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Abstract: This paper deals with the k-order generalized derivations of weight λ on δ Jordan-

Lie triple systems. By computing, we conclude that every k-order Jordan triple θ-derivation of

weight λ on δ Jordan-Lie triple systems is a k-order θ-derivation of weight λ. Under the definitions,

we give another equivalent form of k-order Jordan triple θ-derivation of weight λ. Meanwhile,

We also establish the inheritance property of k-order generalized (θ,ϕ)-derivation of weight λ and

Rota-Baxter operator of weight λ on Rota-Baxter δ Jordan-Lie triple systems. We obtain that

every Rota-Baxter δ Jordan-Lie algebra can be seen as a Rota-Baxter δ Jordan-Lie triple system.
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1 Introduction

Lie triple systems have played an extremely important role in mathematics and physics
for a long time. The concept of Lie triple systems was first introduced by N.Jacobson
[1],[2](see also [3]). As the generalization of Lie algebra, δ Jordan-Lie algebra was first
introduced in [4]. Let R be a commutative ring with a unit. A δ Jordan-Lie algebra is a
R-module L with a R-bilinear mapping L×L 3 (x, y) 7−→ [x, y] ∈ L satisfying the following
conditions:

[x, y] = −δ[y, x], (1.1)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (1.2)

for all x, y, z ∈ L. δ = ±1. For δ = 1, these equations represent the Lie algebra [5]. Similarly,
we can obtain the definition of δ Jordan-Lie triple system in [4]. A δ Jordan-Lie triple system
is a R-module L with a R-trilinear mapping L×L×L 3 (x, y, z) 7−→ [x, y, z] ∈ L satisfying

[x, y, z] = −δ[y, x, z], (1.3)

[x, y, z] + [y, z, x] + [z, x, y] = 0, (1.4)

[u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + δ[x, y, [u, v, z]] (1.5)
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for all u, v, x, y, z ∈ L. δ = ±1. The case of δ = 1 gives the Lie triple system [5]. Clearly,
every δ Jordan-Lie algebra with product [·, ·] is a δ Jordan-Lie triple system with respect to
[x, y, z] := [[x, y], z].

As is well known, derivations and generalized derivation algebras are very important
subjects both in the research of rings and Lie algebras. In the study of Levi factors in
derivation algebras of nilpotent Lie algebras, the generalized derivations, quasiderivations,
centroids and quasicentroids play key roles(see [6]). The most important and systematic
research on the generalized derivative algebras of Lie algebras and their subalgebras were
due to Leger and Luks. Much work have been done in this area, showing an interesting
derivation and generalized derivative algebras(see [7–17]). In particular, some nice properties
of the generalized derivation on Lie triple systems have been obtained in [16–17].

In [18–20], the concepts of Rota-Baxter 3-Lie algebras were introduced and the authors
studied the inheritance property of Rota-Baxter 3-Lie algebras and Rota-Baxter Lie triple
systems. They introduced the concepts of a Rota-Baxter operator and differential operator
with weights on Lie triple system. Rota-Baxter operators on Lie algebras are operator forms
of the classical Yang-Baxter equations and contribute to the study of integrable systems
[6],[18–23],[25–29].

The paper is organized as follows. In section 2, we conclude that every k-order Jordan
triple θ-derivation of weight λ on δ Jordan Lie triple system is a k-order θ-derivation of
weight λ and we give another equivalent form of k-order Jordan triple θ-derivation of weight
λ on δ Jordan-Lie triple systems. In section 3, we establish the inheritance property of
k-order generalized (θ,ϕ)-derivation of weight λ on Rota-Baxter δ Jordan-Lie triple systems
of weight λ and generalize some results in [18] to Rota-Baxter δ Jordan-Lie triple systems
of weight λ.

2 On K-Order Generalized Derivation of Weight λ on δ Jordan-Lie Triple

Systems

The purpose of this section is to study a k-order derivation and k-order generalized
derivation of weight λ on δ Jordan-Lie triple system. In particular, we generalize some
results in [16]-[17] to k-order (generalized) derivation of weight λ on δ Jordan-Lie triple
systems. We first introduce the concepts of k-order (generalized) (θ,ϕ)-derivations of weight
λ and k-order (generalized) Jordan triple (θ,ϕ)-derivations of weight λ on δ Jordan-Lie
triple systems. Then we prove that every k-order generalized Jordan triple (θ,ϕ)-derivation
of weight λ on Lie triple system is a k-order generalized (θ,ϕ)-derivation of weight λ under
some conditions. In particular, we conclude that every k-order Jordan triple θ-derivation
of weight λ on Lie triple systems is a k-order θ-derivation of weight λ. In the end we give
another equivalent form of k-order Jordan triple θ-derivation of weight λ on δ Jordan-Lie
triple systems.

Given an integer n > 1, a ring R is said to be n-torsion free, if for x ∈ R, nx = 0 implies
that x = 0.
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Definition 2.1 Let L be a δ Jordan-Lie triple system over ring R. Let θ, ϕ : L → L

be R-linear maps. A R-linear map D : L → L is called a k-order (θ, ϕ)-derivation of weight
λ ∈ R on L if

D([x, y, z]) = δk[D(x), θ(y), ϕ(z)] + δk[θ(x), D(y), ϕ(z)] + δk[θ(x), ϕ(y), D(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[D(x), θ(y), D(z)]

+λδk[θ(x), D(y), D(z)] + λ2δk[D(x), D(y), D(z)] (2.1)

for all x, y, z ∈ L, λ ∈ R. δ = ±1. If ϕ = θ, a k-order (θ, ϕ)-derivation of weight λ is called a
k-order θ-derivation of weight λ. If ϕ = θ = IL, where IL is the identity map on L, a k-order
(θ, ϕ)-derivation of weight λ is called a k-order derivation of weight λ.

Remark 2.2 If λ = 0 and δ = 1, a k-order (θ, ϕ)-derivation of weight λ could be seen
as a (θ, ϕ)-derivation (see[16]-[17]).

Definition 2.3 Let L be a δ Jordan-Lie triple system over ring R. Let θ, ϕ : L → L be
R-linear maps. A R-linear map D : L → L is called a k-order Jordan triple (θ, ϕ)-derivation
of weight λ ∈ R on L if

D([x, y, x]) = δk[D(x), θ(y), ϕ(x)] + δk[θ(x), D(y), ϕ(x)] + δk[θ(x), ϕ(y), D(x)]

+λδk[D(x), D(y), ϕ(x)] + λδk[D(x), θ(y), D(x)]

+λδk[θ(x), D(y), D(x)] + λ2δk[D(x), D(y), D(x)] (2.2)

for all x, y ∈ L, λ ∈ R, δ = ±1. If ϕ = θ, a k-order Jordan triple (θ, ϕ)-derivation of weight
λ is called a k-order Jordan triple θ-derivation of weight λ. If ϕ = θ = IL, where IL is the
identity map on L, a k-order Jordan triple (θ, ϕ)-derivation of weight λ is called a k-order
Jordan triple derivation of weight λ.

