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Abstract: In this paper, a Cauchy problem of Helmholtz-type equation with nonhomogeneous
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overcome its ill-posedness, and under an a-priori and an a-posteriori selection rule for the regular-

ization parameter we obtain the convergence result for the regularized solution, the corresponding
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1 Introduction

In some practical and applied fields, such as Debye-Huckel theory, implicit march-
ing strategies of the heat equation, the linearization of the Poisson-Boltzmann equation,
Helmholtz-type equation had many important applications, see [1–4], etc. In the past cen-
tury, the direct problem for it caused the extensive attention and was researched widely.
However, in some science research areas, the data of the entire boundary can not be ac-
quired, we only can measure the one on a part of the boundary or at certain internal points
of one domain, which is called as the inverse problem for the Helmholtz-type equation. This
paper studies the Cauchy problem of Helmholtz-type equation





∆w(y, x)− k2w(y, x) = 0, x ∈ (0, π), y ∈ (0, T ),

w(0, x) = ϕ(x), x ∈ [0, π],

wy(0, x) = ψ(x), x ∈ [0, π],

w(y, 0) = w(y, π) = 0, y ∈ [0, T ],

(1.1)
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where k > 0 is the wave number. In view of the linear property of (1.1), it can be divided
into two problems, i.e., the Cauchy problem with nonhomogeneous Dirichlet data





∆u(y, x)− k2u(y, x) = 0, x ∈ (0, π), y ∈ (0, T ),

u(0, x) = ϕ(x), x ∈ [0, π],

uy(0, x) = 0, x ∈ [0, π],

u(y, 0) = u(y, π) = 0, y ∈ [0, T ],

(1.2)

and the Cauchy problem with inhomogeneous Neumann data




∆v(y, x)− k2v(y, x) = 0, x ∈ (0, π), y ∈ (0, T ),

v(0, x) = 0, x ∈ [0, π],

vy(0, x) = ψ(x), x ∈ [0, π],

v(y, 0) = v(y, π) = 0, y ∈ [0, T ],

(1.3)

it is easily to be know that the solution of problem (1.1) can be expressed as w = u + v.
Then, we only need to research problems (1.2) and (1.3), respectively.

Problems (1.2) and (1.3) are both the ill-posed problems in the sense that a small
disturbance on the Cauchy datum can lead to an tremendous error in the solution [5–
7], so some regularization techniques must be carried to overcome the ill-posedness and
stabilize numerical calculations (see some regularization strategies in [8, 9]). In the past
years, we find that many scholars have considered the Cauchy problem of Helmholtz-type
equation and proposed some efficient regularized methods and numerical techniques, such
as quasi-reversibility type method [10–14], filtering function method [15], iterative method
[16], mollification method [17, 18], spectral method [19, 20], alternating iterative algorithm
[21, 22], modified Tikhonov method [20, 23], Fourier method [12, 24], novel trefftz method
[25], weighted generalized Tikhonov method [26], and so on.

In this paper, we firstly establish the conditional stabilities for problems (1.2), (1.3),
and then construct a kind of modified Lavrentiev regularization method to solve these two
problems. In our work, we shall derive some a-priori and a-posteriori convergence results of
Hölder type for our regularization solutions, and give an a-posteriori selection rule for the
regularization parameter which is relatively rare in solving the Cauchy problem of Helmholtz-
type equation. The work is an extension and supplement for the existing ones.

The paper is organized as follows. In Section 2, we derive the conditional stabilities
of (1.2) and (1.3). Sections 3 constructs the modified Lavrentiev regularization methods,
Sections 4 states some preparation knowledge. In Section 5, the a-priori and a-posteriori
convergence estimates of sharp type are established. Some numerical results are shown in
Section 6. The corresponding conclusions and discussions are drawn in Section 7.

