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Abstract: In this paper, we are concerned with a classical question in the space of Henstock-

Kurzweil (shortly HK) integrable functions. A negative answer to this question is given by using

the theory of the distributional Henstock-Kurzweil (shortly DHK) integral. Furthermore, we use

convergence to prove a sufficient and necessary condition for a function to be HK integral and then

give a characterization of compactness in the space of the HK integrable functions. The results

enrich and extend the theory of HK integrable functions space.
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1 Introduction

It is well known that the HK integral of real-function comprises Riemann integral,
Lebesgue integral, improper integral and it is equivalent to Perron integral and restricted
Denjoy integral. A distinguishing feature of HK integral is that it can integrate highly
oscillatory functions which occur in nonlinear analysis and quantum theory. It is also easy
to understand because its definition requires no measure theory. Such integral has very
wide applications in many fields, for instance, differential and integral equations ([1–7]),
Fourier analysis ([8–11]), economics ([12–15]), quantum theory ([16, 17]) and so on([18–21]).
Likewise, the theory of the HK integral were widely studied by many mathematicians and
physicians, for example, Gill and Zachary ([22]), Jan ([23]), Kurtz and Swartz ([24]), Lee
([25, 26]), Lee ([9]), Monteiro ([27]), etc.. However, the space of HK integrable functions
is not a Banach space. The more extensive applications of HK integrals are limited by the
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incompleteness of the space of the HK integrable functions. So, many people tried to solve
this problem, for instance, Kurzweil [28, 29]. Meanwhile, Lee gave some open problems
on the theory of the HK integral in the last few years. One of the problems is about the
two-norm convergence in the space of the HK integrable functions which will be stated in
Section 5. Inspired by this problem, a related question, which is Question 5.1 in Section 5,
appeared naturally.

We give a negative answer to Question 5.1 by using the completeness of the space of
DHK integral. The DHK is a very wide integral and it includes Lebesgue and HK integrals.
Denote the space of HK integrable functions by HK and called the Denjoy space [25], and
the space of integrable distributions by DHK. DHK is a Banach space and it is isometrically
isomorphic to the space of continuous functions on an closed interval with uniform norm.
The Denjoy space is dense in DHK.

In Section 2, we present some basic definitions and preliminaries of HK integral of real
functions. Section 3 is devoted to the DHK integral and its properties. In Section 4, we prove
two sufficient and necessary conditions for a distribution to be integrable. In Section 5 we
firstly state Question 5.1 and then give a negative answer. In Section 6, we prove a sufficient
and necessary condition for a function to be HK integrable and then give a characterization
of compactness in the Denjoy space.

2 Basic Definitions and Preliminaries

Let I0 = [a, b] be a compact interval in R and E ⊂ R a measurable subset of I0. Let
µ(E) denote the Lebesgue measure. We first extend the notion of a partition of an interval.

We say that the intervals I and J are non-overlapping if int (I) ∩ int(J) = ∅, where
int(J) denotes the interior of J .

A partial K-partition D in I0 is a finite collection of interval-point pairs (I, ξ) with
non-overlapping intervals ξ ∈ I ⊂ I0. We write D = {(I, ξ)}. Moreover, if the union of all
the intervals I equals I0, then D = {(I, ξ)} is a K-partition of I0.

Let δ be a positive function defined on I0 which is called a gauge. The symbol ∆(I0)
stands for the set of gauge on I0. A K-partition D = {(I, ξ)} is said to be δ-fine if for each
interval-point pair (I, ξ) ∈ D we have I ⊂ B(ξ, δ(ξ)) where B(ξ, δ(ξ)) = (ξ − δ(ξ), ξ + δ(ξ)).
Let P(δ, I0) be the set of all δ-fine K-partition of I0.

