1)
p∑

j=1

|uj |.

Then we have

Q2(β0 + u/
√

n)−Q2(β0)
n

≤− 1
2n

u′[Ωβ + op(1)]u+
1
n

Op(1)
p∑

j=1

|uj |+ 1√
n

λn

q∑
j=1

|uj |
|β̃j |

. (3.7)

Since the maximum partial likelihood estimator β̃ satisfies ||β̃ − β0|| = Op(n−1/2), by the
Taylor expansion, we have, for 1 ≤ j ≤ q,

1
|β̃j |

=
1
|βj0| −

sign(βj0)
β2

j0

(β̃j − βj0) + op(|β̃j − βj0|) =
1
|βj0| +

Op(1)√
n

.

In addition, since
√

nλn = Op(1), we have

1√
n

λn

q∑
j=1

|uj |/|β̃j | = 1√
n

q∑
j=1

( |uj |
βj0

+
|uj |√

n
Op(1)

)
≤ Kn−1/2λnOp(1) = Kn−1Op(1).
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Therefore in (3.6) or (3.7), if we choose a sufficiently large K, the first term is of the order
K2n−1. The second and third terms are of the order Kn−1, which are dominated by the
first term. Therefore (3.5) holds and it completes the proof.

If the λn is chosen properly, the adaptive Lasso estimator has the oracle property. There
are the properties we will show next.

Theorem 3.2 Assume that
√

nλn → λ0 and nλn →∞. Then, under the conditions of
Theorem 3.1, with probability tending to 1, the root-n consistent adaptive Lasso estimator
β̂n must satisfy the following conditions:

(1) (Sparsity) β̂2n = 0;

(2) (Asymptotic normality)
√

n(β̂1n − β10) converges in distribution to the normal
distribution of N(0,Ω−1

1 (β10)) for the independent censoring case, or N(0, V1(β10)) for the
dependent censoring case.

Proof (1) Here we show that β̂2n = 0. It is sufficient to show that, for any sequence
β1 satisfying ||β1 − β10|| = Op(n−1/2) and for any constant K,

Qi(β1, 0) = max
||β2||≤Kn−1/2

Qi(β1, β2), i = 1, 2.

We will show that, with probability tending to 1, for any β1 satisfying ||β1−β10|| = Op(n−1/2),
∂Qi(β)/∂βj and βj have different signs for βj ∈ (−Kn−1/2,Kn−1/2) with j = q + 1, . . . , p.

For each β in a neighbourhood of β0, by Taylor expansion,

li(β) = li(β0) + nfi(β) + Op(
√

n||β − β0||), i = 1, 2,

where f1(β) = − 1
2
(β−β0)′(Ω(β0)+o(1))(β−β0) or f2(β) = − 1

2
(β−β0)′(Ωβ +o(1))(β−β0).

For j = q + 1, . . . , p, we have

∂Qi(β)
∂βj

=
∂li(β)
∂βj

− nλn
sign(βj)
|β̃j |

= Op(n1/2)− (nλn)n1/2 sign(βj)
|n1/2β̃j |

.

Note that n1/2(β̃j − 0) = Op(1), so that we have

∂Qi(β)
∂βj

= n1/2

(
Op(1)− nλn

sign(βj)
|Op(1)|

)
. (3.8)

Since nλn →∞, the sign of ∂Qi(β)
∂βj

in (3.8) is completely determined by the sign of βj when
n is large, and they always have different signs.

(2) We need to show the asymptotic normality of β̂1n. From the proof of Theorem 3.1,
it is easy to show that there exists a root-n consistent maximizer β̂1n of Qi(β1, 0), i.e.

∂Qi(β)
∂β1

∣∣∣∣
β1=(β̂′1n,0′)′

= 0.
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In the case of independent censoring, let U11(β) be the first q elements of U1(β) and let
Î11(β) be the first q × q submatrix of −H1(β). Then

0 =
∂Q1(β)

∂β1

∣∣∣∣
β1=(β̂′1n,0′)′

=
∂l1(β)
∂β1

∣∣∣∣
β1=(β̂′1n,0′)′

− nλn

(
sign(β̂1)

β̃1

, . . . ,
sign(β̂q)

β̃q

)′

= U11(β0)− Î11(β∗)(β̂1n − β10)− nλn

(
sign(β10)

β̃1

, . . . ,
sign(βq0)

β̃q

)′
,

where β∗ is between β̂n and β0. The last equation is implied by sign(β̂jn) = sign(βj0) when
n is large. Using Theorem 3.2 of Andersen and Gill [14], we can prove that U11(β0)/