2 Conditional Stability

We know that the Cauchy problem of the Helmholtz-type equation is ill-posed in the
sense of Hadamard that the solution (if it exists) discontinuity depends on the given Cauchy
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data. Under an additional condition, a continuous dependence of the solution on the Cauchy
data can be obtained, which is so-called conditional stability [27–29]. In this section, under an
a-priori bound assumption for exact solutions, we give the conditional stabilities of problems
(1.2) and (1.3). For γ ≥ 1/2, q > 0, we define

Dξ
γ,q = {ξ ∈ L2(0, π);

∞∑
n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 |< ξ, Xn >|2 < +∞}, (2.1)

here, 〈·, ·〉 denotes the inner product in L2(0, π), Xn := Xn(x) =
√

2/π sin(nx) is the
eigenfunctions in L2(0, π), and the norm of Dξ

γ,q is defined as

‖ξ‖Dξ
γ,q

= (
∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 |< ξ, Xn >|2)1/2. (2.2)

Applying the method of variables separation, the solutions of (1.2) and (1.3) respectively
can be expressed as

u(y, x) =
∞∑

n=1

cosh
(√

n2 + k2y
)

ϕnXn, ϕn = 〈ϕ,Xn〉, (2.3)

v(y, x) =
∞∑

n=1

sinh(
√

n2 + k2y)√
n2 + k2

ψnXn, ψn = 〈ψ, Xn〉. (2.4)

Theorem 2.1 Let E > 0, u(T, x) satisfy an a-priori bound condition

‖u(T, x)‖Du
γ,q
≤ E, (2.5)

then for each fixed 0 < y ≤ T , it holds that

‖u(y, x)‖L2(0,π) ≤ 2
y

T+q

(
Kγe

√
KT

)− y
T+q

E
y

T+q ‖ϕ‖1− y
T+q

L2(0,π), (2.6)

where K = 1 + k2.
Proof Note that, for 0 < y ≤ T , n ≥ 1, e

√
n2+k2y/2 ≤ cosh(

√
n2 + k2y) ≤ e

√
n2+k2y,

n2 + k2 ≥ 1 + k2, then from (2.3), (2.5) and Hölder inequality, we have

‖u(y, x)‖L2(0,π) = ‖
∞∑

n=1

cosh(
√

n2 + k2y)ϕnXn‖L2(0,π)

≤
√√√√

∞∑
n=1

cosh2(
√

n2 + k2y)ϕ2
n =

√√√√
∞∑

n=1

cosh2(
√

n2 + k2y)ϕ
2y

T+q
n ϕ

2− 2y
T+q

n

≤
√√√√(

∞∑
n=1

(cosh(
√

n2 + k2y))
2(T+q)

y ϕ2
n)

y
T+q (

∞∑
n=1

ϕ2
n)

1− y
T+q

≤
√√√√(

∞∑
n=1

(e
√

n2+k2y)
2(T+q)

y ϕ2
n)

y
T+q (

∞∑
n=1

ϕ2
n)

1− y
T+q

=

√√√√(
∞∑

n=1

e2(T+q)
√

n2+k2
ϕ2

n)
y

T+q (
∞∑

n=1

ϕ2
n)

1− y
T+q
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=

√√√√(
∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2
cosh2(

√
n2 + k2T )ϕ2

n

(n2 + k2)2γ cosh2(
√

n2 + k2T )
)

y
T+q (

∞∑
n=1

ϕ2
n)

1− y
T+q

=

√
(

4

K2γe2
√

KT
)

y
T+q ×

√√√√(
∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 | < u(T, x), Xn(x) > |2) y
T+q (

∞∑
n=1

ϕ2
n)

1− y
T+q

≤ 2
y

T+q (Kγe
√

KT )
− y

T+q E
y

T+q ‖ϕ‖1−
y

T+q

L2(0,π)
.

Theorem 2.2 Suppose that v(T, x) satisfies the a-priori condition

‖v(T, x)‖Dv
γ,q
≤ E, (2.7)

then for the fixed 0 < y ≤ T , we have

‖v(y, x)‖L2(0,π)

≤ 2
y

T+q

(
K( 1

2−γ)−T+q
2y

) y
T+q

(
e
√

KT
(
1− e−2

√
KT

))− y
T+q

E
y

T+q ‖ψ‖1− y
T+q

L2(0,π). (2.8)

Proof For n ≥ 1, we notice that sinh(
√

n2 + k2y) ≤ e
√

n2+k2y, and n2 + k2 ≥ 1+ k2 :=
K, sinh(

√
n2 + k2y) ≥ e

√
Ky(1− e−2

√
Ky)/2, from (2.4), (2.7) and Hölder inequality, we have

‖v(y, x)‖L2(0,π) ≤ ‖
∞∑

n=1

sinh(
√

n2 + k2y)√
n2 + k2

ψnXn‖L2(0,π)

≤
√√√√

∞∑
n=1

sinh2(
√

n2 + k2y)

