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Abstract: This paper deals with the k-order generalized derivations of weight A on ¢ Jordan-
Lie triple systems. By computing, we conclude that every k-order Jordan triple f-derivation of
weight A on ¢ Jordan-Lie triple systems is a k-order #-derivation of weight A. Under the definitions,
we give another equivalent form of k-order Jordan triple 6-derivation of weight A. Meanwhile,
We also establish the inheritance property of k-order generalized (6,p)-derivation of weight A and
Rota-Baxter operator of weight A\ on Rota-Baxter ¢ Jordan-Lie triple systems. We obtain that
every Rota-Baxter § Jordan-Lie algebra can be seen as a Rota-Baxter ¢ Jordan-Lie triple system.
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1 Introduction

Lie triple systems have played an extremely important role in mathematics and physics
for a long time. The concept of Lie triple systems was first introduced by N.Jacobson
[1],[2](see also [3]). As the generalization of Lie algebra, ¢ Jordan-Lie algebra was first
introduced in [4]. Let R be a commutative ring with a unit. A § Jordan-Lie algebra is a
R-module L with a R-bilinear mapping L X L 3 (z,y) — [z,y] € L satisfying the following

conditions:
[l’,y] = —(5[y,.’E], (11)
[z, y], 2 + [ly, 2], 2] + [[2,2],y] = O (1.2)

for all z,y,z € L. § = £1. For 6 = 1, these equations represent the Lie algebra [5]. Similarly,
we can obtain the definition of § Jordan-Lie triple system in [4]. A ¢ Jordan-Lie triple system
is a R-module L with a R-trilinear mapping L x L X L 3 (z,y, z) — [z, ¥, 2] € L satisfying

[,y,2] = —dly, z, 2], (1.3)

[,y 2] + [y, 2, 2] + [z, 2, 9] = 0, (1.4)

[u,v,[z,y, 2] = [[u,v,x],y, 2] + [z, [u,v,y], 2] + [z, v, [u,v, 2]] (1.5)
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for all w,v,z,y,2 € L. § = £1. The case of § = 1 gives the Lie triple system [5]. Clearly,
every ¢ Jordan-Lie algebra with product [-, -] is a § Jordan-Lie triple system with respect to
[z,y,2] := [[2,4], 2].

As is well known, derivations and generalized derivation algebras are very important
subjects both in the research of rings and Lie algebras. In the study of Levi factors in
derivation algebras of nilpotent Lie algebras, the generalized derivations, quasiderivations,
centroids and quasicentroids play key roles(see [6]). The most important and systematic
research on the generalized derivative algebras of Lie algebras and their subalgebras were
due to Leger and Luks. Much work have been done in this area, showing an interesting
derivation and generalized derivative algebras(see [7-17]). In particular, some nice properties
of the generalized derivation on Lie triple systems have been obtained in [16-17].

In [18-20], the concepts of Rota-Baxter 3-Lie algebras were introduced and the authors
studied the inheritance property of Rota-Baxter 3-Lie algebras and Rota-Baxter Lie triple
systems. They introduced the concepts of a Rota-Baxter operator and differential operator
with weights on Lie triple system. Rota-Baxter operators on Lie algebras are operator forms
of the classical Yang-Baxter equations and contribute to the study of integrable systems
[6],[18-23],[25—29].

The paper is organized as follows. In section 2, we conclude that every k-order Jordan
triple #-derivation of weight A on & Jordan Lie triple system is a k-order #-derivation of
weight A and we give another equivalent form of k-order Jordan triple #-derivation of weight
A on § Jordan-Lie triple systems. In section 3, we establish the inheritance property of
k-order generalized (6,p)-derivation of weight A on Rota-Baxter § Jordan-Lie triple systems
of weight \ and generalize some results in [18] to Rota-Baxter ¢ Jordan-Lie triple systems
of weight .

2 On K-Order Generalized Derivation of Weight A\ on § Jordan-Lie Triple
Systems

The purpose of this section is to study a k-order derivation and k-order generalized
derivation of weight A on § Jordan-Lie triple system. In particular, we generalize some
results in [16]-[17] to k-order (generalized) derivation of weight A on ¢ Jordan-Lie triple
systems. We first introduce the concepts of k-order (generalized) (6,¢)-derivations of weight
A and k-order (generalized) Jordan triple (6,p)-derivations of weight A on § Jordan-Lie
triple systems. Then we prove that every k-order generalized Jordan triple (#,p)-derivation
of weight A on Lie triple system is a k-order generalized (6,p)-derivation of weight A under
some conditions. In particular, we conclude that every k-order Jordan triple 6-derivation
of weight A\ on Lie triple systems is a k-order f-derivation of weight A. In the end we give
another equivalent form of k-order Jordan triple f-derivation of weight A on ¢ Jordan-Lie
triple systems.

Given an integer n > 1, a ring R is said to be n-torsion free, if for x € R, nx = 0 implies
that x = 0.
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Definition 2.1 Let L be a ¢ Jordan-Lie triple system over ring R. Let 8,9 : L — L
be R-linear maps. A R-linear map D : L — L is called a k-order (6, ¢)-derivation of weight
A€ Ron Lif

D(lw,y,2]) = "[D(x),0(y), (2)] + 6°[0(x), D(y), ¢ (2)] + 8*[0(x), p(y), D(2)]
+A0%[D(x), D(y), (2)] + A6*[D(x), 0(y), D(2)]
+20%[0(2), D(y), D(2)] + X*6*[D(x), D(y), D(2)] (2.1)

for all z,y,z € L,A € R. 6 = £1. If ¢ = 0, a k-order (0, ¢)-derivation of weight X is called a
k-order #-derivation of weight A\. If o = 6 = I, where I, is the identity map on L, a k-order
(0, p)-derivation of weight A is called a k-order derivation of weight A.

Remark 2.2 If A =0 and 6 = 1, a k-order (6, ¢)-derivation of weight A could be seen
as a (0, ¢)-derivation (see[16]-[17]).

Definition 2.3 Let L be a § Jordan-Lie triple system over ring R. Let 8, ¢ : L — L be
R-linear maps. A R-linear map D : L — L is called a k-order Jordan triple (6, ¢)-derivation
of weight A € R on L if

D([z,y,a]) = 6"[D(x),0(y), o(x)] + 8°10(x), D(y), p(x)] + 6°[0(x), ¢ (y), D(x))
+A0*[D(2), D(y), ()] + A0*[D(x), 0(y), D(x)]
+A0"[0(2), D(y), D(x)] + A?6"[D(x), D(y), D(=)] (2.2)

T

for all z,y € L,A € R, § = £1. If p = 0, a k-order Jordan triple (6, ¢)-derivation of weight
A is called a k-order Jordan triple #-derivation of weight A. If ¢ = 6 = I, where I is the
identity map on L, a k-order Jordan triple (6, p)-derivation of weight A is called a k-order
Jordan triple derivation of weight .

Remark 2.4 If A =0 and § = 1, a k-order Jordan triple (6, ¢)-derivation of weight A
could be seen as a Jordan triple (6, ¢)-derivation (see[16,17]).