√
n →

N{0,Ω1(β0)} in distribution and Î11(β∗)/n → Ω1(β10) in probability as n → ∞. Further-
more, if n →∞ and

√
nλn → λ0, a nonnegative constant, we have

√
n(β̂1n − β10) = Ω−1

1 (β10)
(

1√
n

U11(β0)− λ0b1

)
+ op(1)

with b1 =
(

sign(β10)
|β10| , . . . , sign(βq0)

|βq0|

)′
, since β̃j → βj0 6= 0 for 1 ≤ j ≤ q. Then by Slutsky’s

Theorem,
√

n(β̂1n − β10) → N
(−λ0Ω−1

1 (β10)b1,Ω−1
1 (β10)

)
in distribution as n → ∞. In

particular, if n →∞ and
√

nλn → 0, we have

√
n(β̂1n − β10)

d−→ N
(
0,Ω−1

1 (β10)
)
,

where d−→ means converging in distribution.
In the case of dependent censoring, let U21(β; γ) be the first q elements of U2(β; γ) and

let Î11(β; γ) be the first q × q submatrix of Ω̂β(β; γ). Then

0 =
∂Q2(β)

∂β1

∣∣∣∣
β1=(β̂′1n,0′)′

=
∂l2(β)
∂β1

∣∣∣∣
β1=(β̂′1n,0′)′

− nλn

(
sign(β̂1)

β̃1

, . . . ,
sign(β̂q)

β̃q

)′

= U21(β; γ̂)− Î11(β∗; γ̂)(β̂1n − β10)− nλn

(
sign(β10)

β̃1

, . . . ,
sign(βq0)

β̃q

)′
,

where β∗ is between β̂n and β0. The last equation is implied by sign(β̂jn) = sign(βj0) when
n is large. Let M1(β10) = M11(β10, 0), where M11(β10, 0) is the leading q × q submatrix of
M(β0) with β20 = 0 and Ωβ1(β10) = Ωβ11(β10, 0), where Ωβ11(β10, 0) is the leading q × q

submatrix of Ωβ with β20 = 0. Since U21(β0; γ̂)/
√

n → N(0,M1(β0)) in distribution and
Î11(β∗)/n → Ωβ1(β10) in probability as n →∞. Furthermore, if

√
nλn → λ0, a nonnegative

constant, we have

√
n(β̂1n − β10) = Ω−1

β1 (β10)
(

1√
n

U21(β0; γ̂)− λ0b1

)
+ op(1)

with b1 =
(

sign(β10)
|β10| , . . . , sign(βq0)

|βq0|

)T

, since β̃j → βj0 6= 0 for 1 ≤ j ≤ q. Then by Slutsky’s

Theorem,
√

n(β̂1n − β10) → N
(−λ0Ω−1

β1 (β10)b1, V1(β10)
)

in distribution as n → ∞. In
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particular, if
√

nλn → 0, we have

√
n(β̂1n − β10) → N(0, V1(β10))

in distribution as n →∞.

Remark It is worth noting that as n goes to infinity, the adaptive Lasso can perform as
well as the correct submodel was known. Since the proofs only require the root-n consistency
of β̃, any root-n consistent estimator of β0 can be used as the adaptive weight ρ without
changing the asymptotic properties.

4 Computational Algorithm

The optimization problem (3.1) or (3.2) is strictly convex and therefore can be solved by
many convex optimization algorithm. Here we present an algorithm based on the Alternating
Direction Method of Multipliers (ADMM)[15]. The ADMM algorithm solves problem in the
form

minimize f(x) + g(z)

subject to Ax + Bz = c

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The augmented
Lagrangian is

Lρ(x, z, y) = f(x) + g(z) + y′(Ax + Bz − c) + (ρ/2)||Ax + Bz − c||22.

ADMM consists of the iterations

xk+1 = arg min
x

Lρ(x, zk, yk),

zk+1 = arg min
z

Lρ(xk+1, z, yk),

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)

with ρ > 0.

In ADMM form, the problem (3.1) or (3.2) can be written as

min f(β) + g(z)

s.t. β − z = 0,

where f(β) is equal to −l1(β)/n or −l2(β)/n, and g(z) = λ
∑p

j=1 |zj |ωj . The updates
performed by the algorithm during each iteration are

βk+1 = arg min
β

(
f(β) + ρ(uk)′(β − zk) + (ρ/2)||β − zk||22

)
,

zk+1
i = Sλωi

ρ
(βk+1

i + uk
i ), i = 1, . . . , p,

uk+1 = uk + βk+1 − zk+1,
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where S is the soft thresholding operator satisfying

Sκ(a) =





a− κ, a > κ,

0, |a| ≤ κ,

a + κ, a < −κ.