(
√

n2 + k2)2
ψ2

n =

√√√√
∞∑

n=1

sinh2(
√

n2 + k2y)

(
√

n2 + k2)2
ψ

2y
T+q
n ψ

2− 2y
T+q

n

≤
√√√√(

∞∑
n=1

(
sinh(

√
n2 + k2y)√

n2 + k2
)

2(T+q)
y ψ2

n)
y

T+q (
∞∑

n=1

ψ2
n)

1− y
T+q

≤
√√√√(

∞∑
n=1

(
e
√

n2+k2y

√
n2 + k2

)
2(T+q)

y ψ2
n)

y
T+q (

∞∑
n=1

ψ2
n)

1− y
T+q

=

√√√√(
∞∑

n=1

e2(T+q)
√

n2+k2
ψ2

n(
1√

n2 + k2
)

2(T+q)
y )

y
T+q (

∞∑
n=1

ψ2
n)

1− y
T+q

=

√√√√(
∞∑

n=1

(
√

n2 + k2)2 · (n2 + k2)2γe2(T+q)
√

n2+k2

(n2 + k2)2γ sinh2(
√

n2 + k2T )

sinh2(
√

n2 + k2T )

(
√

n2 + k2)2
ψ2

n(
1√

n2 + k2
)

2(T+q)
y )

y
T+q

×
√√√√(

∞∑
n=1

ψ2
n)

1− y
T+q

≤

√√√√(
∞∑

n=1

4(
√

K)
2− 2(T+q)

y

K2γe2T
√

K(1− e−2T
√

K)2
(n2 + k2)2γe2(T+q)

√
n2+k2 | < v(T, x), Xn(x) > |2) y

T+q

×
√√√√(

∞∑
n=1

ψ2
n)

1− y
T+q
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≤

√√√√(
2(
√

K)
1−T+q

y

KγeT
√

K(1− e−2T
√

K)
)

2y
T+q (

∞∑
n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 | < v(T, x), Xn(x) > |2) y
T+q

×
√√√√(

∞∑
n=1

ψ2
n)

1− y
T+q

≤ 2
y

T+q (K
( 1
2−γ)−T+q

2y )
y

T+q (e
√

KT (1− e−2
√

KT ))
− y

T+q E
y

T+q ‖ψ‖1−
y

T+q

L2(0,π)
.

From the inequality above, we can derive the conditional stability result (2.8).

3 Regularization Method

From (2.3), (2.4), we know that cosh(
√

n2 + k2y), sinh(
√

n2+k2y)√
n2+k2 are unbounded as n

tends to infinity, so problems (1.2), (1.3) are both ill-posed, i.e., the solutions do not depend
continuously on the Cauchy datum ϕ and ψ. In order to restore the stability of solutions
given by (2.3) and (2.4), we need eliminate the high frequencies of two functions to construct
the regularized solutions for (1.2), (1.3).

3.1 Regularization Method for Problem (1.2)

We adopt the similar idea in [30], then problem (1.2) can be equivalently expressed as
the following operator equation

A1(y)u(y, x) = ϕ(x), (3.1)

where A1(y) = 1/ cosh(
√

Lxy), and A1(y) : L2(0, π) → L2(0, π) is a bounded linear self-
adjoint compact operator with the eigenvalues 1/ cosh(

√
n2 + k2y) and eigenelements Xn,

Lx : L2(0, π) → L2(0, π) is a linear positive defined self-adjoint operator, the eigenvalues and
eigenelements are n2 + k2 and Xn, respectively.

Let us introduce the Hilbert scale (Hµ)µ∈R+ according to H0 = L2, Hµ = D(Lµ/2
x ), and

‖u‖µ = ‖Lµ/2
x u‖L2 is the norm in Hµ. For γ ≥ 1/2, we construct a generalized Tikhonov

regularization solution uδ
α(y, x) by solving the minimization problem

min
u∈L2(0,π)

Jα(u), Jα(u) =
∥∥A1(y)u− ϕδ(x)

∥∥2

L2(0,π)
+ α

∥∥∥L
γ
2
x (u− u∗)

∥∥∥
2

L2(0,π)
, (3.2)

here, ϕδ(x) = uδ(0, x) denotes the noisy data, δ is measured error bound, and α plays the
role of regularization parameter, u∗ ∈ L2(0, π) is the reference element (initial guess). Hence
uδ