Definition 2.5 Let o : L — L be a k-order (6, p)-derivation of weight A\ € R. A
R-linear map D : L — L is called a k-order generalized (6, ¢)-derivation of weight A with
respect to « if

D(z,y.2]) = 0"a(@),0(y),0(2)] + 0" [0(x), ay), p(2)] + 6" [0(x), o(y), a(2)]
+A0"[D(2), D(y), ¢(2)] + Ad*[a(x), 0(y), a(2)]
A0 [0(2), aly), 2)] + N*6%[a(2), a(y), a(2)] (2.3)

forall z,y,z € L,A € R. § = +1.
Remark 2.6 If A =0 and 6 = 1, a k-order generalized (6, ¢)-derivation of weight A
with respect to « is called a generalized (0, )-derivation with respect to a (see [16]-[17]).
Definition 2.7 Let a: L — L be a k-order Jordan triple (6, ¢)-derivation of weight
A € R. A R-linear map D : L — L is called a k-order generalized Jordan triple (6, ¢)-
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derivation of weight A with respect to « if

D([z,y,2]) = &"[a(2),0(y), p(a)] + 6" [0(x), a(y), p(x)] + 6*[0(x), p(y), ()]
+AS[D(2), D(y), p(2)] + A" [a(z), 0(y), ()]
A [0(2), aly), a(@)] + N6 [a(2), aly), a(z)] (2.4)
forall z,y € L,A € R. § = £1.

Remark 2.8 If A =0 and 6 = 1, a k-order generalized Jordan triple (6, ¢)-derivation
of weight A with respect to « is called a generalized Jordan triple (6, ¢)-derivation with
respect to a (see [16, 17]).

Throughout this paper 8, ¢, D, : L — L are R-linear maps and Ag”f()\, k):Lx L x
L — L is a map defined by

Ag DR (x,y,2) = (), 0(y), ¢(2)] + 6" [0(2), a(y), o(2)] + 6" [0(2), ¢ (y), (2)]
+AG*[D(x), D(y), o(2)] + Ad*[a(2), (y), a(2)]
A [0(2), a(y), a(2)] + 0¥ [a(z), aly), a(2)] (2.5)
for all z,y,z € L,\ € R.
It is clear that the map Aa (A, k) is R-trilinear.
Proposition 2.9 Let R be a 3-torsion free ring and let L be a § Jordan-Lie triple
system over ring R. Let D : L — L be a k-order generalized Jordan triple (6, ¢)-derivation

of weight A with respect to «, where « is a k-order Jordan triple (6, ¢)-derivation of weight
A If

[D(z), D(y), p(2)] + [D(y), D(2), ()] + [D(2), D(x), ¢(y)]

= [a(x),aly), p(2)] + [a(y), a(z), ¢(2)] + [a(z), a(z), ¢(y)] (2.6)
for all z,y,z € L, then

(D = a)([z,y,2]) = M0"[D(), D(y), o(2)] = 8*[a(x), aly), p(2)]), (2.7)

B\ k)(x,y,2) + B\ k) (y,z,x2) + B\ k)(z,2,y) =0 (2.8)

for all z,y, z € L, where B(\, k) = Ag:) (A, k) — Ag:2 (A k).
Proof By (2.2) and (2.4), we have
(D —a)([z,y.2]) = D([z,y,2]) — a([z,y,z])

= a(@),0(y), p(2)] + 6" [0(x), aly), p(x)] + 8°[0(x), o (y), ()]
+A0*[D(x), D(y), ()] + A" [a(z), 0(y), a(x)]
A% [0(2), aly), a(@)] + A28 [a(x), aly), o(x)]
—0*a(@),0(y), p(x)] — 6" [0(x), a(y), p(2)] — 8*[0(x), ¢(y), ()]
A" [a(z), aly), p(z)] — A0*[a(z), 6(y), a(z)]
=X [0(2), a(y), a(x)] = N*6*[a(z), aly), a(z)]

= A" [D(2), D(y), p(x)] — 6"[a(z),aly), p(z)]) (2.9)
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for all z,y € L. From (1.3), we have

(D —a)(ly,z,2]) = —6(D —a)([z,y,z])
= —0A(8*[D(x), D(y), ()] — 6*[a(x), aly), o(x)])
= A0*[D(y), D(z),p(x)] - 0" [a(y), a(z), p(2)]) (2.10)

for all z,y € L. Since [z,y,z] + [y, x, 2] + [, z,y] = 0, by (2.6) we have

(D —a)(fz,z,y]) = —((D—a)lz,y,2]) + (D = a)([y, z, 2]))
= —A(¢*[D(x), D(y), p(2)] — 0" [a(x), ay), o (2)])
—A(E*[D(y), D(x), p(x)] = 8*la(y), a(@), (@)  (2.11)
= A*[D(2), D(), ¢(y)] — 6" [o(@), (), p(y)])

for all z,y € L.
We denote T'(z,y,z) := AN&*[D(z), D(y), p(2)] — 6*[a(x), a(y), ¢(z)]). Obviously, the
map T': L x L x L — L is R-trilinear. By (2.6), we have

T(zy,2) + T(z,2,9) + T(y,x,2) = M6*[D(2), D(y), p(x)] = 8*[a(2), aly), p(x)])
+A(0*[D (@), D(2), o(y)] — 6*[a(x), a(2), o(y)])
+AOM[D(y), D(x), (2)] = 6*[a(y), alx), ¢ (2)])
]

= M"[D(2), D(y), o(w)] + A6*[D(x), D(2), ¢ (y)]
+A0M[D(y), D(@), ¢(2)] — Ad*[a(2), aly), ¢ ()]

=A% [a(z), a(2), (y)] = A [a(y), a(x), ¢ (2)]
=0 (2.12)
for all z,y,z € L. It follows (2.9) that

(D—-a)([z+zy,z+2)=T(x+2,y,x+2)
for all x,y,z € L. That is

(D = a)([z,y,2]) + (D — a)([z,y,2]) + (D — a)([z,y,2]) + (D — ) ([2,¥,2])
= T(1‘7y7 Z) + T(ZL‘,y,:E) + T(z,y,x) + T(Z’ya Z)

for all z,y,z € L. Thus, by (2.9)
(D - O‘)([IJ% Z]) + (D - O‘)([Zaya‘rb = T<$7ya Z) + T(z,y,a:). (2'13>

Since
(D =a)([z,y+2zy+2])=T(v,y + 22+ 2)

similarly by(2.11), we have

(D - oz)([x,y,z]) + (D - a)([x,z,y]) = T<$7ya Z) + T(Jj727y)' (2'14)
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And by (2.10), we have
(D - a)([xhyvz]) + (D - a)([y,a:,z]) = T(.’I?,y, Z) + T(y,l‘,Z). (215)

From (2.13),(2.14),(2.15), we have

(D —a)([z,y,2]) + (D — a)([2,y, 2]) + (D — a)([z,y, 2])
+ (D - Oé)([.’L‘,Z,y]) + (D - Oé)([ﬂ?,y, Z]) + (D - oz)([y,m,z])
= T(v,y,2)+T(z,y,2) +T(x,y,2) + T(x,2,y) + T(x,y,2) + T(y,z, 2)

for all z,y,z € L. From (1.4) and (2.12), we obtain
3(D - Oé)([l‘, Y, Z]) = 3T(.’L‘, Y, Z)'
Since R is a 3-torsion free ring,

