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1 Introduction and Main Results

In classical ergodic theory, one of the earliest pointwise ergodic convergence theorems
was obtained by Birkhoff [1] in 1931. Dunford and Schwartz [2] greatly generalized the
previous situation; they established the strong (p, p) maximal inequalities for all 1 < p < ∞
for time averages of positive L1-L∞ contractions and obtained the pointwise convergence
result as a corollary. However, the most general result in this direction was obtained by
Akcoglu [3], who established a maximal ergodic inequality for general positive contractions
on Lp-spaces for a fixed 1 < p < ∞. The proof is based on an ingenious dilation theorem
which reduces the problem to the case of positive isometries, and the latter was already
studied by Tuleca. Akcoglu’s dilation theorem has found numerous applications in various
directions; let us mention (among others) Peller’s work on Matsaev’s conjecture for con-
tractions on Lp-spaces, Coifman-Rochberg-Weiss’ approach to Stein’s Littlewood-Paley
theory, g-function type estimates on compact Riemannian manifolds by Coifman-Weiss,
as well as functional calculus of Ritt and sectorial operators and references therein). On
the other hand, we would like to remark that the Lamperti contractions consist of a
typical class of general Lp-contractions. In particular, Kan [4] established a maximal er-
godic inequality for power bounded Lamperti operators whose adjoints are also Lamperti.
Many more results for positive operators and Lamperti operators in the context of ergodic
theory were studied further by various authors.

Motivated by quantum physics, noncommutative mathematics have advanced in a
rapid speed. As foundations of noncommutative mathematics, let us recall briefly the
definition of noncommutative Lp spaces. Let M be a von Neumann algebra equipped
with a normal semifinite faithful trace τ . We denote by s(x) the support of x for a
positive element x ∈M. Let S(M) be the linear span of set of all positive elements in M
such that τ(s(x)) < ∞. For 1 ≤ p < ∞, we define the noncommutative Lp-space Lp(M, τ)
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to be the completion of S(M) with respect to the norm

‖x‖Lp(M) := (τ(|x|p)) 1
p , where |x| := (x∗x)

1
2 .

We refer the reader to [5] for detailed presentation of noncommutative Lp spaces.
The connection between ergodic theory and von Neumann algebras is intimate and

goes back to the earlier development of the theory of rings of operators. However, the
study of pointwise ergodic theorems only took off with the pioneering work of Lance [6].
The topic was then stupendously studied in a series of works due to Conze, Dang-Ngoc,
Kümmerer, Yeadon and others. However, the maximal inequalities and pointwise ergodic
theorems in Lp-spaces remained out of reach for many years until the path-breaking
work of Junge and Xu [7]. In [7], the authors established a noncommutative analogue
of Dunford-Schwartz maximal ergodic theorem. This breakthrough motivated further
research to develop various noncommutative ergodic theorems. We refer to [8, 9] and
references therein. Notice that the general positive contractions considered by Akcoglu do
not fall into the category of Junge-Xu [7]. In the noncommutative setting, there are very
few results for operators beyond L1-L∞ contractions except some isolated cases studied in
[8]. In particular, the following noncommutative analogue of Akcoglu’s maximal ergodic
inequalities remains open.

Question 1.1 Let M be a von Neumann algebra equipped with a normal faithful
semifinite trace τ. Let 1 < p < ∞ and T : Lp(M) → Lp(M) be a positive contraction.
Does there exist a positive constant C, such that

∥∥∥ sup
n≥0

+ 1
n + 1

n∑
k=0

T kx
∥∥∥

p
≤ C‖x‖p

for all x ∈ Lp(M)?
In the article [10], we answer Question 1.1 for a large class of positive contractions

which do not fall into the category of aforementioned works. Indeed, this class recovers
all positive contractions concerned in Question 1.1 if M is the classical space L∞([0, 1]).
To introduce our main results we set some notation and definitions.

Definition 1.2 Let 1 ≤ p < ∞. A bounded linear map T : Lp(M, τ) → Lp(M, τ)
is called a Lamperti (or support separating) operator, if for any two τ -finite projections
e, f ∈M with ef = 0, we have that

(Te)∗Tf = Te(Tf)∗ = 0.