α(y, x) is the solution of Euler equation

(
1

cosh2(
√

Lxy)
+ αLγ

x

)
(uδ

α − u∗) =
1

cosh(
√

Lxy)

(
ϕδ(x)− 1

cosh(
√

Lxy)
u∗

)
(3.3)

of the functional Jα. Note that the operator A1(y) is a monotone compact operator, i.e.,
〈A1(y)u(y, ·), u(y, ·)〉L2(0,π) ≥ 0, and A1(y) is compact with dimR(A1(y)) = ∞, then (3.1)
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is an ill-posed problem of type II in sense of Nashed [31] (also see [32]). So adopting the
similar idea with [33], we can replaced (3.3) by the simpler regularized equation below

(
1

cosh(
√

Lxy)
+ αLγ

x

)
(uδ

α − u∗) =
(

ϕδ(x)− 1
cosh(

√
Lxy)

u∗
)

, (3.4)

which is a Lavrentiev-type method (see [34]), i.e.,

uδ
α + αLγ

x cosh(
√

Lxy)(uδ
α − u∗) = cosh(

√
Lxy)ϕδ(x). (3.5)

We know that the ordinary Lavrentiev method [35] is characterized by (3.5), and αLγ
x is

replaced by αI.
Setting q > 0, now we firstly replace cosh(

√
Lxy) by cosh(

√
Lx(T + q)) in the left side

of (3.5), and then express it a singularly perturbed form, it can be obtained a modified
Lavrentiev method for solving linear ill-posed problem (3.1). The regularized equation can
be written as

1
cosh(

√
Lxy)

uδ
α + αLγ

x

cosh(
√

Lx(T + q))
cosh(

√
Lxy)

(uδ
α − u∗) = ϕδ(x). (3.6)

We take the reference element (initial guess) u∗ ≡ 0 and solve equation (3.6), then the
regularized solution can be written as

uδ
α(y, x) =

∞∑
n=1

cosh(
√

n2 + k2y)ϕδ
nXn(x)

1 + α (n2 + k2)γ cosh
(√

n2 + k2(T + q)
) , (3.7)

here ϕδ
n = 〈ϕδ, Xn〉L2(0,π), and the noisy data ϕδ satisfies

‖ϕδ − ϕ‖L2(0,π) ≤ δ. (3.8)

3.2 Regularization Method for Problem (1.3)

As in Subsection 3.1, we also can convert (1.3) into the operator equation

A2(y)v(y, x) = vy(0, x) = ψ(x), (3.9)

here A2(y) =
√

Lx/ sinh(
√

Lxy), A2(y) : L2(0, π) → L2(0, π) is a bounded linear self-adjoint
compact operator with the eigenvalues

√
n2 + k2/ sinh(

√
n2 + k2y) and eigenelements Xn.

Note that A2(y) : L2(0, π) → L2(0, π) also is a monotone and compact operator with
dimR(A(y)) = ∞, then (3.9) is an ill-posed problem of type II in sense of Nashed. Sim-
ilar with the process in Subsection 3.1, for γ ≥ 1/2, we construct a generalized Tikhonov
regularization solution uδ

α(y, x) by solving the minimization problem

min
v∈L2(0,π)

Iβ(v), Iβ(v) =
∥∥A2(y)v − ψδ(x)

∥∥2

L2(0,π)
+ β

∥∥∥L
γ
2
x (v − v∗)

∥∥∥
2

L2(0,π)
, (3.10)
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here ψδ(x) = vδ
y(0, x) denotes the noisy data, v∗ ∈ L2(0, π) is the reference element (initial

guess). Hence vδ
β(y, x) is the solution of Euler equation

(
Lx

sinh2(
√

Lxy)
+ αLγ

x

)
(vδ

β − v∗) =
√

Lx

sinh(
√

Lxy)

(
ψδ(x)−

√
Lx

sinh(
√

Lxy)
v∗

)
(3.11)

of the functional Iβ. Since the operator A2(y) is a monotone compact operator, we can
replaced (3.11) by the simpler regularized equation (Lavrentiev-type method)

( √
Lx

sinh(
√

Lxy)
+ βLγ

x

)
(vδ

β − v∗) =
(

ψδ(x)−
√

Lx

sinh(
√

Lxy)
v∗

)
, (3.12)

i.e.,

vδ
β + βL

γ− 1
2

x sinh(
√

Lxy)(vδ
β − v∗) =

sinh(
√

Lxy)√
Lx

ψδ(x). (3.13)