The β-update can be done by solving the equation −Ui(β)
n

+ukρ+ρ(β−zk) = 0, i = 1, 2. To
solve the equation, there are many standard methods, such as the Newton-Raphson method.

This algorithm gives very small values to the coefficients which should be estimated as
zero and it converges quickly based on our empirical experience.

5 A Simulation Study

In this section, we examine the performance of the adaptive Lasso method under the
additive hazards model and as a comparison, Lasso, smoothly clipped absolute deviation
(SCAD), maximum partial likelihood estimators (MPLE) are also considered. For given p,

the covariates Z are assumed to follow the multivariate normal distribution with mean zero,
variance one, and the correlation between Zj and Zk being ρ|j−k| with ρ = 0.5, j, k = 1, . . . , p.
We set β0j = 1 for the first and last two components of the covariates and β0j = 0 for other
components. The results given below are based on sample size n = 300 and 500 replications.

To measure prediction accuracy, we define the mean weighted squared error (MWSE)
to be (β̂−β0)′E(ZZ ′)(β̂−β0). Besides MWSE, we also use the averaged number of nonzero
estimates of parameters whose true values are not zero (TP): TP =

∑p

i=1 I(β0i 6= 0)I(β̂i 6=
0), and the averaged number of nonzero estimates of parameters whose true values are zero
(FP): FP =

∑p

i=1 I(β0i = 0)I(β̂i 6= 0). It is easy to see that TP and FP provide the
estimates of the true and false positive probabilities, respectively. For the selection of the
tuning parameters in the proposed method, we use the Bayesian information criterion based
on BIC(λ) = −2li(β̂)+qn× log(n), for i = 1 or 2 with qn denoting the number of the nonzero
β estimates. Then one choose the values of λ that minimize BIC(λ).

Table 1 displays the results on the covariate selection with p = 10 or 20 in the case of
independent censoring. In this case, the failure times Ti are generated from model (2.1) with
λ0 = 0.5 or 1. For the observation times Ci, we generated it from the uniform distribution
over (0, 3.5) and the exponential distribution with parameter λ = 0.5 or 0.7. One can see from
Table 1 that the aLasso approach gives the smallest FP compared with other methods which
means the aLasso chooses unimportant variables much less often than the other methods.
At the same time, it kept a fairly high TP and low MWSE. The SCAD method gave the
largest TP in most cases among the method considered here.

Table 2 displays the results on the covariate selection with p = 10 or 20 in the case
of dependent censoring. In this case, we consider different combinations of λ0, λc and γ0.

Here, we set all components of γ0 to be the same, for example , in Table 2, γ0 = 0.1 means
γ′0 = (0.1, 0.1, . . . , 0.1, 0.1) in model (2.3). Keeping γ0 unchanged, we list four combinations
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of λ0 and λc in each part, which corresponds to λ0 = 0.5 or 1, λc = 0.5 or 0.7. As in the case
of independent censoring, the aLasso approach gave the smallest FP in all dependent cases.

Also, it can be seen from Tables 1–2 that, as the number of covariates increases, the
aLasso tends to give the smallest MWSE and largest TP among the methods considered.
Overall, the adaptive Lasso performs well in terms of both variable selection and prediction
accuracy.

Table 1. Results in the case of independent censoring.

p = 10 p = 20
C λ0 Method MWSE TP FP MWSE TP FP

U(0, 3.5) 0.5 aLasso 0.3443 3.9960 0.3160 0.4409 3.9960 0.7940
Lasso 0.5292 3.9940 1.0020 0.9642 3.9780 1.8360
SCAD 0.2264 3.9900 0.6800 0.3920 3.9640 1.2280
MPLE 0.4964 4 6 1.1390 4 16

1 aLasso 0.3612 3.9900 0.3420 0.4856 3.9860 0.8540
Lasso 0.5784 3.9880 1.0400 1.1075 3.9740 1.7060
SCAD 0.2610 3.9540 0.7120 0.3982 3.9660 1.4940
MPLE 0.5784 4 6 1.3472 4 16

Exp(0.5) 0.5 aLasso 0.5889 3.9940 0.7060 0.8958 3.9680 1.1780
Lasso 1.0489 3.9620 1.6140 1.2094 3.9340 1.9320
SCAD 0.4166 3.9980 1.7320 0.9359 3.9460 1.9280
MPLE 0.5016 4 6 1.2456 4 16