By the standard approximation argument, it is easy to observe that the above defini-
tion of Lamperti operators agrees with the known definition in the commutative setting.

The following is one of our main results. We will denote by Cp a fixed distinguished
constant depending only on p, which is given by the best constant of Junge-Xu’s maximal
ergodic inequality [7, Theorem 0.1].
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Theorem 1.3 Let 1 < p < ∞. Assume that T : Lp(M) → Lp(M) belongs to the
family

conv sot{S : Lp(M) → Lp(M) positive Lamperti contractions}, (1.1)

that is, the closed convex hull of all positive Lamperti contractions on Lp(M) with respect
to the strong operator topology. Then

∥∥∥ sup
n≥0

+ 1
n + 1

n∑
k=0

T kx
∥∥∥

p
≤ Cp‖x‖p

for all x ∈ Lp(M).
It is worth noticing that the class introduced in (1.1) is quite large in the classical

setting. Indeed, it is known that forM = L∞([0, 1]) equipped with the Lebesgue measure,
we have

{S : Lp([0, 1]) → Lp([0, 1]) positive contractions}
= conv sot{S : Lp([0, 1]) → Lp([0, 1]) positive Lamperti contractions},

which does recover the classical Akcoglu’s ergodic theorem on Lp([0, 1]). Moreover, our
methods also help to establish a completely bounded version of Ackoglu’s ergodic theorem.

Corollary 1.4 Let 1 < p < ∞. Let (Ω, µ) be a measure space and T : Lp(Ω) → Lp(Ω)
be a positive contraction. Then for any semifinite von Neumann algebra M, we have

∥∥∥ sup
n≥0

+ 1
n + 1

n∑
k=0

(T ⊗ ILp(M))kx
∥∥∥

p
≤ Cp‖x‖p, ∀x ∈ Lp(L∞(Ω)⊗M).

As mentioned earlier, Akcoglu’s arguments for ergodic theorem essentially rely on the
study of dilations of positive contractions. In spite of various works on dilations on von
Neumann algebras, Junge and Le Merdy showed in their remarkable paper [11] that there
is no ‘reasonable’ analogue of Akcoglu’s dilation theorem on noncommutative Lp-spaces.
This becomes a serious difficulty in establishing a noncommutative analogue of Akcoglu’s
ergodic theorem. Our proof of the above theorem is based on the study of structural
properties and dilations of convex combinations of Lamperti operators as in (1.1). This
route seems to be different from that of Akcoglu’s original one. Let us mention some of
the key steps and new ingredients in the proof, which might be of independent interest.

(i) Noncommutative ergodic theorem for positive isometries: Following the
classical case, the first natural step would be to establish a maximal ergodic in-
equality for positive isometries. Here we give an analogue of this result in the
noncommutative setting.

Theorem 1.5 Let 1 < p < ∞. Let T : Lp(M) → Lp(M) be a positive isometry.
Then ∥∥∥ sup

n≥0

+ 1
n + 1

n∑
k=0

T kx
∥∥∥ ≤ Cp‖x‖p, ∀x ∈ Lp(M).
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The key ingredient is to extend positive isometries on Lp(M) to the vector-valued
space Lp(M; `∞). This fact seems to be highly non-obvious for the isometry not
completely isometric. Then based on the methods recently developed in [8], we
obtain Theorem 1.5.

(ii) Structural theorems for Lamperti operators: In the classical setting, Peller
and Kan obtained a dilation theorem for Lamperti contractions. Their construc-
tions are different from Akcoglu’s and rely on structural description of Lamperti
operators. In the noncommutative setting, we first prove a similar characterization
for Lamperti operators by using techniques from [12], which constitutes the second
step in proving Theorem 1.3.

Theorem 1.6 Let 1 ≤ p < ∞. Let T : Lp(M, τ) → Lp(M, τ) be a Lamperti operator
with norm C. Then, there exist, uniquely, a partial isometry w ∈ M, a positive
self-adjoint operator b affiliated with M and a normal Jordan ∗-homomorphism
J : M→M, such that

(i) w∗w = J(1) = s(b); moreover we have w = J(1) = s(b) if additionally T is
positive;

(ii) Every spectral projection of b commutes with J(x) for all x ∈M;

(iii) T (x) = wbJ(x), x ∈ S(M);

(iv) We have τ(bpJ(x)) ≤ Cτ(x) for all x ∈M+; if additionally T is isometric, then
the equality holds with C = 1.

