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Abstract: In this note we announce the global boundedness for the solutions to a class
of possibly degenerate parabolic equations by De-Giorgi’s iteration. In particular, the existence
of weak solutions for possibly degenerate stochastic differential equations with singular diffusion
coeflicients is obtained.
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Consider the following elliptic equation of divergence form in R¢ (d > 2):
div(a - Vu) =0, (1)

where a : R? — R%*? is a Borel measurable function and V := (9,,, -+ ,0,,). When a is
uniformly elliptic, the celebrated works of De-Giorgi [1] and Nash [2] said that any weak solu-
tions of elliptic equation (1) are bounded and Hélder continuous. Moreover, Moser [3] showed
that any weak solutions of (1) satisfy the Harnack inequality. In [4], Trudinger considered
the non-uniformly elliptic equation (1) under the following integrability assumptions:

Mot e L, g € LP with po,p1 € (1, 00] satisfying pio + p% < %,

where

ja(x)g]*

Ao(x) = inf &-a(@),  po(x) := sup (2)

1€1=1 ej=1 & - a(z)¢

He showed that any generalized solutions of (1) are locally bounded and weak Harnack in-
equality holds. Recently, Bella and Schéffner [5] showed the same results under the following
sharp condition on pg, p1,

pio + p% < ﬁv Po,P1 € [1700]7 (3)

Here we extend the main result of [5] to parabolic case. More precisely, we consider the
following parabolic equation of divergence form in R9+1:

Owu=div(a-Vu) +b-Vu+ f, (4)
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where
a:RT SR p R L RY FIRITL SR

are Borel measurable functions. As in (2), we introduce

o _ la(t, 2)¢/*
Aa)i= b E-alt )t p@)= s g

()

and suppose that A\ and p are nonnegative Borel measurable functions.

Definition 0.1 A continuous function u : R™! — R is called a Lipschitz weak
(super/sub)-solution of PDE (4) if Vu is locally bounded and for any nonnegative Lips-
chitz function ¢ on R with compact support,

—(u, Orp)) = (2 / <) = {a-Vu, Vort (b- Vu, o) + (f,¢), (6)

where (( = [o Joa f(& 2)g(t, x)dadt,
For p,q € [1 oo, let ]Lq’p = LY(R; LP(RY)) and L7 := LP(R% LY(R)) be the space of
space-time functions with norms, respectively,

1/q 1/p
Iﬁhg::<4|ﬂtdmﬁ) ,nfmm:z(é xw&u> |

where || - ||, stands for the usual LP-norm. For r > 0 and (s, 2) € R4, we define
QT = [_r T ] X Br - RdJrl) Qi’z = QT + (8’Z>7 Bi = BT +Z7

and for p € [1, o0], introduce the following localized LP-space:
17 = {1 € LR W flly == sup | 15; /], < o0}, (7)
and for p, q € [1, 0],

L1 = {f € LR - Ulgy = sup gz Flhgz < oo} (8)

and similarly for ]Lp ¥
Below we fix py 6 (4,00] and p; € [1, 00] with

— —|— = < ﬁ, (9)
and introduce the index set
d ._ 2.1 12 _ 1
L= {poelo: 1 <1-HiE-h}.
We make the following assumptions about a and b:

(H®) A" lpo + llllp, < 0o, where A, i are defined by (5).

(H®) b = by + by, where if p, € (g,d] by =0, and if py > d, by € Lq“’z for some (p2,q2) €
[1,00]? with
ot < (- A

2po

- L), (10)

ISU[N)

and by € ]Lpl’ and divby, = 0.
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For simplicity of notations, we introduce the following parameter set

& 1= (.91 4o, 1N Dpos Dl W Bige o Wl ). (11)