1 aLasso 0.6726 3.9760 0.6400 0.9977 3.9500 1.2000
Lasso 1.1606 3.9340 1.4240 1.3246 3.9280 1.9020
SCAD 0.4685 3.9840 1.4240 0.9425 3.9520 1.9620
MLE 0.5849 4 6 1.4114 4 16

Exp(0.7) 0.5 aLasso 0.6137 3.9760 0.7320 0.9191 3.9380 1.0860
Lasso 1.0797 3.9500 1.4600 1.2501 3.8940 1.8780
SCAD 0.4181 3.9840 1.4380 0.9047 3.9240 1.9300
MPLE 0.5212 4 6 1.2681 4 16

1 aLasso 0.6456 3.9660 0.6320 0.9614 3.9260 1.0840
Lasso 1.1521 3.9240 1.4080 1.3458 3.8920 1.8120
SCAD 0.4661 3.9800 1.1540 0.9514 3.9160 1.9120
MPLE 0.5435 4 6 1.3800 4 16
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Table 2. Results in the case of dependent censoring.

p = 10 p = 20
(λ0, λc) γ0 Method MWSE TP FP MWSE TP FP

(0.5, 0.5) 0.1 aLasso 0.5257 3.9960 0.4860 0.8838 3.9660 1
Lasso 0.9696 3.9720 1.3640 1.1813 3.9420 1.5380
SCAD 0.3535 3.9960 1.5260 0.8042 3.9580 1.5020
MPLE 0.4444 4 6 1.0386 4 16

(0.5, 0.7) aLasso 0.5366 3.9820 0.4560 0.9294 3.9420 0.8360
Lasso 0.9656 3.9740 1.2400 1.3217 3.8740 1.4360
SCAD 0.3610 3.9920 1.1580 0.9002 3.9120 1.4460
MPLE 0.4326 4 6 1.0446 4 16

(1, 0.5) aLasso 0.5542 3.9900 0.5740 0.9412 3.9480 0.8500
Lasso 0.9936 3.9800 1.3420 1.2948 3.9220 1.4580
SCAD 0.3314 3.9960 1.3560 0.8923 3.9380 1.5180
MPLE 0.4490 4 6 1.2111 4 16

(1, 0.7) aLasso 0.5439 3.9740 0.5400 0.9224 3.9560 0.8480
Lasso 1.0439 3.9480 1.1720 1.3822 3.8820 1.3900
SCAD 0.3190 3.9820 1.0300 0.8903 3.9380 1.4640
MPLE 0.4490 4 6 1.1385 4 16

(0.5, 0.5) 0.2 aLasso 0.5628 3.9860 0.5600 1.2515 3.8780 1.0840
Lasso 1.0970 3.9620 1.4560 1.7642 3.7140 1.6320
SCAD 0.3567 3.9920 1.4860 1.2253 3.8020 1.7140
MPLE 0.4404 4 6 1.3247 4 16

(0.5, 0.7) aLasso 0.6401 3.9700 0.5400 1.3662 3.8440 0.9880
Lasso 1.2872 3.9020 1.2940 2.1243 3.4860 1.4780
SCAD 0.3679 3.9900 1.1460 1.3346 3.7240 1.7060
MPLE 0.4730 4 6 1.5113 4 16

(1, 0.5) aLasso 0.6465 3.9680 0.5740 1.3275 3.8340 1.1180
Lasso 1.2081 3.9180 1.3240 1.8881 3.6540 1.5180
SCAD 0.3799 3.9820 1.3160 1.3251 3.7780 1.6320
MPLE 0.4831 4 6 1.5177 4 16

(1, 0.7) aLasso 0.6896 3.9540 0.5140 1.4032 3.7900 1.1240
Lasso 1.3210 3.9020 1.2460 2.1546 3.4760 1.3720
SCAD 0.3527 3.9740 0.9760 1.3999 3.7060 1.6340
MPLE 0.4929 4 6 1.6897 4 16
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Table 2 Continued.

p = 10 p = 20
(λ0, λc) γ0 Method MWSE TP FP MWSE TP FP

(0.5, 0.5) 0.3 aLasso 0.7607 3.9480 0.6220 1.8972 3.6700 1.3160
Lasso 1.5474 3.8240 1.4420 2.8727 3.0960 1.4220
SCAD 0.4513 3.9680 1.3200 2.0540 3.3800 1.7120
MPLE 0.4819 4 6 2.1382 4 16