Let q > 0, we replace sinh(
√

Lxy) by sinh(
√

Lx(T + q)) in the left side of (3.13), and
express it a singularly perturbed form, we can obtain a modified Lavrentiev method for
solving ill-posed problem (3.9). The regularized equation can be written as

√
Lx

sinh(
√

Lxy)
vδ

β + βLγ
x

sinh(
√

Lx(T + q))
sinh(

√
Lxy)

(vδ
β − v∗) = ψδ(x). (3.14)

We also choose the initial guess v∗ ≡ 0 and solve equation (3.14), the regularized solution
can be expressed as

vδ
β(y, x) =

∞∑
n=1

sinh(
√

n2 + k2y)ψδ
nXn(x)√

n2 + k2
(
1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))
) , (3.15)

here ψδ
n = 〈ψδ, Xn〉L2(0,π), the noisy data ψδ satisfies

‖ψδ − ψ‖L2(0,π) ≤ δ, (3.16)

and δ is the measured error bound, β is regularization parameter.

4 Preparation Knowledge

Let α, β, q, k > 0, γ ≥ 1/2, K = 1 + k2, n ≥ 1, for each fixed 0 < y ≤ T + q, we define
the functions

H1(n) =
e−(T+q−y)

√
n2+k2

α(n2+k2)γ

2
+ e−(T+q)

√
n2+k2

(4.1)

and

H2(n) =
e−(T+q−y)

√
n2+k2

√
K

(
β(n2 + k2)γ− 1

2

(
1−e−2

√
K(T+q)

2

)
+ e−(T+q)

√
n2+k2

) . (4.2)

We also require the following Lemma 4.1 which is given and proven in the reference [36].
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Lemma 4.1 If 0 ≤ r ≤ s < ∞, s 6= 0, and ν > 0, then

νe−r

ν + e−s
≤ H

(r

s

)
ν

r
s , (4.3)

where

H(η) =

{
ηη(1− η)1−η, η ∈ (0, 1),

1, η = 0, 1.
(4.4)

Theorem 4.2 Let α > 0, H1(n) is defined by (4.1), then for each fixed 0 < y ≤ T + q,
we have

H1(n) ≤ 2α−
y

T+q . (4.5)

Proof Apply Lemma 4.1 with ν = α(n2+k2)γ

2
, r = (T + q − y)

√
n2 + k2, s = (T +

q)
√

n2 + k2, and from H(η) ≤ 1, we have

H1(n) =
e−(T+q−y)

√
n2+k2

α
2
(n2 + k2)γ + e−(T+q)

√
n2+k2

=
1

α
2
(n2 + k2)γ

α
2
(n2 + k2)γ · e−(T+q−y)

√
n2+k2

α
2
(n2 + k2)γ + e−(T+q)

√
n2+k2

≤
(

α(n2 + k2)γ

2

)−1

·H
(

T + q − y

T + q

)(
α(n2 + k2)γ

2

)T+q−y
T+q

=
(

1− y

T + q

)1− y
T+q

(
y

T + q

) y
T+q

(
α(n2 + k2)γ

2

)− y
T+q

= 2
y

T+q ((n2 + k2)γ)−
y

T+q

(
1− y

T + q

)1− y
T+q

(
y

T + q

) y
T+q

α−
y

T+q

≤ 2((n2 + k2)γ)−
y

T+q α−
y

T+q .

Note that, ((n2 + k2)γ)−
y

T+q ≤ (Kγ)−
y

T+q , K = 1 + k2 > 1, (Kγ)−
y

T+q < 1, thus H1(n) ≤
2α−

y
T+q .
Theorem 4.3 Let β > 0, H2(n) is defined by (4.2), then for the fixed 0 < y ≤ T + q,

it holds that

H2(n) ≤ 2C1β
− y

T+q , C1 = K
y

2(T+q)− 1
2

(
1− e−2

√
K(T+q)

)− y
T+q

. (4.6)

Proof We take ν = β(n2 + k2)γ− 1
2

(
1−e−2

√
K(T+q)

2

)
, r = (T + q − y)

√
n2 + k2, s =

(T + q)
√

n2 + k2 in Lemma 4.1, and from H(η) ≤ 1, inequality (4.6) can be derived.

5 Convergence Estimate

In this section, under the a-priori and a-posteriori selection rules for the regulariza-
tion parameter we derives the convergence estimate for modified Lavrentiev regularization
method.