We have the following apriori estimate. _

Theorem 0.2 Under (H*) and (H’), for any f € L{™ with (ps,qs) € If, and for
any T > 0, there exists a constant C' = C(T, 0, p4, q4) > 0 such that for any Lipschitz weak
solution u of PDE (4) in R4 with u(t)|;<0 = 0,

|l Lo (jo,r1xre) < Cllf 10,1 |||Lq4 pi. (12)

Consider the following heat equation with divergence free drift b:
Ou=Au+b-Vu+ f, u(t)|ico =0. (13)

The following apriori global boundedness estimate is a direct consequence of Theorem 0.2.
Corollary 0.3 Let b e Lp’t with divb = 0, where p € [1,00] N (42, oc]. For any T > 0

and f € ]Lt 20, where p',¢" € [1,00] satisfy 4 » ? < 2, there exists a constant C' > 0 only
depending on T, d,p,p’, ¢ and Hb||Ep,?o such that for any Lipschitz weak solution u of (13),

1wl Lo (jo,11xRe) < Cllf 10,7 |||Lq v (14)

Remark 0.4 Note that when ¢ —I— <2and b€ Lq’p with divb = 0, it is well known
that (14) holds (cf. [6], [7]). When b does not depend on ¢, the current condition p > %5 in
Corollary 0.3 is clearly better than p > %.

As an application of the global boundedness estimate (12), we consider the following
SDE:

dX; = \/50(757 Xp)dW, +b(t, Xy)dt, Xy =z, (15)

where W is a d-dimensional standard Brownian motion. We recall the following notion of
weak solutions to SDE (15).

Definition 0.5 Let § := (Q,.#,P;(#:):>0) be a stochastic basis and (X, W) a pair
of Z;-adapted processes defined thereon. We call triple (§, X, W) a weak solution of SDE
(15) with starting point = € R if

(i) P(Xo =2) =1 and W is an .%;-Brownian motion;

(ii) for all ¢t > 0, it holds that P-a.s.

t t t
/ (|0(5,XS)|2+|b(s,XS)|)ds < o0, a.s.,and X; = a?—i—\@/ U(S,Xs)dws-f—/ b(s, Xs)ds.
0 0 0

We make the following assumptions about ¢ and b.

(fI") Suppose that there are a sequence of d x d-matrix functions o, € L>*(Ry;Cy?),
(p2,q2) € ]Iﬁ0 and ko > 0 such that for all n € N,

I oo+ Dl + 100l + 1@0505) Nizmon < k0. (16)
where a, := o0,0%, A\, and p, are defined as in (5) by a,. Moreover, for some
P3,q3 € [2,00] Wlth (%3, L) e1¢ and for any T, R > 0,

sup |||0'n|||i;1;3lp3 =K1 < 090, nhngo ||(O'n - 0)1[07T]><BRH]L;13T’Z)3 = 0. (17)
n ) —
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(H') Let b = by + b, satisfy (H?) and b € ]Ijgff“ for some (p4,qs) € I

0"

We have the following existence result.

Theorem 0.6 Under (H”) and (H?), for any z € R?, there is at least one weak solution
(3, X, W) for SDE (15). Moreover, for any (p,q) € I and T > 0, there are 6 € (0,1) and
constant C = C(T,0,p,q) > 0 such that for any stopping time 7 < T, § € (0,1) and

feLy,
T496
E (/ f(s, Xs)ds

The following two examples can be derived from the above existence result.
Example 0.7 Letd >3 and a € (0,(2 —1)A (3 + 725)), B € (0,2a). For any A >0
and z € R?, the following SDE admits a unique strong solution:

#.) <Ml (15)

dX, = [ X[ *dW; + )\Xt|Xt|_ﬁ_1dt, Xy =1x.

Note that the starting point can be zero and the uniqueness follows from [8].
Example 0.8 The following two dimensional degenerate SDE admits a solution:

dX} = | X7Z|“dW}! + b' (X,)dt,
dX7? = | X}“dW? + b*(X,)dt,

where a € (0, 1) and b = (b',b%) € LP(R?) for some p > 15—
More details can be found in [9)].
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