Remark 2.4 If λ = 0 and δ = 1, a k-order Jordan triple (θ, ϕ)-derivation of weight λ

could be seen as a Jordan triple (θ, ϕ)-derivation (see[16,17]).
Definition 2.5 Let α : L → L be a k-order (θ, ϕ)-derivation of weight λ ∈ R. A

R-linear map D : L → L is called a k-order generalized (θ, ϕ)-derivation of weight λ with
respect to α if

D([x, y, z]) = δk[α(x), θ(y), ϕ(z)] + δk[θ(x), α(y), ϕ(z)] + δk[θ(x), ϕ(y), α(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[α(x), θ(y), α(z)]

+λδk[θ(x), α(y), α(z)] + λ2δk[α(x), α(y), α(z)] (2.3)

for all x, y, z ∈ L, λ ∈ R. δ = ±1.

Remark 2.6 If λ = 0 and δ = 1, a k-order generalized (θ, ϕ)-derivation of weight λ

with respect to α is called a generalized (θ, ϕ)-derivation with respect to α (see [16]-[17]).
Definition 2.7 Let α : L → L be a k-order Jordan triple (θ, ϕ)-derivation of weight

λ ∈ R. A R-linear map D : L → L is called a k-order generalized Jordan triple (θ, ϕ)-
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derivation of weight λ with respect to α if

D([x, y, x]) = δk[α(x), θ(y), ϕ(x)] + δk[θ(x), α(y), ϕ(x)] + δk[θ(x), ϕ(y), α(x)]

+λδk[D(x), D(y), ϕ(x)] + λδk[α(x), θ(y), α(x)]

+λδk[θ(x), α(y), α(x)] + λ2δk[α(x), α(y), α(x)] (2.4)

for all x, y ∈ L, λ ∈ R. δ = ±1.

Remark 2.8 If λ = 0 and δ = 1, a k-order generalized Jordan triple (θ, ϕ)-derivation
of weight λ with respect to α is called a generalized Jordan triple (θ, ϕ)-derivation with
respect to α (see [16, 17]).

Throughout this paper θ, ϕ, D, α : L −→ L are R-linear maps and Aα,D
θ,ϕ (λ, k) : L× L×

L −→ L is a map defined by

Aα,D
θ,ϕ (λ, k)(x, y, z) = δk[α(x), θ(y), ϕ(z)] + δk[θ(x), α(y), ϕ(z)] + δk[θ(x), ϕ(y), α(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[α(x), θ(y), α(z)]

+λδk[θ(x), α(y), α(z)] + λ2δk[α(x), α(y), α(z)] (2.5)

for all x, y, z ∈ L, λ ∈ R.
It is clear that the map Aα,D

θ,ϕ (λ, k) is R-trilinear.
Proposition 2.9 Let R be a 3-torsion free ring and let L be a δ Jordan-Lie triple

system over ring R. Let D : L → L be a k-order generalized Jordan triple (θ, ϕ)-derivation
of weight λ with respect to α, where α is a k-order Jordan triple (θ, ϕ)-derivation of weight
λ. If

[D(x), D(y), ϕ(z)] + [D(y), D(z), ϕ(x)] + [D(z), D(x), ϕ(y)]

= [α(x), α(y), ϕ(z)] + [α(y), α(z), ϕ(x)] + [α(z), α(x), ϕ(y)] (2.6)

for all x, y, z ∈ L, then

(D − α)([x, y, z]) = λ(δk[D(x), D(y), ϕ(z)]− δk[α(x), α(y), ϕ(z)]), (2.7)

B(λ, k)(x, y, z) + B(λ, k)(y, z, x) + B(λ, k)(z, x, y) = 0 (2.8)

for all x, y, z ∈ L, where B(λ, k) = Aα,D
θ,ϕ (λ, k)−Aα,α

θ,ϕ (λ, k).
Proof By (2.2) and (2.4), we have

(D − α)([x, y, x]) = D([x, y, x])− α([x, y, x])

= δk[α(x), θ(y), ϕ(x)] + δk[θ(x), α(y), ϕ(x)] + δk[θ(x), ϕ(y), α(x)]

+λδk[D(x), D(y), ϕ(x)] + λδk[α(x), θ(y), α(x)]

+λδk[θ(x), α(y), α(x)] + λ2δk[α(x), α(y), α(x)]

−δk[α(x), θ(y), ϕ(x)]− δk[θ(x), α(y), ϕ(x)]− δk[θ(x), ϕ(y), α(x)]

−λδk[α(x), α(y), ϕ(x)]− λδk[α(x), θ(y), α(x)]

−λδk[θ(x), α(y), α(x)]− λ2δk[α(x), α(y), α(x)]

= λ(δk[D(x), D(y), ϕ(x)]− δk[α(x), α(y), ϕ(x)]) (2.9)
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for all x, y ∈ L. From (1.3), we have

(D − α)([y, x, x]) = −δ(D − α)([x, y, x])

= −δλ(δk[D(x), D(y), ϕ(x)]− δk[α(x), α(y), ϕ(x)])

= λ(δk[D(y), D(x), ϕ(x)]− δk[α(y), α(x), ϕ(x)]) (2.10)

for all x, y ∈ L. Since [x, y, x] + [y, x, x] + [x, x, y] = 0, by (2.6) we have

(D − α)([x, x, y]) = −((D − α)([x, y, x]) + (D − α)([y, x, x]))

= −λ(δk[D(x), D(y), ϕ(x)]− δk[α(x), α(y), ϕ(x)])

−λ(δk[D(y), D(x), ϕ(x)]− δk[α(y), α(x), ϕ(x)]) (2.11)

= λ(δk[D(x), D(x), ϕ(y)]− δk[α(x), α(x), ϕ(y)])

for all x, y ∈ L.

We denote T (x, y, z) := λ(δk[D(x), D(y), ϕ(z)] − δk[α(x), α(y), ϕ(z)]). Obviously, the
map T : L× L× L −→ L is R-trilinear. By (2.6), we have

T (z, y, x) + T (x, z, y) + T (y, x, z) = λ(δk[D(z), D(y), ϕ(x)]− δk[α(z), α(y), ϕ(x)])

+λ(δk[D(x), D(z), ϕ(y)]− δk[α(x), α(z), ϕ(y)])

+λ(δk[D(y), D(x), ϕ(z)]− δk[α(y), α(x), ϕ(z)])

= λδk[D(z), D(y), ϕ(x)] + λδk[D(x), D(z), ϕ(y)]

+λδk[D(y), D(x), ϕ(z)]− λδk[α(z), α(y), ϕ(x)]

−λδk[α(x), α(z), ϕ(y)]− λδk[α(y), α(x), ϕ(z)]

= 0 (2.12)

for all x, y, z ∈ L. It follows (2.9) that

(D − α)([x + z, y, x + z]) = T (x + z, y, x + z)

for all x, y, z ∈ L. That is

(D − α)([x, y, z]) + (D − α)([x, y, x]) + (D − α)([z, y, x]) + (D − α)([z, y, z])

= T (x, y, z) + T (x, y, x) + T (z, y, x) + T (z, y, z)

for all x, y, z ∈ L. Thus, by (2.9)

(D − α)([x, y, z]) + (D − α)([z, y, x]) = T (x, y, z) + T (z, y, x). (2.13)

Since
(D − α)([x, y + z, y + z]) = T (x, y + z, x + z)

similarly by(2.11), we have

(D − α)([x, y, z]) + (D − α)([x, z, y]) = T (x, y, z) + T (x, z, y). (2.14)
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And by (2.10), we have

(D − α)([x, y, z]) + (D − α)([y, x, z]) = T (x, y, z) + T (y, x, z). (2.15)

From (2.13),(2.14),(2.15), we have

(D − α)([x, y, z]) + (D − α)([z, y, x]) + (D − α)([x, y, z])

+ (D − α)([x, z, y]) + (D − α)([x, y, z]) + (D − α)([y, x, z])

= T (x, y, z) + T (z, y, x) + T (x, y, z) + T (x, z, y) + T (x, y, z) + T (y, x, z)

for all x, y, z ∈ L. From (1.4) and (2.12), we obtain

3(D − α)([x, y, z]) = 3T (x, y, z).