Given P ∈ P(δ, I0), we write

S(f, P ) =
∑
D

f(ξ)µ(I)

for integral sums over D, where f : I0 → R.
Definition 2.1 [24] A function f is called HK integrable on I0 with the HK integral

J = (HK)
∫

I0
f(x)dx, if there exists a J ∈ R such that for every ε > 0 there exists δ ∈ ∆(I0)

such that

|S(f, P )− J | < ε
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for every P ∈ P(δ, I0). The family of all HK integrable functions on I0 is denoted by HKI0 .
f is HK integrable on a set E ⊂ I0 if the function f · χE ∈ HKI0 . We write

(HK)
∫

E

f = (HK)
∫

I0

fχE = F (E)

for the HK integral of f on E where F is called the primitive of f .
Definition 2.2 [26, 30] Let E ⊂ I0 and F : I0 → R. F : I0 → R is called absolutely

continuous or AC∗ on E if for every ε > 0 there exists a η > 0 such that
∑

i

|F (ui)− F (vi)| < ε, (2.1)

whenever {[vi, ui]} is a finite sequence of non-overlapping intervals which have an endpoint
vi or ui in E and satisfy

∑
i(ui − vi) < η. A family of function {Fn} is said to be uniformly

AC∗ if Fn is AC∗ but uniformly in n, i.e., η > 0 independent of n with F replaced by Fn in
(2.1).

F : I0 → R is ACG∗ (or Fn is uniformly ACG∗) on I0 if I0 can be expressed as a
countable union of its subsets En, n ∈ N such that F is AC∗ (or Fn is uniformly AC∗) on
each En.

Lemma 2.3 [25, 26] Let f : [a, b] → R. If f ∈ HK[a,b], then the primitive F of f is
ACG∗ on [a, b].

Definition 2.4 [25, 26] f is called restricted Denjoy integrable (shortly D∗) on I0 if
there exists an F ∈ ACG∗ such that F ′(x) = f(x) a.e. on I0.

Lemma 2.5 [25, 26] The HK-integral and the D∗-integral are equivalent.
The theory of distributions, or generalized functions, was founded by Schwartz L in

the 1940’s and it extended the notion of function so that all distributions have derivatives
of all orders. Distributions are defined as continuous linear functionals on the space of the
functions C∞

c = {φ : R → R | φ ∈ C∞ and φ has compact support in R}, where the
support of a function φ is the closure of the set on which φ does not vanish. Denote it by

supp(φ) = {x ∈ R : φ(x) 6= 0}.

A sequence {φn} ⊂ C∞
c converges to φ ∈ C∞

c if there exists a compact set K such that all
φn have support in K and for every m ∈ N the sequence of derivatives φ

(m)
n converges to

φ(m) uniformly on K. Denote C∞
c endows with this convergence property by D. Here φ is

called a test function if φ ∈ D. The distributions are defined as continuous linear functionals
on D. The space of distributions is denoted by D′, which is the dual space of D. That is, if
f ∈ D′ then f : D → R, and we write 〈f, φ〉 ∈ R for φ ∈ D.

For all f ∈ D′, we define the distributional derivative f ′ of f to be a distribution
satisfying 〈f ′, φ〉 = −〈f, φ′〉, where φ is a test function. Further, we write distributional
derivative as f ′. If a function f is differentiable, then its ordinary pointwise derivative
denotes as f ′(x) where x ∈ R. From now on, all derivative in this paper will be distributional
derivatives unless stated otherwise.
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3 The Distributional Henstock-Kurzweil Integral

Let I be an open interval in R, we define

D(I) = {φ : I → R | φ ∈ C∞
c and φ has compact support in I}.

Then the distributions on I are the continuous linear functionals on D(I). The space of
distributions on I is denoted by D′(I), which is the dual space of D(I). Since D(I) ⊂ D, so
D′ ⊂ D′(I), i.e., if f ∈ D′ then f ∈ D′(I).

Denote the space of continuous functions on [a, b] by C([a, b]). Let

C0 = {F ∈ C([a, b]) : F (a) = 0}. (3.1)

Then C0 is a Banach space under the norm

‖F‖∞ = sup
x∈[a,b]

|F (x)|.