(D - a)([x,y,z]) = T(a77yv Z)

for all z,y,z € L. This proves (2.7).
To prove (2.8), from (2.7) we have

BOK)(@,y.2) = Ag)(Ak)(@,y,2) — AgE (k) (2, y,2)

= "), 0(y), 0(2)] + 0"[0(2), aly), p(2)] + 0" [0(x), ¢ (y), a(2)]
+A0*[D(2), D(y), p(2)] + A [a(x), 0(y), a(2)] + A" [0(), aly), o(2)]
+A?0 (), a(y), a(2)] = 0" [a(@), 0(y), ¢(2)] — 6*[0(x), a(y), ()]
—8[0(2), p(y), a(2)] = A" [e(@), a(y), p(2)] — Ad*[a(2), 0(y), a(2)]
—A6*[0(), aly), a2)] = A*6*[a(z), aly), a(2)]

= M"[D(x), D(y), p(2)] — Ad*[a(x), aly), (=)

= (D —a)([z,y,2]).

Then

B\ k)(z,y,2) + B\ E)(y, z,2) + B\ k) (2,2, y)
= (D —a)([z,y,2]) + (D — a)(y, z,2]) + (D — a)([z, 2, y])
= (D—oz)([a:,y,z]+[y,z,x]+[z,3:,y])
= 0.

Proposition 2.10 If D : L — L is a k-order generalized Jordan triple (6, ¢)-
derivation of weight A with respect to « satisfying (2.7), where « is a k-order Jordan triple
(0, p)-derivation of weight A, then (2.6) holds.

Proof If A =0, then D([z,y,z]) = a([z,y,x]). By (1.3) and (1.4)

D[y, z,2]) = a(ly, z,2]), D[z, z,y]) = a([z, ,y]).
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Using the same method in Proposition 2.9, we have

D([z,y,2]) = a([z,y,2])

for all x,y,z € L. Therefore, (2.6) holds. If XA # 0, By (1.4) and (2.7), we have

0 = (D—a)([z,y,2]+ [y, z, 2] + [z, 2,9])

D —a)([z,y,2]) + (D — a)([y, 2, 2]) + (D — a)([2, 2, y])

= A0*[D(z), D(y), ¢(2)] + 6" [D(y), D(z), p(x)] + §*[D(2), D(z), ¢(y)))
(

, D(2), ¢(
—A(8" (), a(y), p(2)] + 8" [a(y), a(z), ¢(z)] + 6" [a(z), a(z), o (y)]).

—~~

)
a)
(

So, we obtain that

[D(x), D(y),(2)] + [D(y), D(2),(x)] + [D(2), D(x), ¢ (y)]
= la(@),a(y), p(2)] + a(y), az), p(2)] + [a(z), a(2), ¢(y)]

for all z,y,z € L.

Theorem 2.11 Let R be a 3-torsion free ring and let D : L — L be a k-order Jordan
triple (0, ¢)-derivation of weight A. Then D is a k-order (6, ¢)-derivation of weight A if only
if

[0(2), o(y), D(2)] = [p(x),6(y), D(2)]; (2.16)
AZ Pk (@, 2) + Ay (N )y, 2,2) + Ag P (N k) (z,2,y) = 0 (2.17)

for all z,y,z € L.
Proof Suppose D is a k-order (6, p)-derivation of weight A. On the one hand,

D(lz,y.2]) = 0"[D(x),0(y), p(2)] + 6°[0(), D(y), p(2)] + 8" [0(x), p(y), D(2)]
+A0%[D(x), D(y), ¢(2)] + A6*[D(x),0(y), D(2)]
+A0%[0(x), D(y), D(2)] + X*6*[D(x), D(y), D(2)]

for all x,y,z € L. On the other hand,

D([z,y,2]) = —6D(ly,z,2])
g ,0(2)] + 0°10(y), D(x), p(2)] + 6°[0(y), (), D(2)]
,¢(2)] + A6*[D(y), 6(x), D(2)]

]+ 2%6*[D(y), D(x), D(2)])
,H(y),w(2)1+5k[9( ); D(y), p(2)] + 6*[p(x), 6(y), D(2)]
+A6*[D(x), D(y), ¢(2)] + A6*[D(x), 6(y), D(2)]
+A0%[0(x), D(y), D(2)] + A26*[D(x), D(y), D(2)]
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for all z,y,z € L. Therefore, [0(x), o(y), D(z)] = [¢(x),0(y), D(2)] for all z,y,z € L. This
proves (2.16).
Since AGD,;D()\, k)(z,y,2) = D([z,y, z]), and by (1.4), we have

Ag R @y, 2) + Ay (VR (y, 2,2) + Ay (0 K) (2,2, )
= D([z,y, 2+ [y, 2, 2] + [z, 2,9]) = 0.
This proves (2.17).
Conversely, we prove that D is a k-order (0, ¢)-derivation of weight A if (2.16) and

(2.17) hold. Since D is a k-order Jordan triple (6, ¢)-derivation of weight A\, and by (1.3)
and (2.16), we have

D([y,a:,a:]) = —5D([$,y,$])
= —0(8"[D(x), 0(y), p(2)] + 6" [0(x), D(y), p(x)] + 6" [0(x), v (y), D(x)]
+A8*[D(x), D(y), p(x)] + A6"[D(x), 8(y), D(z)]

_|._
>
=)
=
=
—~

8
~—
>
—~~

<
~
>

(y
, ()] + A?0"[D(x), D(y), D()))
= 0"[D(y), (), ¢(x)] + 0" [0(y), D(), ()] + 6" [p(y), (), D(=)]
+A0"[D(y), D(x), ¢(x)] + A" [D(y), 0(x), D(x)]
: (x)] + A*6*[D(y), D(x), D(x)]
= 0"[D(y),0(x), p(2)] + 6"[0(y), D(2), ¢ ()] + 6*[0(y), p(x), D()]
) ()] + A*[D(y), (=), D(x)]
()] + A*6*[D(y), D(x), D(x)]

+
>
=9
N
T 5
—~
<
~—
)
—
8
~
)

+

>
%
=5
€<
ISgy
=30

S

= ADPONK)(y, z, )
for all z,y,z € L. By (1.4) and (2.17), we have
D([z,z,9]) = —(D(ly,z,2]) + D([2,y,2]))

= —(Ag MRy m, @)+ ADY (A k) (. y,2))
= Ayl (\E)(z,2,y).

Using the same proof method as Proposition 2.9, we get
Ag Y (A k) (,y,2) = D([x,y, 2])

for all z,y,z € L.

Thus, D is a k-order (6, ¢)-derivation of weight A on L.