Since R is a 3-torsion free ring,

(D − α)([x, y, z]) = T (x, y, z)

for all x, y, z ∈ L. This proves (2.7).
To prove (2.8), from (2.7) we have

B(λ, k)(x, y, z) = Aα,D
θ,ϕ (λ, k)(x, y, z)−Aα,α

θ,ϕ (λ, k)(x, y, z)

= δk[α(x), θ(y), ϕ(z)] + δk[θ(x), α(y), ϕ(z)] + δk[θ(x), ϕ(y), α(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[α(x), θ(y), α(z)] + λδk[θ(x), α(y), α(z)]

+λ2δk[α(x), α(y), α(z)]− δk[α(x), θ(y), ϕ(z)]− δk[θ(x), α(y), ϕ(z)]

−δk[θ(x), ϕ(y), α(z)]− λδk[α(x), α(y), ϕ(z)]− λδk[α(x), θ(y), α(z)]

−λδk[θ(x), α(y), α(z)]− λ2δk[α(x), α(y), α(z)]

= λδk[D(x), D(y), ϕ(z)]− λδk[α(x), α(y), ϕ(z)]

= (D − α)([x, y, z]).

Then

B(λ, k)(x, y, z) + B(λ, k)(y, z, x) + B(λ, k)((z, x, y)

= (D − α)([x, y, z]) + (D − α)([y, z, x]) + (D − α)([z, x, y])

= (D − α)([x, y, z] + [y, z, x] + [z, x, y])

= 0.

Proposition 2.10 If D : L −→ L is a k-order generalized Jordan triple (θ, ϕ)-
derivation of weight λ with respect to α satisfying (2.7), where α is a k-order Jordan triple
(θ, ϕ)-derivation of weight λ, then (2.6) holds.

Proof If λ = 0, then D([x, y, x]) = α([x, y, x]). By (1.3) and (1.4)

D([y, x, x]) = α([y, x, x]), D([x, x, y]) = α([x, x, y]).
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Using the same method in Proposition 2.9, we have

D([x, y, z]) = α([x, y, z])

for all x, y, z ∈ L. Therefore, (2.6) holds. If λ 6= 0, By (1.4) and (2.7), we have

0 = (D − α)([x, y, z] + [y, z, x] + [z, x, y])

= (D − α)([x, y, z]) + (D − α)([y, z, x]) + (D − α)([z, x, y])

= λ(δk[D(x), D(y), ϕ(z)] + δk[D(y), D(z), ϕ(x)] + δk[D(z), D(x), ϕ(y)])

−λ(δk[α(x), α(y), ϕ(z)] + δk[α(y), α(z), ϕ(x)] + δk[α(z), α(x), ϕ(y)]).

So, we obtain that

[D(x), D(y), ϕ(z)] + [D(y), D(z), ϕ(x)] + [D(z), D(x), ϕ(y)]

= [α(x), α(y), ϕ(z)] + [α(y), α(z), ϕ(x)] + [α(z), α(x), ϕ(y)]

for all x, y, z ∈ L.

Theorem 2.11 Let R be a 3-torsion free ring and let D : L −→ L be a k-order Jordan
triple (θ, ϕ)-derivation of weight λ. Then D is a k-order (θ, ϕ)-derivation of weight λ if only
if

[θ(x), ϕ(y), D(z)] = [ϕ(x), θ(y), D(z)]; (2.16)

AD,D
θ,ϕ (λ, k)(x, y, z) + AD,D

θ,ϕ (λ, k)(y, z, x) + AD,D
θ,ϕ (λ, k)(z, x, y) = 0 (2.17)

for all x, y, z ∈ L.

Proof Suppose D is a k-order (θ, ϕ)-derivation of weight λ. On the one hand,

D([x, y, z]) = δk[D(x), θ(y), ϕ(z)] + δk[θ(x), D(y), ϕ(z)] + δk[θ(x), ϕ(y), D(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[D(x), θ(y), D(z)]

+λδk[θ(x), D(y), D(z)] + λ2δk[D(x), D(y), D(z)]

for all x, y, z ∈ L. On the other hand,

D([x, y, z]) = −δD([y, x, z])

= −δ(δk[D(y), θ(x), ϕ(z)] + δk[θ(y), D(x), ϕ(z)] + δk[θ(y), ϕ(x), D(z)]

+λδk[D(y), D(x), ϕ(z)] + λδk[D(y), θ(x), D(z)]

+λδk[θ(y), D(x), D(z)] + λ2δk[D(y), D(x), D(z)])

= δk[D(x), θ(y), ϕ(z)] + δk[θ(x), D(y), ϕ(z)] + δk[ϕ(x), θ(y), D(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[D(x), θ(y), D(z)]

+λδk[θ(x), D(y), D(z)] + λ2δk[D(x), D(y), D(z)]
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for all x, y, z ∈ L. Therefore, [θ(x), ϕ(y), D(z)] = [ϕ(x), θ(y), D(z)] for all x, y, z ∈ L. This
proves (2.16).

Since AD,D
θ,ϕ (λ, k)(x, y, z) = D([x, y, z]), and by (1.4), we have

AD,D
θ,ϕ (λ, k)(x, y, z) + AD,D

θ,ϕ (λ, k)(y, z, x) + AD,D
θ,ϕ (λ, k)(z, x, y)

= D([x, y, z] + [y, z, x] + [z, x, y]) = 0.