Definition 3.1 A distribution f in D′((a, b)) is said to be distributionally Henstock-
Kurzweil integrable (shortly DHK) on an interval [a, b] if there exists a continuous function
F ∈ C0 such that F ′ = f , i.e., f is the distributional derivative of F . The distributional
Henstock-Kurzweil integral of f on [a, b] is denoted by

∫ b

a
f(x)dx = F (b) − F (a), for short,∫ b

a
f = F (b)− F (a).

For every f ∈ DHK , φ ∈ D((a, b)), we write 〈f, φ〉 = −〈F, φ′〉 = − ∫ b

a
F (x)φ′(x)dx.

In symbols,
DHK = {f ∈ D′((a, b)) : f = F ′, F ∈ C0}. (3.2)

Of course, DHK is a subset of D′((a, b)).
Notice that if f ∈ DHK then f has many primitives in C([a, b]), all differing by a

constant, but f has exactly one primitive in C0. For simplicity of notation, in what follows
we use the letters F, G, ... for the primitives of f, g, ... in DHK , respectively. Unless otherwise
stated, “

∫
” denotes the DHK-integral throughout this paper.

Remark 3.2 If taking a = −∞ and b = +∞, we obtain distributional Henstock-
Kurzweil integral on R = [−∞,+∞] as in [31]. For DHK integral on R, we can similarly
discuss all properties as on [a, b].

For f ∈ DHK , define the Alexiewicz norm in DHK as ‖f‖ = ‖F‖∞. With the Alexiewicz
norm, DHK is a Banach space (see [31]).

Lemma 3.3 [31] (a) The space of all Lebesgue integrable functions and the spaces of
restricted Denjoy and wide Denjoy integrable functions are dense in DHK .

(b) DHK is a separable space.
Since the primitive F of a HK integrable function f is continuous and F ′(x) = f(x) is

almost everywhere. It is easy to see that HK ⊂ DHK . By Lemma 2.5 and Lemma 3.3, the
following corollary holds.

Corollary 3.4 The space HK is dense in DHK .
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Let g : [a, b] → R, its variation is V (g) = sup
∑

n |g(yn)− g(xn)| where the supremum is
taken over every sequence {(xn, yn)} of disjoint intervals in [a, b]. A function g is of bounded
variation on [a, b] if V (g) is finite. Denote the space of functions of bounded variation by
BV. The space BV is a Banach space with norm ‖g‖BV = |g(a)|+ V (g).

Recall that C([a, b])∗ = BV by the Riesz Representation Theorem. Since C0 is the space
of continuous functions on [a, b] vanishing at a and DHK is isometrically isomorphic to C0

due to the definition of the integral, an obvious fact is that the dual space of DHK is BV
(see details in [31]).

Furthermore, integration by parts and Hölder inequality hold.
Lemma 3.5 [31] (Integration by parts) Let f ∈ DHK and g ∈ BV. Then fg ∈ DHK

and ∫ b

a

fg = F (b)g(b)−
∫ b

a

Fdg. (3.3)

Lemma 3.6 [31] (Hölder inequality) Let f ∈ DHK . If g ∈ BV, then

∣∣∣∣
∫ b

a

fg

∣∣∣∣ ≤ 2‖f‖‖g‖BV . (3.4)

Note that DHK is a Banach space under the Alexiewicz norm ‖.‖, there are several
equivalent norms as follows (see details in [31, Theorem 29]).

For f ∈ DHK , define

‖f‖1 = sup
I

{∣∣∣∣
∫

I

f

∣∣∣∣ : I ⊂ [a, b]
}

,

‖f‖2 = sup
g

{∫

I

fg : g ∈ BV, |g| ≤ 1, V (g) ≤ 1, I ⊂ [a, b]
}

.

Recall that HK is not a Banach space under the norm ‖f‖HK = sup{| ∫ x

a
f | : x ∈ [a, b]}.

So we have
Proposition 3.7 HK is not complete under the norms ‖.‖1, ‖.‖2.
Remark 3.8 HK ⊂ DHK and DHK is complete. So, extending the HK to DHK , it

overcomes the defect of the space HK not being complete.