(iii) Dilation theorem for the convex hull of Lamperti contractions: In order
to establish ergodic theorems for a large class beyond Lamperti contractions, as the
last step, we deploy tools from [13] to obtain an N -dilation theorem for the convex
hull of Lamperti contractions for all N ∈ N.
Definition 1.7 Let 1 ≤ p ≤ ∞. Let S ⊆ B(Lp(M, τM)). We say that S has a
simultaneous N -dilation if there exist a von Neumann algebra N with a normal
faithful semifinite trace τN , contractive linear maps Q : Lp(N , τN ) → Lp(M, τM),
J : Lp(M, τM) → Lp(N , τN ), and a set of isometries U ⊆ Lp(N , τN ) such that for all
n ∈ {0, 1, . . . , N} and Ti ∈ S, 1 ≤ i ≤ n, there exist UT1 , UT2 , . . . , UTn

∈ U such that

T1T2 . . . Tn = QUT1UT2 . . . UTn
J. (1.2)

In terms of commutative diagram, we have

Lp(M, τM)
T1...Tn //

J

²²

Lp(M, τM)

Lp(N , τN )
UT1 ...UTn // Lp(N , τN ).

Q

OO
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The empty product (i.e. n = 0) corresponds to the identity operator.

Theorem 1.8 Let 1 < p < ∞. Suppose S ⊆ B(Lp(M)) has a simultaneous dilation.
Then, each operator T ∈ conv(S) has a N -dilation for all N ∈ N.

In the process, we actually prove a simultaneous dilation theorem for tuples of
Lamperti contractions, that is, for all N ∈ N, which is a stronger version of Peller-
Kan’s dilation theorem. Our approach also establishes validity of noncommutative
Matsaev’s conjecture for the strong closure of the closed convex hull of Lamperti
contractions for 1 < p 6= 2 < ∞ whenever the underlying von Neumann algebra has
QWEP. It is worth mentioning that prior to our work all the dilatable contractions
are basically those acting on the von Neumann algebra itself, except some ‘loose
dilation’ results. In our method, we also recover partially some results in the existed
literatures. Also, our result might have some applications as in the commutative
case. We leave this research direction open.

Note that Theorem 1.3 only applies to contractive operators. As in the classical case,
the study for non-contractive power bounded operators requires many additional efforts.
In the following we also establish a general ergodic theorem for power bounded Lamperti
operators as soon as their adjoints are also Lamperti (usually called doubly Lamperti
operators), which is the other main result of the paper.

Theorem 1.9 Let 1 < p < ∞, 1/p + 1/p′ = 1 and let M be a finite von Neu-
mann algebra. Assume that T : Lp(M) → Lp(M) is a positive Lamperti operator with
supn≥1 ‖T n‖Lp(M)→Lp(M) = K < ∞, and that the adjoint operator T ∗ : Lp′(M) → Lp′(M)
is also Lamperti. Then

∥∥∥ sup
n≥0

+ 1
n + 1

n∑
k=0

T kx
∥∥∥

p
≤ KCp‖x‖p

for all x ∈ Lp(M).
The above theorem 1.9 is the noncommutative analogue of a classical result of Kan

[4]. It essentially relies on a structural theorem for positive doubly completely Lamperti
operators, which reduces the problem to the setting of Theorem 1.3 and is of independent
interest.