This proves (2.17).
Conversely, we prove that D is a k-order (θ, ϕ)-derivation of weight λ if (2.16) and

(2.17) hold. Since D is a k-order Jordan triple (θ, ϕ)-derivation of weight λ, and by (1.3)
and (2.16), we have

D([y, x, x]) = −δD([x, y, x])

= −δ(δk[D(x), θ(y), ϕ(x)] + δk[θ(x), D(y), ϕ(x)] + δk[θ(x), ϕ(y), D(x)]

+λδk[D(x), D(y), ϕ(x)] + λδk[D(x), θ(y), D(x)]

+λδk[θ(x), D(y), D(x)] + λ2δk[D(x), D(y), D(x)])

= δk[D(y), θ(x), ϕ(x)] + δk[θ(y), D(x), ϕ(x)] + δk[ϕ(y), θ(x), D(x)]

+λδk[D(y), D(x), ϕ(x)] + λδk[D(y), θ(x), D(x)]

+λδk[θ(y), D(x), D(x)] + λ2δk[D(y), D(x), D(x)]

= δk[D(y), θ(x), ϕ(x)] + δk[θ(y), D(x), ϕ(x)] + δk[θ(y), ϕ(x), D(x)]

+λδk[D(y), D(x), ϕ(x)] + λδk[D(y), θ(x), D(x)]

+λδk[θ(y), D(x), D(x)] + λ2δk[D(y), D(x), D(x)]

= AD,D
θ,ϕ (λ, k)(y, x, x)

for all x, y, z ∈ L. By (1.4) and (2.17), we have

D([x, x, y]) = −(D([y, x, x]) + D([x, y, x]))

= −(AD,D
θ,ϕ (λ, k)(y, x, x) + AD,D

θ,ϕ (λ, k)(x, y, x))

= AD,D
θ,ϕ (λ, k)(x, x, y).

Using the same proof method as Proposition 2.9, we get

AD,D
θ,ϕ (λ, k)(x, y, z) = D([x, y, z])

for all x, y, z ∈ L.
Thus, D is a k-order (θ, ϕ)-derivation of weight λ on L.
Theorem 2.12 Let R be a 3-torsion free ring and let D : L −→ L be a k-order

generalized Jordan triple (θ, ϕ)-derivation of weight λ with respect to the k-order Jordan
triple (θ, ϕ)-derivation α of weight λ satisfying (2.6). If

[θ(x), ϕ(y), α(z)] = [ϕ(x), θ(y), α(z)]; (2.18)
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Aα,α
θ,ϕ (λ, k)(x, y, z) + Aα,α

θ,ϕ (λ, k)(y, z, x) + Aα,α
θ,ϕ (λ, k)(z, x, y) = 0 (2.19)

for all x, y, z ∈ L, then α is a k-order (θ, ϕ)-derivation of weight λ and D is a k-order
generalized (θ, ϕ)-derivation of weight λ with respect to α.

Proof It follows from Theorem 2.11 that α is a k-order (θ, ϕ)-derivation of weight λ.
Applying Proposition 2.9, we get from (2.6) that

B(λ, k)(x, y, z) + B(λ, k)(y, z, x) + B(λ, k)(z, x, y) = 0.

Then by (2.19), we have

Aα,D
θ,ϕ (λ, k)(x, y, z) + Aα,D

θ,ϕ (λ, k)(y, z, x) + Aα,D
θ,ϕ (λ, k)(z, x, y)

= Aα,α
θ,ϕ (λ, k)(x, y, z) + Aα,α

θ,ϕ (λ, k)(y, z, x) + Aα,α
θ,ϕ (λ, k)(z, x, y)

= 0

for all x, y, z ∈ L. The rest of the proof is similar to the proof of Theorem 2.11.
Corollary 2.13 Let R be a 3-torsion free ring and let D : L −→ L be a k-order

generalized Jordan triple θ-derivation of weight λ with respect to the k-order Jordan triple
θ-derivation α of weight λ satisfying (2.6). Then α is a k-order θ-derivation of weight λ and
D is a k-order generalized θ-derivation of weight λ with respect to α.

Proof It is clear that condition (2.18) of Theorem 2.12 is valid when θ = ϕ. For
condition (2.19) of Theorem 2.12, we have from (1.4) that

Aα,α
θ,θ (λ, k)(x, y, z) + Aα,α

θ,θ (λ, k)(y, z, x) + Aα,α
θ,θ (λ, k)(z, x, y)

= δk[α(x), θ(y), θ(z)] + δk[θ(x), α(y), θ(z)] + δk[θ(x), θ(y), α(z)]

+λδk[α(x), α(y), θ(z)] + λδk[α(x), θ(y), α(z)] + λδk[θ(x), α(y), α(z)]

+λ2δk[α(x), α(y), α(z)] + δk[α(y), θ(z), θ(x)] + δk[θ(y), α(z), θ(x)]

+δk[θ(y), θ(z), α(x)] + λδk[α(y), α(z), θ(x)] + λδk[α(y), θ(z), α(x)]

+λδk[θ(y), α(z), α(x)] + λ2δk[α(y), α(z), α(x)] + δk[α(z), θ(x), θ(y)]

+δk[θ(z), α(x), θ(y)] + δk[θ(z), θ(x), α(y)] + λδk[α(z), α(x), θ(y)]

+λδk[α(z), θ(x), α(y)] + λδk[θ(z), α(x), α(x)] + λ2δk[α(z), α(x), α(y)]

= δk[α(x), θ(y), θ(z)] + δk[θ(y), θ(z), α(x)] + δk[θ(z), α(x), θ(y)]

+δk[θ(x), α(y), θ(z)] + δk[α(y), θ(z), θ(x)] + δk[θ(z), θ(x), α(y)]

+δk[θ(x), θ(y), α(z)] + δk[θ(y), α(z), θ(x)] + δk[α(z), θ(x), θ(y)]

+λ(δk[α(x), α(y), θ(z)] + δk[α(y), θ(z), α(x)] + δk[θ(z), α(x), α(y)])

+λ(δk[α(x), θ(y), α(z)] + δk[θ(y), α(z), α(x)] + δk[α(z), α(x), θ(y)])

+λ(δk[θ(x), α(y), α(z)] + δk[α(y), α(z), θ(x)] + δk[α(z), θ(x), α(y)])

+λ2(δk[α(x), α(y), α(z)] + δk[α(y), α(z), α(x)] + δk[α(z), α(x), α(y)])

= 0 + 0 + 0 + λ · 0 + λ · 0 + λ · 0 + λ2 · 0 = 0.
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So condition (2.19) of Theorem 2.12 is valid if ϕ = θ. Hence α is a k-order θ-derivation of
weight λ and D is a k-order generalized θ-derivation of weight λ with respect to α.

Corollary 2.14 Let R be a 3-torsion free ring. Then D : L −→ L is a k-order Jordan
triple θ-derivation of weight λ if and only if D is a k-order θ-derivation of weight λ.

Proof It is clear that condition (2.6) of Corollary 2.13 is valid when D = α.
Corollary 2.15 Let R be a 3-torsion free ring. Then D : L −→ L is a k-order Jordan

triple derivation of weight λ if and only if D is a k-order derivation of weight λ.

Proof This is a special case that θ = IL in Corollary 2.14, where IL is the identity
map on L.

Theorem 2.16 Let L be a δ Jordan-Lie triple system.Let D : L −→ L be a k-order
(θ, ϕ)-derivation of weight λ and A be a linear automorphism of L. If A, θ and ϕ satisfy any
two of which are commutative, then ADA−1 is also a k-order (θ, ϕ)-derivation of weight λ.