5.1 Convergence Estimate for the Method of Problem (1.2)
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5.1.1 A-Priori Convergence Estimate

Theorem 5.1 Let u be the exact solution of problem (1.2) given by (2.3), uδ
α defined

by equation (3.7) is the regularization solution, the measured data ϕδ satisfies (3.8). If the
exact solution u satisfies

‖u(T, ·)‖2
Du

γ,q
=

∞∑
n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 |〈u(T, ·), Xn〉|2 ≤ E2, (5.1)

and the regularization parameter α is chosen as

α = δ/E, (5.2)

then for fixed 0 < y ≤ T , we have the convergence estimate

‖uδ
α(y, ·)− u(y, ·)‖ ≤ 4E

y
T+q δ1− y

T+q . (5.3)

Proof Denote uα be the solution of problem (3.7) with exact data ϕ. We use the
triangle inequalities, then

‖uδ
α − u‖ ≤ ‖uδ

α − uα‖+ ‖uα − u‖. (5.4)

For 0 < y ≤ T + q, as n ≥ 1, e
√

n2+k2y/2 ≤ cosh(
√

n2 + k2y) ≤ e
√

n2+k2y, from (3.7), (4.5),
(3.8), we note that

‖uδ
α(y, ·)− uα(y, ·)‖ ≤

√√√√
∞∑

n=1

(
cosh(

√
n2 + k2y)

1 + α(n2 + k2)γ cosh(
√

n2 + k2(T + q))

)2

(ϕδ
n − ϕn)2

≤

√√√√ ∞∑
n=1

(
e−(T+q−y)

√
n2+k2

α(n2+k2)γ

2
+ e−(T+q)

√
n2+k2

)2

(ϕδ
n − ϕn)2 ≤ 2δα−

y
T+q . (5.5)

On the other hand, by (2.3), (3.7), (4.5), (5.1), we have

‖uα(y, ·)− u(y, ·)‖ (5.6)

=

∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

cosh(
√

n2 + k2y)ϕnXn

∥∥∥∥∥

≤

√√√√
∞∑

n=1

(
α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

1 + α(n2 + k2)γ cosh(
√

n2 + k2(T + q))

)2 (
cosh(

√
n2 + k2T )ϕn

)2

≤ α

√√√√ ∞∑
n=1

(
e−(T+q−y)

√
n2+k2

α(n2+k2)γ

2
+ e−(T+q)

√
n2+k2

)2

(n2 + k2)2γe2
√

n2+k2(T+q−y)|〈u(T, ·), Xn〉|2

≤ α

√√√√
∞∑

n=1

H2
1 (n)(n2 + k2)2γe2(T+q)

√
n2+k2 |〈u(T, ·), Xn〉|2 ≤ 2α1− y

T+q E.
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Finally, we can complete the proof by using (5.4), (5.5), (5.6) and (5.2).

5.1.2 A-Posteriori Convergence Estimate

In Theorem 5.1, we select the regularization parameter α by an a-priori rule (5.2),
which needs the a-priori bound E of exact solution. However, in practice the a-priori bound
E generally can be not known easily. In the following we adopt a kind of the a-posteriori
rule to select α, this method need not know the a-priori bound for exact solution, and the
regularization parameter α depend on the measured data ϕδ and measured error bound δ.
On the reference that describes the a-posteriori rule in selecting the regularization parameter,
we can see [37], etc.

We select the regularization parameter α by the following equation

‖uδ
α(0, x)− ϕδ(x)‖ = τδ, (5.7)

here τ > 1 is a constant. We need two lemmas that will be used in deriving the a-posteriori
convergence estimate.

Lemma 5.2 Let ρ(α) = ‖uδ
α(0, x)− ϕδ(x)‖, then we have the following conclusions

(a) ρ(α) is a continuous function;
(b) lim

α→0
ρ(α) = 0;

(c) lim
α→+∞

ρ(α) = ‖ϕδ‖;
(d) For α ∈ (0,+∞), ρ(α) is a strictly increasing function.
Proof It can be easily proven by setting

ρ(α) =

( ∞∑
n=1

(
α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

1 + α(n2 + k2)γ cosh(
√

n2 + k2(T + q))

)2 (
ϕδ

n

)2

)1/2

. (5.8)