Theorem 2.12 Let R be a 3-torsion free ring and let D : . — L be a k-order
generalized Jordan triple (6, p)-derivation of weight A with respect to the k-order Jordan
triple (0, ¢)-derivation « of weight A satisfying (2.6). If

[0(z), ¢(y), a(2)] = [¢(z),0(y), a(2)]; (2.18)
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Ay s (N E)(,y,2) + Ag o (N k) (Y, 2,2) + Ag s (A k) (2,2,y) = 0 (2.19)

for all z,y,2z € L, then « is a k-order (6, p)-derivation of weight A\ and D is a k-order
generalized (6, p)-derivation of weight A with respect to .

Proof Tt follows from Theorem 2.11 that « is a k-order (6, ¢)-derivation of weight A.
Applying Proposition 2.9, we get from (2.6) that

B\ k) (z,y,2) + B\, k)(y,z,2) + B\, k)(2,2,y) = 0.
Then by (2.19), we have

AG, WK (2, 2) + A D (N R) (Y, 2. 2) + AG ) (A k) (2,2, 9)
= Ao N, y,2) + Ag g (LK), 2,0) + Ag (A k) (2,2, 9)
= 0

for all z,y,z € L. The rest of the proof is similar to the proof of Theorem 2.11.

Corollary 2.13 Let R be a 3-torsion free ring and let D : L — L be a k-order
generalized Jordan triple f-derivation of weight A with respect to the k-order Jordan triple
f-derivation « of weight A satisfying (2.6). Then « is a k-order -derivation of weight A\ and
D is a k-order generalized 6-derivation of weight A\ with respect to a.

Proof It is clear that condition (2.18) of Theorem 2.12 is valid when § = ¢. For
condition (2.19) of Theorem 2.12, we have from (1.4) that

Ay (N K) (z,y,2) + Aglg (N k) (y, 2,2) + Aglg (N, k) (2, 2,y)

= la(x),0(y), (Z)]+5’“[9(x) a(y),0(z )}+5’“[ (2),0(y), a(2)]
+A0Fa(x), a(y), 0(2)] + A" [a(@), 0(y), a(2)] + A*[0(x), a(y), a(2)]
+A25" (o), a(y), a(2)] + 6" [a(y), 0(2), 0(2)] + 6" [0(y), (=), ()]
+6°[0(y), 0(2), ()] + A6*[a(y), a(z), 8(x)] + A" [a(y), 6(2), a(x)]
XM 0(y), a(2), ()] + N26*[a(y), a(z), a(@)] + 8*[a(2), (), ()]
+6°[0(2), a(x), 8(y)] + 8°[0(2), 8(x), a(y)] + Ad*[a(2), a(z), §(y)]
+A0%a(2),0(x), aly)] + A" [0(2), a(x), a(x )]+/\25’“[a(2) a(z), a(y)]

= *la(x),0(y), (Z)]+5’“[9(y),9(2),a(fﬂ)}+

+8°[0(x), y), 0(2)] + 8*[a(y), (=), 6

5°[0(x), 8(y), a(2)] + 8°[0(y), a(2), 0

A% a(x), aly), 0(2)] + 6*[a(y), 0(=

A6 [a(),0(y), a(2)] + 6*[0(y), a(=

( (2 [

),

+ +

+
Q

A(8*[0(x), aly), a(2)] + 6*[a(y), a(2), O(z)] + 6" [z )
A2 (0% [e(z), a(y), a(2)] + 6" [a(y), a(2), a(z)] + 6*[a(2), a(z), ay)])
= 04+04+0+X-04+X-0+X-0+X2-0=0.

+
=
5]
o
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So condition (2.19) of Theorem 2.12 is valid if ¢ = §. Hence « is a k-order §-derivation of
weight A and D is a k-order generalized #-derivation of weight A with respect to a.

Corollary 2.14 Let R be a 3-torsion free ring. Then D : L — L is a k-order Jordan
triple f-derivation of weight A if and only if D is a k-order #-derivation of weight .

Proof It is clear that condition (2.6) of Corollary 2.13 is valid when D = a.

Corollary 2.15 Let R be a 3-torsion free ring. Then D : L — L is a k-order Jordan
triple derivation of weight A if and only if D is a k-order derivation of weight A.

Proof This is a special case that § = I}, in Corollary 2.14, where [}, is the identity
map on L.

Theorem 2.16 Let L be a § Jordan-Lie triple system.Let D : L — L be a k-order
(6, p)-derivation of weight A and A be a linear automorphism of L. If A, and ¢ satisfy any
two of which are commutative, then ADA™! is also a k-order (6, ¢)-derivation of weight .

Proof Since D is a k-order (6, ¢)-derivation of weight A and we have

D(lz,y,2]) = 0"[D(x),0(y), p(2)] + 6°[0(x), D(y), p(2)] + 8" [0(x), p(y), D(2)]
+A0"[D(x), D(y), ¢(2)] + A6*[D(x),0(y), D(2)]
+A0%[0(x), D(y), D(2)] + X*6*[D(x), D(y), D(2)]

for all z,y,z € L. Since A is a linear automorphism of L, we have

Alz,y,2]) = [A2), Aly), A(2)]
AN zy.2]) = [A7N(2), A7 (y), A7 (2)]

for all x,y, z € L. Therefore,

ADA Y([z,y,2]) = AD([A7'(z),A™ (y), A" (2)])

(
+6"10(x), o(y), ADA™' (2)] + A" [ADA™" (), ADA™" (y), (2)]
+AF[ADA Y (x),0(y), ADA™ ()] + A6*[0(x), ADA™ (y), ADA™(2)]
+A2F[ADAY(z), ADA™ (y), ADA™ (2)]

for all z,y,z € L. So ADA™! is a k-order (6, ¢)-derivation of weight A on L.
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Corollary 2.17 Let R be a 3-torsion free ring. Let A be a linear automorphism of L.
Then D : L — L is a k-order Jordan triple derivation of weight A if and only if A"DA™™
is a k-order derivation of weight A for all positive integer n.

Proof If D is a k-order Jordan triple derivation of weight A, it follows Corollary 2.15
that D is a k-order derivation of weight A. And from Theorem 2.16, ADA™! is also a k-
order derivation of weight A. By mathematical induction, A"DA™" is a k-order derivation
of weight A for all positive integer n. Conversely, we prove that D is a k-order Jordan triple
derivation of weight X\ if A"DA~" is a k-order derivation of weight X for all positive integer n.
Clearly, A~™ is a linear automorphism of L and from Theorem 2.16, A~"A"DA""A" = D is
a k-order derivation of weight A. Therefore, D is a k-order Jordan triple derivation of weight
A

Theorem 2.18 If D is a k-order derivation of § Jordan-Lie triple system L, Z(L) is
the center of L, then D(Z(L)) C Z(L).

Proof For arbitrary element z in Z(L) and for all y, z € L, we have [z, y, z] = 0. Since

D is a k-order derivation, we have
§*[D(x),y, 2] = D([z,y,2]) — 6" [z, D(y), 2] — 6" [z, y, D(2)].
Therefore,
[D<$>v Y, Z] =0
for all y,z € L. That is D(Z(L)) C Z(L).