Proof Since D is a k-order (θ, ϕ)-derivation of weight λ and we have

D([x, y, z]) = δk[D(x), θ(y), ϕ(z)] + δk[θ(x), D(y), ϕ(z)] + δk[θ(x), ϕ(y), D(z)]

+λδk[D(x), D(y), ϕ(z)] + λδk[D(x), θ(y), D(z)]

+λδk[θ(x), D(y), D(z)] + λ2δk[D(x), D(y), D(z)]

for all x, y, z ∈ L. Since A is a linear automorphism of L, we have

A([x, y, z]) = [A(x), A(y), A(z)]

A−1([x, y, z]) = [A−1(x), A−1(y), A−1(z)]

for all x, y, z ∈ L. Therefore,

ADA−1([x, y, z]) = AD([A−1(x), A−1(y), A−1(z)])

= A(δk[DA−1(x), θ(A−1(y)), ϕ(A−1(z))]

+δk[θ(A−1(x)), D(A−1(y)), ϕ(A−1(z))]

+δk[θ(A−1(x)), ϕ(A−1(y)), D(A−1(z))]

+λδk[D(A−1(x)), D(A−1(y)), ϕ(A−1(z))]

+λδk[D(A−1(x)), θ(A−1(y)), D(A−1(z))]

+λδk[θ(A−1(x)), D(A−1(y)), D(A−1(z))]

+λ2δk[D(A−1(x)), D(A−1(y)), D(A−1(z))])

= δk[ADA−1(x), θ(y), ϕ(z)] + δk[θ(x), ADA−1(y), ϕ(z)]

+δk[θ(x), ϕ(y), ADA−1(z)] + λδk[ADA−1(x), ADA−1(y), ϕ(z)]

+λδk[ADA−1(x), θ(y), ADA−1(z)] + λδk[θ(x), ADA−1(y), ADA−1(z)]

+λ2δk[ADA−1(x), ADA−1(y), ADA−1(z)]

for all x, y, z ∈ L. So ADA−1 is a k-order (θ, ϕ)-derivation of weight λ on L.
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Corollary 2.17 Let R be a 3-torsion free ring. Let A be a linear automorphism of L.
Then D : L −→ L is a k-order Jordan triple derivation of weight λ if and only if AnDA−n

is a k-order derivation of weight λ for all positive integer n.

Proof If D is a k-order Jordan triple derivation of weight λ, it follows Corollary 2.15
that D is a k-order derivation of weight λ. And from Theorem 2.16, ADA−1 is also a k-
order derivation of weight λ. By mathematical induction, AnDA−n is a k-order derivation
of weight λ for all positive integer n. Conversely, we prove that D is a k-order Jordan triple
derivation of weight λ if AnDA−n is a k-order derivation of weight λ for all positive integer n.

Clearly, A−n is a linear automorphism of L and from Theorem 2.16, A−nAnDA−nAn = D is
a k-order derivation of weight λ. Therefore, D is a k-order Jordan triple derivation of weight
λ.

Theorem 2.18 If D is a k-order derivation of δ Jordan-Lie triple system L, Z(L) is
the center of L, then D(Z(L)) ⊆ Z(L).

Proof For arbitrary element x in Z(L) and for all y, z ∈ L, we have [x, y, z] = 0. Since
D is a k-order derivation, we have

δk[D(x), y, z] = D([x, y, z])− δk[x,D(y), z]− δk[x, y, D(z)].

Therefore,
[D(x), y, z] = 0

for all y, z ∈ L. That is D(Z(L)) ⊆ Z(L).

3 On K-Order Generalized Derivation of Weight λ on Rota-Baxter δ

Jordan-Lie Triple Systems of Weight λ

In this section, firstly, we introduce the concepts of a Rota-Baxter δ Jordan-Lie algebra
of weight λ and a Rota-Baxter δ Jordan-Lie triple system of weight λ. Afterwards, we
associate some beautiful results in section 2 with the inheritance property in [18] on a Rota-
Baxter δ Jordan-Lie triple system of weight λ. In the end, we obtain that every Rota-Baxter
δ Jordan-Lie algebra can be seen as a Rota-Baxter δ Jordan-Lie triple system.

Definition 3.1 A Rota-Baxter δ Jordan-Lie algebra of weight λ is a δ Jordan-Lie
algebra (L, [·, ·]) with a R-trilinear map p : L −→ L such that

[p(x), p(y)] = p([p(x), y] + [x, p(y)] + λ[x, y])

for all x, y ∈ L. D is called k-order derivation of weight λ on it if

D([x, y]) = δk[D(x), y] + δk[x,D(y)] + λδk[D(x), D(y)]

for all x, y ∈ L.
Definition 3.2 A Rota-Baxter δ Jordan-Lie triple system of weight λ is a δ Jordan-Lie

triple system (L, [, , ]) with a R-trilinear map p : L −→ L such that

[p(x), p(y), p(z)] = p([p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)] + λ2[x, y, z]) (3.1)
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for all x, y, z ∈ L. Furthermore, we call p is a Rota-Baxter operator of weight λ on L.

Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight λ. We define a
ternary operation on L by

[x, y, z]p = [p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)] + λ2[x, y, z] (3.2)

for all x, y, z ∈ L (see[12]).

Theorem 3.3 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight λ

and T be a invertible linear map. Then T is a Rota-Baxter operator of weight λ if and only
if T−1 is a 0-order derivation of weight λ.

Proof Since T is a invertible linear map, then for any xi ∈ L(i = 1, 2, 3), there exists
yi ∈ L(i = 1, 2, 3) such that xi = Tyi(i = 1, 2, 3). Suppose T is a Rota-Baxter operator of
weight λ, then we have

T−1([x1, x2, x3]) = T−1([Ty1, T y2, T y3])

= T−1(T ([Ty1, T y2, y3] + [Ty1, y2, T y3] + [y1, T y2, T y3]

+λ[Ty1, y2, y3] + λ[y1, T y2, y3] + λ[y1, y2, T y3] + λ2[y1, y2, y3]))

= [x1, x2, T
−1x3] + [x1, T

−1x2, x3] + [T−1x1, x2, x3]

+λ[x1, T
−1x2, T

−1x3] + λ[T−1x1, x2, T
−1x3]

+λ[T−1x1, T
−1x2, x3] + λ2[T−1x1, T

−1x2, T
−1x3]

for all xi ∈ L(i = 1, 2, 3). Thus, T−1 is a 0-order derivation of weight λ. Conversely, suppose
T is a 0-order derivation of weight λ. Similarly, for all xi ∈ L(i = 1, 2, 3), we have

[T−1x1, T
−1x2, T

−1x3] = T−1(T ([y1, y2, y3]))

= T−1([Ty1, y2, y3] + [y1, y2, T y3] + [y1, T y2, y3]

+λ[Ty1, T y2, y3] + λ[y1, T y2, T y3]

+λ[Ty1, y2, T y3] + λ2[Ty1, T y2, T y3])

= T−1([x1, T
−1x2, T

−1x3] + [T−1x1, T
−1x2, x3]

+[T−1x1, x2, T
−1x3] + λ[x1, x2, T

−1x3] + λ[T−1x1, x2, x3]

+λ[x1, T
−1x2, x3] + λ2[x1, x2, x3]).

Therefore, T−1 is a Rota-Baxter operator of weight λ.