(0.5, 0.7) aLasso 0.9324 3.8900 0.5620 2.1734 3.5140 1.3160
Lasso 1.9573 3.5880 1.3580 3.3883 2.6800 1.2260
SCAD 0.5280 3.9500 1.0560 2.4260 3.1020 1.5700
MPLE 0.5491 4 6 2.2098 4 16

(1, 0.5) aLasso 0.7896 3.9500 0.5740 1.9295 3.6220 1.4860
Lasso 1.6051 3.8000 1.2680 2.9691 2.9920 1.3700
SCAD 0.4170 3.9660 1.1680 2.0186 3.3840 1.7700
MPLE 0.5317 4 6 2.3245 4 16

(1, 0.7) aLasso 0.9099 3.9080 0.5620 2.2117 3.4420 1.3220
Lasso 1.9178 3.6220 1.2320 3.2215 2.7740 1.2900
SCAD 0.4330 3.9460 1.0620 2.4330 3.1260 1.6200
MPLE 0.5692 4 6 2.7490 4 16

6 An Application

In this section, we apply the proposed regression selection procedure to a set of data
on mice hepatocellular adenoma. This data set arises from a 2-year tumorigenicity study
conducted by National Toxicology Program. In the study, groups of mice were exposed to
chloroprene at different concentrations by inhalation. Each mouse was examined once for
various tumors when it died. Some mice died naturally during the study, and the others who
survived at the end of study were sacrificed for examinations. At each examination time,
tumors were observed if have developed, but the exact tumor onset times were unknown,
therefore, only current status data can be obtained.

Here we considered the liver tumor data, and the covariates on which the information
was collected include the initial weight of the mouse, the body weight change, the weight
change rate, the gender of the mouse, the dose. For the analysis below, we will focus on 200
mice that either belong to the control group or belong to the PPM80 group.

To apply the aLasso regression procedure, let IW denote the initial weight of the mouse,
BWC denote the body weight change and BWCR denote the weight change rate. We de-
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fine Gender=1 if the mouse was male and 0 otherwise, PPM80=0 if the mouse was in the
control group and 1 otherwise. For the analysis, we performed the standardization on the
three continuous covariates IW, BWC and BWCR. The analysis results given by the aLasso
procedure are presented in Table 3. As in the simulation study and for comparison, we also
include the analysis results obtained by applying the other penalized procddures discussed
here. ALasso, Lasso and SCAD all suggest that the Gender and the initial weight of the
mouse had no relationship with or significant influence on the existence of hepatocellular
adenoma.

Table 3 Analysis results of mice hepatocellular adenoma data.

Method IW BWC BWCR GENDER PPM80

aLasso 0 0.1538 0.1197 0 0.5938
Lasso 0 0.0452 0.1459 0 0.2732
SCAD 0 0.0561 0.1094 0 0.6469
MPLE -0.2544 1.1425 -1.0347 -0.1879 0.7037

7 Concluding Remarks

This paper has discussed the variable selection problem for the additive hazards model
based on current status data. In order to select important variables, a penalized log partial
likelihood method is developed and the oracle properties are provided. The simulated results
suggest that the proposed method performs well for dropping the unimportant variables and
retaining the important variables.

As mentioned above, the proposed method can be seen as a generalization of the method
given in Zhang and Lu [1], for the case that the model is proportional hazards model and
the data is right-censored data. Therefore it could be generalized in several directions. For
one, note that in the preceding sections, we assume that C is independent of Z and T , it is
straightforward to generalize the proposed method to the case where the censoring time C

is not independent of Z or other type data.
The second direction is that we can change the weights ρj with other estimators since

the proofs only require the root-n consistency of β̃.
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基于当前状态数据的加法风险模型的自适应LASSO回归选择

张怿瑾1, 王成勇2
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摘要: 当真实的潜在模型具有稀疏表示时通常需要使用变量选择方法, 确定模型中的重要预测因子可

提高被拟合模型的预测性能, 许多文献研究了这类问题, 其中张和吕[1]针对右删失数据开发了一种基于比

例风险模型的变量选择方法. 本文研究了基于当前状态数据的加法风险模型的变量选择问题. 在文献[1]的

启发下，我们提出一种自适应Lasso 方法来解决这个问题, 并在弱正则性条件下, 建立了估计量的相合性

和oracle性质等理论结果. 大量的模拟数据分析证明了该方法的有效性. 我们用该方法分析了一组来自肿瘤

研究的真实数据.
关键词: 加法风险模型; 当前状态数据; 自适应Lasso; ADMM算法
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