3 On K-Order Generalized Derivation of Weight A\ on Rota-Baxter ¢
Jordan-Lie Triple Systems of Weight \

In this section, firstly, we introduce the concepts of a Rota-Baxter  Jordan-Lie algebra
of weight A and a Rota-Baxter & Jordan-Lie triple system of weight A. Afterwards, we
associate some beautiful results in section 2 with the inheritance property in [18] on a Rota-
Baxter ¢ Jordan-Lie triple system of weight A. In the end, we obtain that every Rota-Baxter
0 Jordan-Lie algebra can be seen as a Rota-Baxter § Jordan-Lie triple system.

Definition 3.1 A Rota-Baxter § Jordan-Lie algebra of weight A is a § Jordan-Lie
algebra (L, [-,-]) with a R-trilinear map p : L — L such that

[p(z),p()] = p(p(),y] + [z,p(y)] + Alz, y])
for all z,y € L. D is called k-order derivation of weight A on it if
D([z,y]) = 6*[D(x),y] + 8*[z, D(y)] + A" [D(x), D(y)]

for all z,y € L.
Definition 3.2 A Rota-Baxter § Jordan-Lie triple system of weight A is a § Jordan-Lie
triple system (L, [,,]) with a R-trilinear map p : L — L such that

[p(z),p(y),p(2)] = p(p(x),py), 2] + [p(x),y,p(2)] + [z, p(y), p(2)]
+A[p(x),y, 2] + Az, p(y), 2] + Az, y, p(2)] + N[z, y,2])  (3.1)
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for all x,y, z € L. Furthermore, we call p is a Rota-Baxter operator of weight A\ on L.

Let (L,[,,],p) be a Rota-Baxter ¢ Jordan-Lie triple system of weight A\. We define a
ternary operation on L by

[z,y,2l, = [p(2),p(), 2] + [p(x),y,p(2)] + [2, p(y), p(2)]
+A[p(x),y, 2] + Az, p(y), 2] + Az, y, p(2)] + N[, y, 2] (3.2)

for all z,y,z € L (see[12]).

Theorem 3.3 Let (L,[,,],p) be a Rota-Baxter ¢ Jordan-Lie triple system of weight \
and T be a invertible linear map. Then T is a Rota-Baxter operator of weight A if and only
if 771 is a O-order derivation of weight \.

Proof Since T is a invertible linear map, then for any x; € L(i = 1,2, 3), there exists
y; € L(i = 1,2,3) such that z; = Ty;(i = 1,2,3). Suppose T is a Rota-Baxter operator of
weight A, then we have

T~ ([xr,x0,25]) = T H([Tyr, Tya, Tys))
= T NT([Tyr, Ty, ys) + [Ty, y2, Tys] + [y1, Ty2, Tys]
FA[Ty1, Y2, ys) + Ayr, Tya, ys) + Ayr, y2, Tys] + X[y, y2,ys]))
=[xy, 20, T ws) + [w1, T tag, 23] + [T 12y, 20, 23]
ANz, T g, T as] + AT 2y, 20, T )
FAT oy, T 2y, 3] + N2 [T Ly, T ey, T 2]

for all z; € L(i = 1,2,3). Thus, T~! is a 0-order derivation of weight A\. Conversely, suppose
T is a 0-order derivation of weight A. Similarly, for all z; € L(i = 1,2, 3), we have

[T 2y, T e, T ] = T YT ([y1, 92, 43]))
= T[Ty, y2, 3] + [y1, 92, Tys] + [y1, T2, 3]
FA[Ty1, Ty2, ys] + Alyr, Ty2, Tys]
+A[Ty1, y2, Tys] + XN [Ty1, Tya, Tys))
= T Y[y, T g, T ] + [Ty, T g, )
+H[T oy, 0, T 3] + Ay, 20, T as) + AT 21, 29, 23]
A @1, T g, 23] + N2y, 20, 73)).

Therefore, T~! is a Rota-Baxter operator of weight \.

Remark 3.4 Obviously, the conclusion of Theorem 3.3 still holds on Rota-Baxter §
Jordan-Lie algebra of weight A.

Theorem 3.5 Let (L,],,]|,p) be a Rota-Baxter § Jordan-Lie triple system of weight
A. Then (L,[,,],,p) is a Rota-Baxter 6 Jordan-Lie triple system of weight .
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Proof First of all, we need to prove (L, [,,],,p) is a 6 Jordan-Lie triple system. Clearly,

[,,]p defined in (3.2) is multi-linear and we observe that

[z, y,2], = [p(@),p(y), 2] + [p(x),y,p(2)] + [z, p(y), p(2)]
Alp(@),y, 2] + Nz, p(y), 2] + Mz, y, p(2)] + N[z, y, 2]
= —0([p(y),p(), 2] + [y, p(2), p(2)] + [p(y), 7, p(2)]
Aly, p(2), 2] + Alp(y), z, 2] + Aly, =, p(2 )]+A2[y,fc72]>
[y

= -0 Y, 72]17

_|_

_I_

for all ,y,z € L. Therefore, |,,], satisfies (1.3).It follows from (1.4) that

(2,9, 2]p + [y, 2, 2] + [2, 7,9,

= [p(2),p(y), 2] + [p(2), y, p(2)] + [z, p(y), p(2)]
FAP(), y, 2] + Az, p(y), 2] + Alz, y, p(2)] + N[z, y, 2]
+p(y),p(2), 2] + [p(y), 2, p(2)] + [y, p(2), p(2)]
FAP(Y), 2, 2] + Ay, p(2), 2] + Ny, 2, p(2)] + N[y, 2, 2]
+[p(2), p(x),y] + [p(2), ,p(y)] + [z, p(x)

p(y)]
+Ap(2), 2, 9] + Alz, p(2), y] + Az, 2, p(y)] + N[z, 2, Y]
= [p(z),p(y), 2] + [p(y), 2, p(x)] + [z, p(2), p(¥)]
+[p(x),y,p(2)] + [y, p(2), p(2)] + [P(2), p(2), Y]
+z, p(y), p(2)] + [p(y), p(2), ] + [p(2), =, p(y)]
+A([p(2), Y. 2] + [y, 2, p(x)] + [z, p(2), y])
+A([z,p(y), 2] + [p(y), 2, 2] + [z, 2, p(y)])
( z,y,p(2)] + [y, p(2), ] + [p(2), 2, y])

[z
N[z, y, 2] + [y, 2, 2] + [z, 2, 9))
=0

for all ,y,z € L. Therefore, [,,], satisfies (1.4). To prove that [,,], satisfies (1.5), we need
to show
(21, T2, [¥3, T4, Tsplp = [[T1, T2, T3]y, T4, Ts]p + [23, [T1, T2, Tap, Ts]p + O[3, T4, [21, T25 25, ]

for all z; € L(i = 1,2, 3,4,5). We notice that

A = [y, m, [T, T, T
= [p(z1),p(z2), (T3, T4, T5]p] + [P(@1), T2, P([T3, Tas T5]p)| + [w1, p(22), P([23, T4, T5],)]
+A[p(a1), 03, (05, @4, @3], + M, p(@s), [0, 24, 05],] + Awr, 22, p([@s, 24, 25],)]