Remark 3.4 Obviously, the conclusion of Theorem 3.3 still holds on Rota-Baxter δ

Jordan-Lie algebra of weight λ.

Theorem 3.5 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight
λ. Then (L, [, , ]p, p) is a Rota-Baxter δ Jordan-Lie triple system of weight λ.
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Proof First of all, we need to prove (L, [, , ]p, p) is a δ Jordan-Lie triple system. Clearly,
[, , ]p defined in (3.2) is multi-linear and we observe that

[x, y, z]p = [p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)] + λ2[x, y, z]

= −δ([p(y), p(x), z] + [y, p(x), p(z)] + [p(y), x, p(z)]

+λ[y, p(x), z] + λ[p(y), x, z] + λ[y, x, p(z)] + λ2[y, x, z])

= −δ[y, x, z]p

for all x, y, z ∈ L. Therefore, [, , ]p satisfies (1.3).It follows from (1.4) that

[x, y, z]p + [y, z, x]p + [z, x, y]p

= [p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)] + λ2[x, y, z]

+[p(y), p(z), x] + [p(y), z, p(x)] + [y, p(z), p(x)]

+λ[p(y), z, x] + λ[y, p(z), x] + λ[y, z, p(x)] + λ2[y, z, x]

+[p(z), p(x), y] + [p(z), x, p(y)] + [z, p(x), p(y)]

+λ[p(z), x, y] + λ[z, p(x), y] + λ[z, x, p(y)] + λ2[z, x, y]

= [p(x), p(y), z] + [p(y), z, p(x)] + [z, p(x), p(y)]

+[p(x), y, p(z)] + [y, p(z), p(x)] + [p(z), p(x), y]

+[x, p(y), p(z)] + [p(y), p(z), x] + [p(z), x, p(y)]

+λ([p(x), y, z] + [y, z, p(x)] + [z, p(x), y])

+λ([x, p(y), z] + [p(y), z, x] + [z, x, p(y)])

+λ([x, y, p(z)] + [y, p(z), x] + [p(z), x, y])

+λ2([x, y, z] + [y, z, x] + [z, x, y])

= 0

for all x, y, z ∈ L. Therefore, [, , ]p satisfies (1.4). To prove that [, , ]p satisfies (1.5), we need
to show

[x1, x2, [x3, x4, x5]p]p = [[x1, x2, x3]p, x4, x5]p + [x3, [x1, x2, x4]p, x5]p + δ[x3, x4, [x1, x2, x5]p]p

for all xi ∈ L(i = 1, 2, 3, 4, 5). We notice that

A := [x1, x2, [x3, x4, x5]p]p

= [p(x1), p(x2), [x3, x4, x5]p] + [p(x1), x2, p([x3, x4, x5]p)] + [x1, p(x2), p([x3, x4, x5]p)]

+λ[p(x1), x2, [x3, x4, x5]p] + λ[x1, p(x2), [x3, x4, x5]p] + λ[x1, x2, p([x3, x4, x5]p)]

+λ2[x1, x2, [x3, x4, x5]p]
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= [p(x1), p(x2), [p(x3), p(x4), x5]] + [p(x1), p(x2), [p(x3), x4, p(x5)]]

+[p(x1), p(x2), [x3, p(x4), p(x5)]] + λ[p(x1), p(x2), [p(x3), x4, x5]]

+λ[p(x1), p(x2), [x3, p(x4), x5]] + λ[p(x1), p(x2), [x3, x4, p(x5)]]

+λ2[p(x1), p(x2), [x3, x4, x5]] + [p(x1), x2, [p(x3), p(x4), p(x5)]]

+[x1, p(x2), [p(x3), p(x4), p(x5)]] + λ[p(x1), x2, [p(x3), p(x4), x5]]

+λ[p(x1), x2, [p(x3), x4, p(x5)]] + λ[p(x1), x2, [x3, p(x4), p(x5)]]

+λ2[p(x1), x2, [p(x3), x4, x5]] + λ2[p(x1), x2, [x3, p(x4), x5]]

+λ2[p(x1), x2, [x3, x4, p(x5)]] + λ3[p(x1), x2, [x3, x4, x5]]

+[p(x1), p(x2), [p(x3), p(x4), x5]] + [p(x1), p(x2), [p(x3), x4, p(x5)]]

+[p(x1), p(x2), [x3, p(x4), p(x5)]] + λ[p(x1), p(x2), [p(x3), x4, x5]]

+λ[p(x1), p(x2), [x3, p(x4), x5]] + λ[p(x1), p(x2), [x3, x4, p(x5)]]

+λ2[p(x1), p(x2), [x3, x4, x5]] + [p(x1), x2, [p(x3), p(x4), p(x5)]]

+[x1, p(x2), [p(x3), p(x4), p(x5)]] + λ[p(x1), x2, [p(x3), p(x4), x5]]

+λ[p(x1), x2, [p(x3), x4, p(x5)]] + λ[p(x1), x2, [x3, p(x4), p(x5)]]

+λ2[p(x1), x2, [p(x3), x4, x5]] + λ2[p(x1), x2, [x3, p(x4), x5]]

+λ2[p(x1), x2, [x3, x4, p(x5)]] + λ3[p(x1), x2, [x3, x4, x5]]

+λ[x1, p(x2), [p(x3), p(x4), x5]] + λ[x1, p(x2), [p(x3), x4, p(x5)]]

+λ[x1, p(x2), [x3, p(x4), p(x5)]] + λ2[x1, p(x2), [p(x3), x4, x5]]

+λ2[x1, p(x2), [x3, p(x4), x5]] + λ2[x1, p(x2), [x3, x4, p(x5)]]

+λ3[x1, p(x2), [x3, x4, x5]] + λ[x1, x2, [p(x3), p(x4), p(x5)]]

+λ2[x1, x2, [p(x3), p(x4), x5]] + λ2[x1, x2, [p(x3), x4, p(x5)]]

+λ2[x1, x2, [x3, p(x4), p(x5)]] + λ3[x1, x2, [p(x3), x4, x5]]

+λ3[x1, x2, [x3, p(x4), x5]] + λ3[x1, x2, [x3, x4, p(x5)]]

+λ3[x1, x2, [x3, x4, x5]]

for all x, y, z ∈ L.

Similarly, we can compute B := [[x1, x2, x3]p, x4, x5]p, C := [x3, [x1, x2, x4]p, x5]p, D :=
[x3, x4, [x1, x2, x5]p]p.

It follows (1.5) that
A = B + C + δD.

Therefore, [, , ]p satisfies (1.5). Then (L, [, , ]p, p) is a δ Jordan-Lie triple system. Finally,
we show that p satisfies (3.1) on (L, [, , ]p, p). From the definition of [, , ]p, we have

[p(x), p(y), p(z)]p = [p2(x), p2(y), p(z)] + [p2(x), p(y), p2(z)] + [p(x), p2(y), p2(z)]

+λ[p2(x), p(y), p(z)] + λ[p(x), p2(y), p(z)]

+λ[p(x), p(y), p2(z)] + λ2[p(x), p(y), p(z)].