4 Sufficient and Necessary Condition in DHK

In this section we discuss the convergence problems of the sequence {fng} for fn ∈ DHK

and g ∈ BV and then we give two sufficient and necessary conditions for a distribution to be
integrable, which plays a significant role in answering Question 5.1 in the next section.

Let O(BV) be the unit ball in BV, i.e.,

O(BV) = {g ∈ BV : ‖g‖BV ≤ 1}. (4.1)

Now we use Lemma 3.3 and Corollary 3.4 to prove a weak convergence theorem.
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Theorem 4.1 Let f ∈ DHK . Then there exists a sequence {fn} of HK integrable
functions such that

(1) for every g ∈ BV, lim
n→∞

∫ b

a
fng =

∫ b

a
fg;

(2) lim
n→∞

∫ b

a
fng =

∫ b

a
fg uniformly on O(BV), that is, for arbitrary ε > 0, there exists

N > 0 such that whenever n > N ,
∣∣∣
∫ b

a
fng − ∫ b

a
fg

∣∣∣ < ε for each g ∈ O(BV).
Proof (1) By Lemma 3.3, the space DHK is a separable Banach space. By Corollary

3.4, the space HK is dense in DHK . So, for f ∈ DHK , there exists a sequence {fn} of Hk
integrable functions satisfying

‖fn − f‖ = ‖Fn − F‖∞ → 0 (n →∞), (4.2)

where Fn and F are the primitives of fn and f , respectively.
Since fn ∈ HK, fn ∈ DHK . For f ∈ DHK and every g ∈ BV, by Lemma 3.5, we have

fg ∈ DHK . By Lemma 3.6,
∣∣∣∣
∫ b

a

fng −
∫ b

a

fg

∣∣∣∣ =
∣∣∣∣
∫ b

a

(fn − f)g
∣∣∣∣ ≤ 2‖fn − f‖‖g‖BV → 0 (n →∞).

Thus, lim
n→∞

∫ b

a
fng =

∫ b

a
fg for every g ∈ BV.

(2) For each g ∈ O(BV), in view of (4.2) and the Hölder inequality,
∣∣∣∣
∫ b

a

fng −
∫ b

a

fg

∣∣∣∣ =
∣∣∣∣
∫ b

a

(fn − f)g
∣∣∣∣ ≤ 2‖fn − f‖ → 0 (n →∞). (4.3)

Hence, lim
n→∞

∫ b

a
fng =

∫ b

a
fg uniformly on O(BV) and the proof is complete.

The converse of Theorem 4.1 is also true.
Theorem 4.2 Assume that {fn} is a sequence of HK integrable functions satisfying
(1) for every g ∈ BV,

∫ b

a
fng converges;

(2)
∫ b

a
fng uniformly converges on O(BV).

Then there exists f ∈ DHK satisfying

lim
n→∞

∫ b

a

fng =
∫ b

a

fg, ∀g ∈ BV,

and

lim
n→∞

∫ b

a

fng =
∫ b

a

fg uniformly on O(BV).

Proof For each n ∈ N, the fact that fn ∈ HK and HK ⊂ DHK implies fn ∈ DHK .
Since

∫ b

a
fng converges for every g ∈ BV then {∫ b

a
fng} is a Cauchy sequence. Denote

〈fn, g〉 =
∫ b

a

fng, ∀g ∈ BV.

Thus, {〈fn, g〉} is a Cauchy sequence.
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Since for each n,m ∈ N,

‖fn − fm‖ = sup
g∈O(BV)

|〈fn − fm, g〉| = sup
g∈O(BV)

∣∣∣∣
∫ b

a

(fn − fm)g
∣∣∣∣ .

It follows from uniform convergence of {∫ b

a
fng} on O(BV) that {fn} is a Cauchy sequence

in DHK .
By Lemma 3.3, the space DHK is a Banach space, so there exists f ∈ DHK such that

lim
n→∞

fn = f in DHK . Hence, we have

lim
n→∞

∫ b

a

fng =
∫ b

a

fg, ∀g ∈ BV,

and

lim
n→∞

∫ b

a

fng =
∫ b

a

fg uniformly on O(BV).