Theorem 1.10 Let M be a finite von Neumann algebra. Let 1 < p < ∞ and T :
Lp(M) → Lp(M) be a positive Lamperti operator with the representation Tx = bJ(x) as
in Theorem 1.6. Then, there exist an element θ ∈M and a positive Lamperti contraction
S : Lp(M) → Lp(M) such that T n = θnSn, where

(i) S is a positive Lamperti contraction which vanishes on Lp(p0Mp0) and is isometric
on Lp(p1Mp1);

(ii) θn is a positive element in M of the form θn = θJ(θ) · · ·Jn−1(θ) and θnSn(x) =
Sn(x)θn for all n ≥ 1 and x ∈M;

(iii) for all n ≥ 1, ‖T n‖Lp(M)→Lp(M) ≤ ‖θn‖∞. Moreover, the equality holds if the
adjoint operator T ∗ : Lp′(M) → Lp′(M) for 1/p + 1/p′ = 1 is also Lamperti.
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To prove this structural result, we follow the path of Kan. However, since the struc-
tures and orthogonal relations of von Neumann subalgebras are completely different from
those in classical measure theory, our proof is much more lengthy and numerous adjust-
ments are needed in this new setting. Also, due to these technical reasons, we restrict our
study to the case of finite von Neumann algebras only.

Moreover, we observe that the maximal ergodic inequality also holds for several other
classes of operators outside the scope of Theorem 1.3 or Theorem 1.9.

(i) Positive invertible operators which are not Lamperti: Kan [4] discussed
various examples of Lamperti operators. He showed that in the classical setting any pos-
itive invertible operator with positive inverse is Lamperti and that any positive invertible
operator on a finite dimensional (commutative) Lp-space with supn∈Z ‖T n‖Lp→Lp

< ∞
is Lamperti.. As a consequence, he reproved that any power bounded positive operator
with positive inverse admits a maximal ergodic inequality; this generalized the ergodic
theorem of de la Torre. A noncommutative analogue of this theorem, in a much general
form, was achieved in [8]. However, we provide the following example of positive invert-
ible operators on noncommutative Lp-spaces with positive inverses which are not even
Lamperti, which illustrates that there is no reasonable analogue of Kan’s above examples
for the noncommutative setting.

Example 1.11 Let 1 ≤ p < ∞ and r be an invertible matrix 2 × 2 matrix. Define
T : S2

p → S2
p , T (x) = rxr∗. Clearly, T is completely positive map, and so is the inverse

map T−1(x) = r−1x(r−1)∗. Note that

e =

(
1 0
0 0

)
and f =

(
0 0
0 1

)

are two orthogonal projections with ef = fe = 0. But if we take

r =

(
1 1
α β

)

with α, β ∈ R, and 1 + αβ 6= 0, it is easy to see that T (e)T (f) 6= 0. So T is not Lamperti.
Moreover, consider α = 0, β = −1. Then r−1 = r and r2 = 1M2 . So

sup
n∈Z

‖T n‖cb,S2∞→S2∞ ≤ sup
n∈Z

‖rn‖2
∞ < ∞.

Since the operator space of linear operators on M2 is finite dimensional, so (T k) is uni-
formly bounded with respect to any equivalent operator norm. Thus these are power
bounded positive operators with positive inverses on a finite dimensional Lp-space, but
not Lamperti.

This shows that Kan’s method can not reprove de la Torre’s ergodic theorem in the
noncommutative setting. Nevertheless, these examples fall into the category of the afore-
mentioned result of [8], and hence satisfy the maximal ergodic theorem. We would like
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to remark that Kan’s aforementioned examples of Lamperti operators play an important
role in many other papers. All these phenomena seem to be new.

(ii) Junge-Le Merdy’s non-dilatable example: As mentioned earlier, there exist
concrete examples of completely positive complete contractions which fail to admit a
noncommutative analogue of Akcoglu’s dilation, constructed by Junge and Le Merdy
[11]. While we show that these operators still satisfy a maximal ergodic inequality. In
particular we establish the following fact.

Proposition 1.12 Let 1 < p 6= 2 < ∞. Then, for all k ∈ N large enough, there exists
a completely positive complete contraction T : Sk

p → Sk
p such that

∥∥∥ sup
n≥0

+ 1
n + 1

n∑
k=0

T kx
∥∥∥

p
≤ (Cp + 1)‖x‖p, x ∈ Lp(M),

but T does not admit Ackoglu’s dilation.
The proof is very short and elementary; indeed it still relies on Akcoglu’s ergodic

theorem [3] in the classical setting. The above theorem illustrates again that the non-
commutative situation is significantly different from the classical one.

For the proof of all the results mentioned above, we refer the reader to [10] for more
information.
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