No. 1 K-order generalized derivations of weight λ on δ Jordan-Lie triple systems 51

Since p is a Rota-Baxter operator of weight λ on (L, [, , ], p), we have

[p2(x), p2(y), p(z)] = p([p2(x), p2(y), z] + [p2(x), p(y), p(z)] + [p(x), p2(y), p(z)]

+λ[p2(x), p(y), z] + λ[p(x), p2(y), z] + λ[p(x), p(y), p(z)]

+λ2[p(x), p(y), z])

[p2(x), p(y), p2(z)] = p([p2(x), p(y), p(z)] + [p2(x), p(y), p2(z)] + [p(x), p(y), p2(z)]

+λ[p2(x), y, p(z)] + λ[p(x), p(y), p(z)] + λ[p(x), y, p2(z)]

+λ2[p(x), y, p(z)])

[p(x), p2(y), p2(z)] = p([p(x), p2(y), p(z)] + [p(x), p(y), p2(z)] + [x, p2(y), p2(z)]

+λ[p(x), p(y), p(z)] + λ[x, p2(y), p(z)] + λ[x, p(y), p2(z)]

+λ2[x, p(y), p(z)])

[p2(x), p(y), p(z)] = p([p2(x), p(y), z] + [p2(x), y, p(z)] + [p(x), p(y), p(z)]

+λ[p2(x), y, z] + λ[p(x), p(y), z] + λ[p(x), y, p(z)]

+λ2[p(x), y, z])

[p(x), p2(y), p(z)] = p([p(x), p2(y), z] + [p(x), p(y), p(z)] + [x, p2(y), p(z)]

+λ[p(x), p(y), z] + λ[x, p2(y), z] + λ[x, p(y), p(z)]

+λ2[x, p(y), z])

[p(x), p(y), p2(z)] = p([p(x), p(y), p(z)] + [p(x), y, p2(z)] + [x, p(y), p2(z)]

+λ[p(x), y, p(z)] + λ[x, p(y), p(z)] + λ[x, y, p2(z)]

+λ2[x, y, p(z)])

[p(x), p(y), p(z)] = p([p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)]

+λ2[x, y, z]).

By computing, we have

[p(x), p(y), p(z)]p = p([p(x), p(y), z]p + [p(x), y, p(z)]p + [x, p(y), p(z)]p

+λ[p(x), y, z]p + λ[x, p(y), z]p + λ[x, y, p(z)]p

+λ2[x, y, z]p).

for all x, y, z ∈ L. This proves p is a Rota-Baxter operator of weight λ on (L, [, , ]p, p).
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Thus from the above sum, we conclude that (L, [, , ]p, p) is a Rota-Baxter δ Jordan-Lie
triple system of weight λ.

Theorem 3.6 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight λ.
Let D be a k-order generalized (θ, ϕ)-derivation of weight λ with respect to α on L satisfying
the relation that any two of D, p, α, θ, ϕ are commutative. Then D is a k-order generalized
(θ, ϕ)-derivation of weight λ with respect to α on the Rota-Baxter δ Jordan-Lie triple system
of weight λ (L, [, , ]p, p), where α is a k-order (θ, ϕ)-derivation of weight λ.

Proof We have

D([p(x), p(y), z]) = δk[α(p(x)), θ(p(y)), ϕ(z)] + δk[θ(p(x)), α(p(y)), ϕ(z)]

+δk[θ(p(x)), ϕ(p(y)), α(z)] + λδk[D(p(x)), D(p(y)), ϕ(z)]

+λδk[α(p(x)), θ(p(y)), α(z)] + λδk[θ(p(x)), α(p(y)), α(z)]

+λ2δk[α(p(x)), α(p(y)), α(z)]. (3.3)

D([p(x), y, p(z)]) = δk[α(p(x)), θ(y), ϕ(p(z))] + δk[θ(p(x)), α(y), ϕ(p(z))]

+δk[θ(p(x)), ϕ(y), α(p(z))] + λδk[D(p(x)), D(y), ϕ(p(z))]

+λδk[α(p(x)), θ(y), α(p(z))] + λδk[θ(p(x)), α(y), α(p(z))]

+λ2δk[α(p(x)), α(y), α(p(z))]. (3.4)

D([x, p(y), p(z)]) = δk[α(x), θ(p(y)), ϕ(p(z))] + δk[θ(x), α(p(y)), ϕ(p(z))]

+δk[θ(x), ϕ(p(y)), α(p(z))] + δk[D(x), D(p(y)), ϕ(p(z))]

+λδk[α(x), θ(p(y)), α(p(z))] + λδk[θ(x), α(p(y)), α(p(z))]

+λ2δk[α(x), α(p(y)), α(p(z))]. (3.5)

D([p(x), y, z]) = δk[α(p(x)), θ(y), ϕ(z)] + δk[θ(p(x)), α(y), ϕ(z)]

+δk[θ(p(x)), ϕ(y), α(z)] + λδk[D(p(x)), D(y), ϕ(z)]

+λδk[α(p(x)), θ(y), α(z)] + λδk[θ(p(x)), α(y), α(z)]

+λ2δk[α(p(x)), α(y), α(z)]. (3.6)

D([x, p(y), z]) = δk[α(x), θ(p(y)), ϕ(z)] + δk[θ(x), α(p(y)), ϕ(z)]

+δk[θ(x), ϕ(p(y)), α(z)] + λδk[D(x), D(p(y)), ϕ(z)]

+λδk[α(x), θ(p(y)), α(z)] + λδk[θ(x), α(p(y)), α(z)]

+λ2δk[α(x), α(p(y)), α(z)]. (3.7)

D([x, y, p(z)]) = δk[α(x), θ(y), ϕ(p(z))] + δk[θ(x), α(y), ϕ(p(z))]

+δk[θ(x), ϕ(y), α(p(z))] + λδk[D(x), D(y)), ϕ(p(z))]

+λδk[α(x), θ(y), α(p(z))] + λδk[θ(x), α(y), α(p(z))]

+λ2δk[α(x), α(y), α(p(z))]. (3.8)
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D([x, y, z]) = δk[α(x), θ(y), ϕ(z)] + δk[θ(x), α(y), ϕ(z)]

+δk[θ(x), ϕ(y), α(z)] + λδk[D(x), D(y)), ϕ(z)]

+λδk[α(x), θ(y), α(z)] + λδk[θ(x), α(y), α(z)]

+λ2δk[α(x), α(y), α(z)]. (3.9)

It is a straightforward computation. By (3.3)–(3.9), we obtain

D([x, y, z]p) = D([p(x), p(y), z]) + D([p(x), y, p(z)]) + D([x, p(y), p(z)])

+λD([p(x), y, z]) + λD([x, p(y), z])

+λD([x, y, p(z)] + λ2D([x, y, z])

= δk[α(x), θ(y), ϕ(z)]p + δk[θ(x), α(y), ϕ(z)]p + δk[θ(x), ϕ(y), α(z)]p

+λδk[D(x), D(y), ϕ(z)]p + λδk[α(x), θ(y), α(z)]p

+λδk[θ(x), α(y), α(z)]p + λ2δk[α(x), α(y), α(z)]p.