The proof is complete.
Combining Theorem 4.1 with Theorem 4.2, we get a sufficient and necessary condition

for a distribution to be integrable.
Theorem 4.3 A distribution f ∈ DHK iff there exists a sequence {fn} of HK integrable

functions satisfying (1) and (2) in Theorem 4.2.
Based on Theorem 4.3, we can prove another sufficient and necessary condition for a

distribution to be integrable.
Theorem 4.4 A distribution f ∈ DHK with the primitive F if and only if there exists

a sequence {fn} of HK integrable functions with the primitives Fn satisfying
(1) {Fn} is bounded in C([a, b]);
(2) lim

n→∞
Fn(x) = F (x)for each x ∈ [a, b] and F ∈ C([a, b]).

Moreover, ∫ b

a

fg = lim
n→∞

∫ b

a

fng, ∀g ∈ BV.

Proof (Necessity) Assume that f ∈ DHK . Then F ∈ C0. By Theorem 4.3, there
exists a sequence {fn} of Henstock-Kurzweil integrable functions satisfying (1) and (2) in
Theorem 4.2. This is, for every g ∈ BV,

∫ b

a
fng converges to

∫ b

a
fg and

lim
n→∞

∫ b

a

fng =
∫ b

a

fg uniformly on O(BV).

It follows from Banach-Steinhaus theorem that {fn} is bounded in DHK . Since ‖fn‖ =
‖Fn‖∞, then {Fn} is bounded in C([a, b]) and (1) holds.

In addition, since limn→∞
∫ b

a
fng =

∫ b

a
fg uniformly on O(BV), taking g = χ[a,x] ∈ BV,

we have lim
n→∞

∫ x

a
fn =

∫ x

a
f , i.e.,

lim
n→∞

Fn(x) = F (x), ∀x ∈ [a, b].
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The fact that f ∈ DHK implies F ∈ C0 ⊂ C([a, b]). This shows that (2) holds.
(Sufficiency) Since fn ∈ HK, Fn(a) = 0 (n ∈ N). By hypothesis (2), from F (a) =

lim
n→∞

Fn(a) = 0, it follows that F ∈ C0. Define f = F ′. Then f ∈ DHK and

∫ b

a

f = lim
n→∞

∫ b

a

fn.

Moreover, since {Fn} is bounded in C([a, b]), by dominated convergence theorem of
Riemann-Stieltjes integral,

lim
n→∞

∫ b

a

Fndg = lim
n→∞

∫ b

a

Fdg, ∀g ∈ BV.

Hence, by Lemma 3.5, we have
∫ b

a

fg = Fg|ba −
∫ b

a

Fdg = lim
n→∞

(
Fng|ba −

∫ b

a

Fndg

)
= lim

n→∞

∫ b

a

fng, ∀g ∈ BV.

The sufficiency is complete.

5 Question and Answer

P. Y. Lee asked an open problem on the two-norm convergence in the Denjoy space. The
two-norm convergence of a sequence of functions often means that the sequence is bounded
in the strong topology and convergent in the weak topology. We call it Lee’s problem which
is stated as follows:

Lee’s problem Two-norm convergence. The controlled convergence does not generate
a topology in HK, and the condition of almost everywhere convergence seems to be too
strong. Can we define a two-norm convergence in HK so that the two-norm convergence will
generate a topology in HK?

Inspired by this problem, a related question appeared naturally and can be stated as
follows.

Question 5.1 Let {fn} ⊂ HK[a,b]. If the sequence {fn} is bounded in HK[a,b] and
{(HK)

∫ b

a
fng} converges for every g ∈ BV, whether there exists f ∈ HK[a,b] such that

lim
n→∞

(HK)
∫ b

a

fng = (HK)
∫ b

a

fg (5.1)

for every g ∈ BV?
Recall that (HK)

∫ b

a
f denotes the HK integral of f on [a, b].