+)\2 [xly T2, [x37 Ty, x5]p]
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[p(21), p(x2), [p(23), p(x4), 5]] + [P(21), P(22), [P(23), 24, P(5)]
+p(z1), p(22), [25, p(24), P(25)]] + Alp(21), P(22), [P(235), T4, 25]]
+A[p(z1), p(22), [23, p(24), 25]] + Alp(21), P(22), [3, 24, P(25)]]
FX2[p(21), p(22), [£3, 24, 25]] + [p(21), T2, [p(23), P(24), (5)]]
+[21, p(22), [p(23), p(24), p(25)]] + Alp(21), 22, [P(25), P(24), 25]]
+A[p(21), @2, [p(23), 24, p(25)]] + Alp(21), 22, [23, p(24), P(25)]]
FA2[p(a1), 2, [P(23), 24, 5] + N2 [p(21), 2o, [23, p(24), 25]]
+>\2[p(x1), T, [x3, 24, p(25)]] + )‘3{?(%1): To, [23, T4, T5]]

+p(z1), p(22), [p(23), p(24), 25]] + [p(21), P(22), [P(23), T4, P(25)]]
+[p(z1), p(22), [23, p(24), P(5)]] + Alp(21), P(22), [P(73), T4, 5]
+A[p(z1), p(22), [25, P(24), 25]] + Alp(21), P(22), [23, 24, P(25)]]
AN [p(21), p(x2), [£3, 24, 25]] + [p(21), T2, [p(23), P(24), (5)]]
+[21, p(22), [p(23), p(24), p(25)]] + Alp(21), 22, [P(25), P(24), 25]]
+A[p(21), 22, [p(23), T4, p(5)]] + Alp(21), 22, [23, p(24), P(5)]]
A% [p(a1), w2, [p(3), 4, 5] + N2 [p(a1), 22, [23, p(4), 25]]
+A%[p(a1), w2, [ws, 24, p(as)]] + N [p(21), 22, (23, 24, 25]]
+A[21, p(@2), [p(23), p(24), 35]] + Alzr, p(22), [p(23), 24, p(25)]]
+>\[9€1 P(w2), 23, p(x4), p(5)]] + N[0, p(22), [P(3), T4, 5]
*[a1, p(x2), [23, p(24), 5]] + )‘2[171,]7(332)’ (23, 24, p(25)]]
+>\3 x1, p(22), [¥3, T4, T5]] + Alz1, 22, [p(23), p(24), p(5)]]
 [p(23), p(xa), 5] + N[0, 22, [p(23), 24, p(25)]
s, p(xy), p(5)]] + N2, 20, [P(23), 24, 75]]
23, p(xa), 25]) + NP [w1, 2, [203, 24, p(25)]

[

T3, Ty, Ts)]

for all x,y,z € L.

Similarly, we can compute B := [[x1, T2, Z3]p, T4, T5p, C = [x3, [T1, T2, Z4]p, T5]p

[CE3, Ty, [2131, T2, x5]I)]P'

It follows (1.5

Therefore, |,

) that
A=B+C+46D.

, D

,]p satisfies (1.5). Then (L, [,,],, p) is a 6 Jordan-Lie triple system. Finally,

we show that p satisfies (3.1) on (L, [,,],,p). From the definition of [,,],, we have

[p(x),p(v), p(2)l, = [P*(),p*(y

),p(2)] + [P*(2),p(y), P*(2)] + [p(x), P’ (),
AP (), p(y), p(2)] + Alp(x), p* (1), p(2)]
+A[p(2),p(y), p*(2)] + N[p(x), p(y), p(2)].

P’ (2)]
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Since p is a Rota-Baxter operator of weight A on (L, [, ], p), we have

°(2),p*(v),p(2)] = p(p*(x),p°(y), 2] + [P*(2), p(v), p(2)] + [p(2), P> (y), p(2)]

+A[P* (), p(y), 2] + Alp(2),p*(v), 2] + Alp(x), p(y), p(2)]
+X%[p(x),p(y), 2])

p*(x),p(y),p*(2)] = p([p*(x),p(y),p(
+A[p?(x), v, p(2)
+X?[p(x),y,p(2)

2)] + P (2), p(), p° (2)] + [p(x), p(y), p*(2)]
]+ Alp(2), p(y), p(2)] + Alp(z), y, p° ()]
1)

p(x),p*(y),*(2)] = p(p(),p* V), p(2)] + [p(x), p(y), P> (2)] + [z, 0°(y), P*(2)]
+A[p(2), p(y), p(2)] + Az, P> (y), p(2)] + Alz, p(y), P ()]
+X2[z, p(y), p(2)])

"6’@

0°(2),p(y),p(2)] = p(p*(x),p(y), 2] + [P*(x), y,p(2)] + [p(x), p(y), p(2)]
+A[P?(2),y, 2] + Alp(z), p(y), 2] + Alp(x), y, p(2)]
+X%[p(x),y, 2])

[p(x),p*(y),p(2)] = p(p(x),p*(v), 2] + [p(x), p(y), p(2)] + [z, p*(y), p(2)]
+A[p(x), p(y), 2] + Az, p*(y), 2] + Az, p(y), p(2)]
+X%[z, p(y), 2])

[p(z),p(y),p*(2)] = p(p(@),p(y),p(2)] + [p(x),y,p*(2)] + [z, p(y), P*(2)]
+A[p(a),y,p(2)] + Alz, p(y), p(2)] + Az, y,p*(2)]
+X%[z,y,p(2)])

[p(z),p(y),p(2)] = p(p(z),pv), 2] + [p(2),y,p(2)] + [z, p(y), p(2)]
+A[p(x),y, 2] + Az, p(y), 2] + Az, y,p(2)]
+A2[z,y, 2]).

By computing, we have

[p(z),p(y),p(2)], = plp(x),pv),2], + [p(x),y,p(2)]p + [=,p(¥), p(2)],
—|—)\[p(£€), yv Z]p + /\[xvp(y)) Z}p + )‘["Ev yap(z)]P
+)\2[33,y,z]p).

for all x,y,z € L. This proves p is a Rota-Baxter operator of weight A on (L, [,,],,p)-
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Thus from the above sum, we conclude that (L, [,,],,p) is a Rota-Baxter ¢ Jordan-Lie

triple system of weight A.

Theorem 3.6 Let (L, ],,], p) be a Rota-Baxter § Jordan-Lie triple system of weight A.
Let D be a k-order generalized (6, ¢)-derivation of weight A with respect to o on L satisfying
the relation that any two of D, p, «, 8, ¢ are commutative. Then D is a k-order generalized

(0, p)-derivation of weight A with respect to a on the Rota-Baxter § Jordan-Lie triple system

of weight X (L, [,,],,p), where « is a k-order (6, ¢)-derivation of weight .