Therefore, D is a k-order generalized (θ, ϕ)-derivation of weight λ with respect to α on
the Rota-Baxter δ Jordan-Lie triple system of weight λ (L, [, , ]p, p).

Corollary 3.7 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight
λ. Let D be a k-order (θ, ϕ)-derivation of weight λ on L satisfying the relation any two
of D, p, α, θ, ϕ are commutative. Then D is a k-order (θ, ϕ)-derivation of weight λ on the
Rota-Baxter δ Jordan-Lie triple system of weight λ (L, [, , ]p, p).

Proof It is the direct results of Theorem 3.6.

Corollary 3.8 Let (L, [, , ]) be a δ Jordan-Lie triple system. d is a invertible 0-order
derivation of weight λ on L, then (L, [, , ]d−1) with [, , ] defined in (3.2) is also a δ Jordan-Lie
triple system. Furthermore

[x, y, z]d−1 = d([d−1(x), d−1(y), d−1(z)])

for all x, y, z ∈ L. d is a 0-order derivation of weight λ on (L, [, , ]d−1).

Proof By Theorem 3.3, d−1 is a Rota-Baxter operator of weight λ on (L, [, , ]). And by
Theorem 3.5, (L, [, , ]d−1) is a δ Jordan-Lie triple system. From Corollary 3.7, d is a 0-order
derivation of weight λ on (L, [, , ]d−1). Thus, d−1 is a Rota-Baxter operator of weight λ on
(L, [, , ]d−1). Clearly, we have

[x, y, z]d−1 = d([d−1(x), d−1(y), d−1(z)])

for all x, y, z ∈ L.

Theorem 3.9 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight λ

and A be a linear automorphism on (L, [, , ], p). If A and p are commutative, then A is also
a linear automorphism on (L, [, , ]p, p), where [, , ]p is defined as (3.2).
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Proof We need to certify A([x, y, z]p) = [A(x), A(y), A(z)]p, for all x, y, z ∈ L. From
the definition of (L, [, , ]p, p), we have

A([x, y, z]p) = A([p(x), p(y), z] + [p(x), y, p(z)] + [x, p(y), p(z)]

+λ[p(x), y, z] + λ[x, p(y), z] + λ[x, y, p(z)] + λ2[x, y, z])

= [p(A(x)), p(A(y)), A(z)] + [p(A(x)), A(y), p(A(z))]

+[A(x), p(A(y)), p(A(z))] + λ[p(A(x)), A(y), A(z)]

+λ[A(x), p(A(y)), A(z)] + λ[A(x), A(y), p(A(z))] + λ2[A(x), A(y), A(z)]

= [A(x), A(y), A(z)]p.

So A is also a linear automorphism on (L, [, , ]p, p).
Corollary 3.10 Let (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight

λ. Let D be a k-order Jordan triple θ-derivation of weight λ on (L, [, , ], p) and A be a
linear automorphism of (L, [, , ], p). If A, p, θ,D satisfy the relation any two of which are
commutative, then AnDA−n is a k-order θ-derivation of weight λ on (L, [, , ]p, p) for all
positive integer n, where [, , ]p is defined as (3.2).

Proof Since D is a k-order Jordan triple θ-derivation of weight λ on (L, [, , ], p),
and from Corollary 2.15, we have that D is a k-order θ-derivation of weight λ on (L, [, , ], p).
From Corollary 3.7, D is a k-order θ-derivation of weight λ on (L, [, , ]p, p). Since A is a linear
automorphism of (L, [, , ], p), and from Theorem 3.9, we know that A is a linear automorphism
of (L, [, , ]p, p), and from Theorem 2.17, ADA−1 is a k-order θ-derivation of weight λ on
(L, [, , ]p, p). By mathematical induction, AnDA−n is a k-order θ-derivation of weight λ on
(L, [, , ]p, p) for all positive integer n.

Theorem 3.11 Let (L, [·, ·]) be a δ Jordan-Lie algebra and D be a 0-order derivation
of weight λ on it. Then D is also a 0-order derivation of weight λ on δ Jordan-Lie triple
system (L, [, , ]), where [, , ] is defined by [x, y, z] := [[x, y], z]] for all x, y, z ∈ L.

Proof Suppose D is a 0-order derivation of weight λ on (L, [·, ·]), then

D([x, y, z]) = D([[x, y], z]])

= [D([x, y]), z] + [[x, y], D(z)] + λ[D([x, y]), D(z)]

= [[D(x), y], z] + [[x,D(y)], z] + λ[[D(x), D(y)], z]

+[[x, y], D(z)] + λ[[D(x), y], D(z)]

+λ[[x,D(y)], D(z)] + λ2[[D(x), D(y)], D(z)]

= [D(x), y, z] + [x,D(y), z] + [x, y, D(z)]

+λ[x,D(y), D(z)] + λ[D(x), D(y), z]

+λ[D(x), y, D(z)] + λ2[D(x), D(y), D(z)]

for all x, y, z ∈ L.
Therefore, D is also a 0-order derivation of weight λ on (L, [, , ]).
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Corollary 3.12 Let (L, [·, ·], p) be a Rota-Baxter δ Jordan-Lie algebra of weight λ.
Then (L, [, , ], p) be a Rota-Baxter δ Jordan-Lie triple system of weight λ, where we assume
p is invertible and [, , ] is defined as above.

Proof It just need to prove that p is a Rota-Baxter operator of weight λ on (L, [, , ], p).
By Remark 3.4, p−1 is a 0-order derivation of weight λ on (L, [·, ·], p). From Theorem 3.11,
p−1 is a 0-order derivation of weight λ on (L, [, , ], p). By Theorem 3.3, we obtain that p is a
Rota-Baxter operator of weight λ on (L, [, , ], p).

Remark 3.13 Actually, the conclusion of Corollary 3.12 still holds when p is not
invertible. It just need to use the same proof method as Theorem 3.11 to prove that p is a
Rota-Baxter operator of weight λ on (L, [, , ], p).
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δ Jordan-李三系上带有权λ的k-阶广义导子

刘 宁1 ,张庆成2

(1. 华南理工大学数学学院 ,广东广州 510604)

(2. 东北师范大学数学与统计学院 ,吉林长春 130024)

摘要: 本文研究了δ Jordan-李三系上带有权λ的k-阶广义导子的相关问题. 通过计算, 得到了每一个δ

Jordan-李三系上带有权λ的k-阶Jordan 三角θ-导子都是一个带有权λ的k-阶θ-导子. 在定义下, 给出了带有

权λ的k-阶Jordan三角θ-导子的另一种等价形式. 同时,建立了带有权λ的k-阶广义(θ,ϕ)-导子和Rota-Baxter

δ Jordan- 李三系上带有权λ的Rota-Baxter 算子的遗传性质, 得到了每一个Rota-Baxter δ Jordan-李代数

能看成一个Rota-Baxter δ Jordan-李三系的结论.
关键词: δ Jordan-李三系; k-阶(θ, ϕ)-导子; k-阶Jordan 三角(θ, ϕ)-导子; 权λ; 权λ的Rota-Baxter δ

Jordan-李三系
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