Let us see an example first.
Example 5.2 Suppose that x ∈ [0, 1]. Let

F (x) =
∞∑

n=1

sinn2xπ

n2
, and Fn(x) =

n∑
k=1

sin k2xπ

k2
.
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Then
F (x) = lim

n→∞
Fn(x)

for all x ∈ [0, 1]. Since for each n ∈ N, the function Fn(x) is continuous on [0, 1] and Fn(x)
uniformly converges to F (x), so F is continuous on [0, 1] and F (0) = 0, which imply F ∈ C0.
But F , apart from certain exceptional points, is not differentiable on [0, 1].

Let
f = F ′. (5.2)

Then f ∈ DHK and

lim
n→∞

∫ 1

0

fn =
∫ 1

0

f = F (1) =
∞∑

n=1

sinn2π

n2
.

However, f /∈ HK[0,1].
In fact, if f in (5.2) is HK integrable on [0, 1], then its primitive F is differentiable for

almost all x ∈ [0, 1]. It is a contradiction. So f /∈ HK[0,1].
On the other hand, let

fn(x) = F ′
n(x) = π

n∑
k=1

cos k2xπ, x ∈ [0, 1].

Then fn are continuous on [0, 1] and therefore fn are HK integrable on [0, 1], and
∫ x

0

fn = Fn(x), ∀x ∈ [0, 1].

Since

‖Fn(x)‖ =

∥∥∥∥∥
n∑

k=1

sin k2xπ

k2

∥∥∥∥∥ ≤
∞∑

n=1

1
n2

< +∞, ∀x ∈ [0, 1]. (5.3)

It follows that Fn(x) are uniformly bounded on [0, 1]. Hence, for every g ∈ BV, by dominated
convergence theorem of Riemann-Stieltjes integrals, we obtain that

lim
n→∞

∫ 1

0

Fndg =
∫ 1

0

Fdg. (5.4)

Combining (5.4) with Lemma 3.5, we have

lim
n→∞

∫ 1

0

fng = lim
n→∞

(
Fng|10 −

∫ 1

0

Fndg

)
= Fg|10 −

∫ 1

0

Fdg =
∫ 1

0

fg, ∀g ∈ BV.

So, the sequence {fn} is bounded in HK[a,b] and weakly converges to f , but f is not HK
integrable.

Therefore, according to Example 5.2, we can give an answer to Question 5.1.
Theorem 5.3 Let {fn} ⊂ HK[a,b]. Asuume that {fn} is bounded in HK[a,b] and

{(HK)
∫ b

a
fng} converges for every g ∈ BV. Then it is not necessary that there exists a

function f ∈ HK such that for every g ∈ BV,

lim
n→∞

(HK)
∫ b

a

fng = (HK)
∫ b

a

fg.
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In order to further discuss the related problems with Question 5.1, we give a necessary
and sufficient condition for a function to be HK integrable in the next section.

6 Compactness

Firstly, we prove a necessary Lemma.
Lemma 6.1 Assume that {fn} is a sequence of the HK integrable functions on [a, b]

satisfying
(1) for every g ∈ BV, {(HK)

∫ b

a
fng} converges;

(2) the sequence {Fn} of the primitives of fn is uniformly ACG∗.
Then there exists f ∈ HK[a,b] satisfying

(HK)
∫ b

a

f = lim
n→∞

(HK)
∫ b

a

fn

and

lim
n→∞

(HK)
∫ b

a

fng = (HK)
∫ b

a

fg, ∀g ∈ BV.

Proof Taking g(x) = χ[a,x] ∈ BV. Since fn ∈ HK and {(HK)
∫ b

a
fng} converges for

g ∈ BV, one has

lim
n→∞

Fn(x) = lim
n→∞

∫ x

a

fn = lim
n→∞

(HK)
∫ b

a

fng

exists for all x ∈ [a, b].
Let

F (x) = lim
n→∞

Fn(x) = lim
n→∞

∫ x

a

fn, x ∈ [a, b].