Proof We have

D([z, p(y), p(2)])

D([p(x), y, 2])

D([z,p(y), 2])

D([z,y,p(2)])

§*[a(p(x)), 0(p(y)), ¢(2)] + 6*[0(p(x)), a(p(y)), ¢ (2)]
+8*[0(p()), o (p(y)), (2)] + Ad*[D(p(x)), D(p(y)),

+A8" [a(p(x)), 0(p(y)), a(2)] + A6*[0(p(x)), a(p(y)), a(2)]
+A26" [a(p(x)), a(p(y)), ()] (3.3)

*[a(p()), 0(y), ¢(p(2)] + 0" [0(p(2)), ay), ¢ (p(2))]
+6°10(p(2)), o (y), a(p(2))] + A8*[D(p(x)), D(y), ¢ (p(2))]
+A0"[a(p(2)), 0(y), a(p(2))] + A" [0(p(2)), ay), a(p(2))]
+A20%[a(p(2)), aly), a(p(2))]- (3-4)

6*[a(x), 0(p(y)), (p(2)] + 6" [0(x), a(p(y)), ¢(p(2))]

+6*[0(2), o(p(y)), a(p(2))] + 6°[D(x), D(p(y)), ¢ (p(2))]
A0 o), 0(p(y), a(p(2))] + A0*[0(2), ap(y)), a(p(2))]
+A%6% (), a(p(y)), a(p(2))]. (3-5)

*la(p()), 0(y), @(2)] + 6" [0(p(x)), a(y), (2)]
+6*0(p(x)), (), a(2)] + A6*[D(p(x)), D(y), (2)]
+A0%[a(p(2)), 0(y), a(2)] + A6* [0(p(x)), a(y), (2)]
+A20%[a(p(2)), aly), a(2)]- (3.6)

0*[a(x),0(p(y)), @(2)] + 6" [0(), a(p(y)), (2)]
+6*0(2), (p(y)), a(2)] + A6*[D(x), D(p(y)), (2)]

+A0% o), O(p(y), a(2)] + A6*[0(=), a(p(y)), (2)]

+A20% o), alp(y)), a(2)]- (3.7)

8 [e(x),0(y), p(p(2))] + 6" [0(x), a(y), v (p(2))]

+8%[0(2), (y), a(p(2))] + A6*[D(x), D(y)), ¢(p(2))]
+A8Ma(x), 0(y), alp(2))] + 16" [0(2), aly), a(p(2))]

A2 (), aly), a(p(2))]. (3-8)
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D([z,y,2]) = & a(x),0(y),¢(2)] + 8" [0(z), a(y), ¢(2)]
+0*[0(2), (y), a(2)] + A" [D(x), D(y)), (2)]
A [a(2), (y), a(2)] + A3*[0(x), a(y), a(2)]
+A20% (), a(y), a(2)]. (3.9)

It is a straightforward computation. By (3.3)—(3.9), we obtain

D([z,y,2l,) = D([p(2),p(y), 2]) + D([p(x), y,p(2)]) + D([z, p(y), p(2)])
+AD([p(2),y, 2]) + AD([z, p(y), 2])
+AD([z,y,p(2)] + N D([2,y, 2])
= 6"[a(2),0(y), 0(2)], + 0" [0(2), a(y), 9 ()] + 8°10(x), (y), ()],
+A0"[D(2), D(y), p(2)], + A6 (), 0(y), a(2)],
AT [0(2), ay), al2)], + N6 (), aly), (2],

Therefore, D is a k-order generalized (6, ¢)-derivation of weight A with respect to « on
the Rota-Baxter ¢ Jordan-Lie triple system of weight A (L, [,,],,p).

Corollary 3.7 Let (L,[,,],p) be a Rota-Baxter ¢ Jordan-Lie triple system of weight
A. Let D be a k-order (6, p)-derivation of weight A on L satisfying the relation any two
of D,p,a,0,¢ are commutative. Then D is a k-order (6, )-derivation of weight A on the
Rota-Baxter ¢ Jordan-Lie triple system of weight A (L, [,,],,p).

Proof It is the direct results of Theorem 3.6.

Corollary 3.8 Let (L,[,,]) be a ¢ Jordan-Lie triple system. d is a invertible 0-order
derivation of weight A on L, then (L, [,,]4-1) with [,,] defined in (3.2) is also a § Jordan-Lie

triple system. Furthermore

[.ZC, Y, Z]d*1 = d([d71<$), dil(:‘/): dil('z)])

for all z,y,z € L. d is a 0-order derivation of weight A on (L, [,,]4-1).

Proof By Theorem 3.3, d~! is a Rota-Baxter operator of weight A on (L, [,,]). And by
Theorem 3.5, (L, [,,]4-1) is a § Jordan-Lie triple system. From Corollary 3.7, d is a O-order
derivation of weight X\ on (L,[,,]4-1). Thus, d~! is a Rota-Baxter operator of weight \ on
(L,[,,]4-1). Clearly, we have

[2,y, 2a- = d([d™"(z),d ™" (y),d "' (2)])

for all x,y,z € L.
Theorem 3.9 Let (L,[,,],p) be a Rota-Baxter ¢ Jordan-Lie triple system of weight A
and A be a linear automorphism on (L, [,,],p). If A and p are commutative, then A is also

a linear automorphism on (L, [,,],,p), where [,,], is defined as (3.2).



54 Journal of Mathematics Vol. 41

Proof We need to certify A([x,vy,z],) = [A(x), A(y), A(2)],, for all z,y,z € L. From
the definition of (L, [,,],, p), we have

Allz,y,2]p) = Allp(2), p(y), 2] + [p(@), ¥, p(2)] + [z, p(y), p(2)]
+Ap(2),y, 2] + Az, p(y), 2] + Mz, y, p(2)] + N[z, 9, 2])
= [p(A(z)), p(A(y)), A(2)] + [p(A(2)), A(y), p(A(2))]
+[A(z), p(A(y)), p(A(2))] + Alp(A(z)), A(y), A(2)]
+A[A(2),p(A(y)), A(2)] + A[A(2), A(y), p(A(2))] + N’[A(z), A(y), A(2)]
= [A(z), A(y), A(2)]p-

So A is also a linear automorphism on (L, [,,],,p).

Corollary 3.10 Let (L,[,,],p) be a Rota-Baxter § Jordan-Lie triple system of weight
A. Let D be a k-order Jordan triple #-derivation of weight A\ on (L,[,,],p) and A be a
linear automorphism of (L, [,,],p). If A,p,0, D satisfy the relation any two of which are
commutative, then A"DA™" is a k-order #-derivation of weight A on (L,[,,],,p) for all
positive integer n, where [,,], is defined as (3.2).

Proof Since D is a k-order Jordan triple #-derivation of weight A\ on (L,[,,],p),
and from Corollary 2.15, we have that D is a k-order 6-derivation of weight A on (L, |,,],p).
From Corollary 3.7, D is a k-order #-derivation of weight A on (L, [,,],,p). Since A is a linear
automorphism of (L, [,,], p), and from Theorem 3.9, we know that A is a linear automorphism
of (L,],,]p,p), and from Theorem 2.17, ADA™! is a k-order #-derivation of weight A\ on
(L,[,,]p,p). By mathematical induction, A"DA™" is a k-order #-derivation of weight A on
(L,[,,]p,p) for all positive integer n.

Theorem 3.11 Let (L, [-,-]) be a § Jordan-Lie algebra and D be a 0-order derivation
of weight A on it. Then D is also a 0O-order derivation of weight A on § Jordan-Lie triple
system (L, [,,]), where [,,] is defined by [z,y, 2] := [[z,y], z]] for all z,y,z € L.