The facts that {Fn} is uniformly ACG∗ and F (x) = lim
n→∞

Fn(x) for all x ∈ [a, b] yields
F ∈ ACG∗.

Let f(x) = F ′(x) for a.e. x ∈ [a, b]. Then f ∈ HK[a,b] and

lim
n→∞

(HK)
∫ b

a

fng = (HK)
∫ b

a

fg, ∀g ∈ BV.

The proof is complete.
Lemma 6.2 Assume that f ∈ HK[a,b]. Then there exists a sequence {fn} of HK inte-

grable functions on [a, b] satisfying
(1) for every g ∈ BV, {(HK)

∫ b

a
fng} converges to (HK)

∫ b

a
fg;

(2) the sequence {Fn} of the primitives of fn is uniformly ACG∗.
Proof Let f ∈ HK with primitive F ∈ ACG∗. According to [26, p198, Exercise 5.7],

there is a sequence {ϕn} of step functions such that ϕn → f is almost everywhere and the
primitives Φn of ϕn are uniformly ACG∗. Due to the definition of uniformly ACG∗, Φn is
uniformly bounded and equicontinuous on [a, b]. In view of [26, Lemma 5.5.1], there is a
subsequence Φkn

of Φn such that Φkn
converges uniformly to F on [a, b]. Denote Φkn

by Fn.
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Of course, Fn are uniformly ACG∗. By virtue of the controlled convergence theorem ([26,
Theorem 5.5.2]), one has

∫ b

a

F ′
n =

∫ b

a

fn →
∫ b

a

f (n →∞). (6.1)

Moreover, it follows from Lemma 3.5 that

∫ b

a

fng = g(b)
∫ b

a

fn −
∫ b

a

Fndg, ∀g ∈ BV. (6.2)

The fact that Fn converges uniformly to F on [a, b] and the dominated convergence theorem
for Riemann-Stieltjes integrals yield that, for each g ∈ BV,

∫ b

a

Fndg →
∫ b

a

Fdg (n →∞), (6.3)

which together with (6.1) implies that, for each g ∈ BV,

lim
n→∞

∫ b

a

fng = lim
n→∞

(
g(b)

∫ b

a

fn −
∫ b

a

Fndg

)
= g(b)

∫ b

a

f −
∫ b

a

Fdg =
∫ b

a

fg.

Therefore, the proof is complete.
By Lemma 6.1 and Lemma 6.2, we obtain a necessary and sufficient condition for a

function to be HK integrable.
Theorem 6.3 f ∈ HK[a,b] iff there exists a sequence {fn} of HK integrable functions

on [a, b] satisfying (1) and (2) in Lemma 6.2.
Now we are coming to give a characterization of the compact subsets in HK.
Theorem 6.4 Assume that A ⊂ HK and B = {F : F (t) =

∫ t

a
f, f ∈ A}. Then

A is relatively compact in HK if and only if for every sequence {fn} ⊂ A, there exists a
subsequence {fnj

} of {fn} such that {fnj
} satisfies (1) and (2) in Lemma 6.2.

Proof The proof is directly deduced from Theorem 6.3.
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Henstock-Kurzweil 可积函数空间的紧性特征

郭雅婷1 ,叶国菊1 ,刘 尉1 ,赵大方2

(1. 河海大学理学院,江苏南京 210098)

(2. 湖北师范大学数学与统计学院,湖北黄石 435002)

摘要: 本文研究 Henstock-Kurzweil 可积 (HK 可积)函数空间中的一个经典问题. 文章通过研究分

布Henstock-Kurzweil积分 (DHK积分)的性质, 给出了该问题的否定答案. 进一步, 利用收敛性获得了函数

HK可积的一个充分必要条件. 最后, 在上述结论的基础上刻画了 HK可积函数空间的紧性. 所得结果丰富

和推广了HK可积函数空间理论.
关键词: Henstock-Kurzweil 积分; 分布导数; 分布 Henstock-Kurzweil积分; 收敛定理; 紧性
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