Proof Suppose D is a 0-order derivation of weight A on (L, [-,]), then

D([z,y,2]) = D([l=,y],2]])
= [D([z,9]), 2] + [[z, 4], D(2)] + AD([z, y]), D(2)]
= [[D(@),yl, 2] + [z, D(y)], 2] + M[D(x), D(y)], 2]
+Hz,y], D(2)] + A[[D (@), y], D(2)]
+Al[z, D(y)], D(2)] + N*[[D(x), D()], D(2)]
= [D(x),y, 2] + [z, D(y), 2] + [z, y, D(2)]
+Alz, D(y), D(2)] + A[D(x), D(y), 2]
+A[D(2),y, D(2)] + A*[D(z), D(y), D(2)]

for all z,y,z € L.
Therefore, D is also a 0-order derivation of weight A on (L, [,,]).



No. 1 K-order generalized derivations of weight A on § Jordan-Lie triple systems 55

Corollary 3.12 Let (L,[-,-],p) be a Rota-Baxter § Jordan-Lie algebra of weight .
Then (L, [,,],p) be a Rota-Baxter ¢ Jordan-Lie triple system of weight A, where we assume
p is invertible and [,,] is defined as above.

Proof It just need to prove that p is a Rota-Baxter operator of weight A on (L, [,,],p).
By Remark 3.4, p~! is a 0-order derivation of weight A on (L, [-,],p). From Theorem 3.11,
p~ ! is a 0-order derivation of weight A on (L, [,,],p). By Theorem 3.3, we obtain that p is a
Rota-Baxter operator of weight A on (L, [,,],p).

Remark 3.13 Actually, the conclusion of Corollary 3.12 still holds when p is not
invertible. It just need to use the same proof method as Theorem 3.11 to prove that p is a

Rota-Baxter operator of weight A on (L, [,,],p).

References

[1] Jacobson N. General representation theory of Jordan algebras[J]. Trans. Amer. Math. Soc., 1950,
70(3): 509-530.

[2] Jacobson N. Lie and Jordan triple systems[J]. Amer. J. Math., 1949, 719(1): 149-170.

[3] Lister W G. A structure theory of Lie triple systems[J]. Trans. Amer. Math. Soc., 1952, 72(2):
217-242.

[4] Okubo S, Kamiya N. Jordan-Lie superalgebra and Jordan-Lie triple system[J]. J. Algebra., 1997,
198(2): 388-411.

[5] Kamiya N, Okubo S. A construction of simple Jordan superalgebra of F type from a Jordan-Lie
triple system[J]. Annali di Matematica., 2002, 181: 339-348.

[6] Benoist Y. La partie semi-simple de ’algébre des dérivations d’une algébre de Lie nilpotente[J]. C.
R. Acad. Sci. Aris., 1988, 307: 901-904.

[7] Ashraf M, Al-Shammakh W S M. On generalized (6, ¢)-derivations in rings[J]. Int. J. Math. Game
Theory and Algebra, 2002, 12(4): 295-300.

[8] Bresar M. Jordan derivations on semiprime rings[J]. Proc. Amer. Math. Soc., 1988, 104(4): 1003

1006.

| Bresar M. Jordan mappings of semiprime rings[J]. J. Algebra., 1989, 127(1): 218-228.

| Bresar M, Vukman J. Jordan (6, ¢)-derivations[J]. Glasnik Math., 1991, 46: 13-17.

1] Herstein I N. Jordan derivations of prime rings[J]. Proc. Amer. Math. Soc., 1958, 8(6): 1104-1110.

] Hvala B. Generalized derivations in rings[J]. Comm. Algebra., 1998, 26(4): 1147-1166.

] Jing W, Lu S. Generalized Jordan derivations on prime rings and standard operator algebras[J].

Taiwanese J. Math., 2003, 7(4): 605-613.

[14] Lee T K. Generalized derivations of left faithful rings[J]. Comm. Algebra., 1999, 27(8): 4057-4073.

[15] Liu C K, Shiue W K. Generalized Jordan triple (6, p)-derivations on semiprime rings[J]. Taiwanese

J. Math., 2007, 11(5): 1397-1406.

[16] Najati A. Generalized derivations on Lie triple systems[J]. Result. Math., 2009, 54(1-2): 143-147.

[17] Najati A, Ardabil. On Generalized Jordan derivations on Lie triple systems[J]. J. Czechoslovak
Math., 2010, 60(2): 541-547.

8] Bai R P, Guo L, Li J Q, Wu Y. Rota-Baxter 3-Lie algebras[J]. J. Math. Phys., 2013, 54(6): 295-308.

9] Guo L, Keigher W. Baxter algebras and shuffle products[J]. Adv. Math., 2000, 150(1): 117-149.

0] Guo L, Zhang B. Renormalization of multiple zeta values[J]. J. Algebra, 2008, 319(9): 3770-3809.



56 Journal of Mathematics Vol. 41

[21] Bai C. A unified algebraic approach to classical Yang-Baxter equation[J]. J. Phys. A., 2007, 40(36):
11073-11082.

[22] Bai C, Guo L, Ni X. Generalizations of the classical Yang-Baxter equation and O-operators[J]. J.
Math. Phys., 2011, 52(6): 465-465.

[23] Bai C, Guo L, Ni X. Nonabelian generalized Lax pairs, the classical Yang-Baxter equation, and
PostLie algebras[J]. Commun. Math. Phys., 2010, 297(2): 553-596.

[24] Bertram W. The geometry of Jordan and Lie structures. in: Lecture Notes in Math[M]. New York:
Springer—Verlag, 2000.

[25] Guo L. Introduction to Rota-Baxter algebra[M]. Bei Jing: International Press and Higher Education
Press, 2012.

[26] Guo L. What is a Rota-Baxter algebra[J]. Notices Amer. Math Soc., 2009, 56(11): 1436-1437.

[27] Guo L, Sit W, Zhang R. Differential type operators and Grobner-Shirshov bases[J]. J. Symb. Com-
put., 2013, 52: 97-123.

§ Jordan-FE=F EFHEPONK-MT X &F

ot sRIREE
(1. SR HE TS24, 4R T/ 510604)
(2. HRALIBIERHFHC: 550050 |, bk K& 130024)

WE: AW 16 Jordan-Z= = & LAy AANK-BY) X F ARG . sl v, 58 TR0
Jordan-Z= = & FiF A BAKIk-FrJordan =f6-F T H =2 — N FEHBANIK-Fo-F 7. £ LT, G THH
BNHIk-Fir Jordan = f160-F 511 53 — &5 R RN, @50 7P A BNIK- X (6,0)-F T HRota-Baxter
§ Jordan- Z= & LA AR Rota-Baxter HF B %5, 133 T — 1 Rota-Baxter § Jordan-Z=4%%

AeFE il — T Rota-Baxter § Jordan-ZF = R [N45 1.
K#iE): 6 Jordan-ZFEZR; k-Mi (0, o)-FF; k-FirJordan = (0, )-FT; B\; HAKIRota-Baxter §

Jordan-ZE= &
MR(2010)E 8 9 % 5: 16E40; 17B56; 17B68; 17B70 FESES: 01525