Lemma 5.2 indicates that there exists a unique solution for (5.7) if ‖ϕδ‖ > τδ > 0.
Lemma 5.3 For the fixed τ > 1, the regularized solution (3.7) combining with a-

posteriori rule (5.7) determine that the regularization parameter α = α(δ, ϕδ) satisfies α ≥
(τ−1)e

√
KT

2
δ
E

.
Proof From (5.7), there holds

τδ =

∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕδ
nXn(x)

∥∥∥∥∥

≤
∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

(ϕδ
n − ϕn)Xn(x)

∥∥∥∥∥ (5.9)

+

∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕnXn(x)

∥∥∥∥∥

≤ δ +

∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕnXn(x)

∥∥∥∥∥ ,
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and ∥∥∥∥∥
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕnXn(x)

∥∥∥∥∥

≤
( ∞∑

n=1

(
α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

1 + α(n2 + k2)γ cosh(
√

n2 + k2(T + q))

)2

ϕ2
n

)1/2

≤
( ∞∑

n=1

α2(n2 + k2)2γ cosh2(
√

n2 + k2(T + q))ϕ2
n

)1/2

(5.10)

≤
( ∞∑

n=1

α2

cosh2(
√

n2 + k2T )
· (n2 + k2)2γe2(T+q)

√
n2+k2 cosh2(

√
n2 + k2T )ϕ2

n

)1/2

≤
( ∞∑

n=1

4α2

e2
√

n2+k2T
· (n2 + k2)2γe2(T+q)

√
n2+k2 |〈u(T, ·), Xn〉|2

)1/2

≤ (2/e
√

KT )αE,

from (5.9), (5.10), we get that (τ − 1)δ ≤ (2/e
√

KT )αE. The proof is completed.
Theorem 5.4 Let u given by (2.3) be the exact solution of problem (1.2), uδ

α defined by
(3.7) is the regularization solution, the measured data ϕδ satisfies (3.8). If the exact solution
u satisfies a priori bound (5.1), the regularization parameter is chosen by a-posteriori rule
(5.7), then for each fixed 0 < y ≤ T , we have the convergence estimate

‖uδ
α(y, ·)− u(y, ·)‖ ≤ CE

y
T+q δ1− y

T+q , (5.11)

where C = max
{

2
(
(τ − 1)e

√
KT /2

)− y
T+q

, 2
y

T+q

(
Kγe

√
KT

)− y
T+q

(τ + 1)1−
y

T+q

}
.

Proof As in (5.4), we know that

‖uδ
α(y, ·)− u(y, ·)‖ ≤ ‖uδ

α(y, ·)− uα(y, ·)‖+ ‖uα(y, ·)− u(y, ·)‖. (5.12)

By (5.5) and Lemma 5.3, we get

‖uδ
α(y, ·)− uα(y, ·)‖ ≤ 2δα−

y
T+q ≤ 2

(
(τ − 1)e

√
KT /2

)− y
T+q

E
y

T+q δ1− y
T+q . (5.13)

Now we give the estimate for the second term of (5.12). For fixed 0 < y ≤ T , note that

A1(y)(uα(y, ·)− u(y, ·)) (5.14)

= A1(y)
∞∑

n=1

−α(n2 + k2)γ cosh(
√

n2 + k2(T + q)) cosh(
√

n2 + k2y)ϕnXn(x)
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

=
∞∑

n=1

−α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕnXn(x)

=
∞∑

n=1

α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

(ϕδ
n − ϕn)Xn(x)

+
∞∑

n=1

−α(n2 + k2)γ cosh(
√

n2 + k2(T + q))
1 + α(n2 + k2)γ cosh(

√
n2 + k2(T + q))

ϕδ
nXn(x),
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using (3.8), (5.7), (5.14), we can obtain that

‖A1(y) (uα(y, ·)− u(y, ·)) ‖ ≤ δ + τδ = (τ + 1)δ. (5.15)

Meanwhile, according to the definition in (2.2) and a-priori condition (5.1), we have

‖uα(y, ·)− u(y, ·)‖Duα−u
γ,q

=

( ∞∑
n=1

(n2 + k2)2γe2(T+q)
√

n2+k2
(

α(n2 + k2)γ cosh2(
√

n2 + k2(T + q))

1 + α(n2 + k2)γ cosh2(
√

n2 + k2(T + q))

)2

cosh2(
√

n2 + k2y)ϕ2
n

) 1
2

≤
( ∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2
cosh2(

√
n2 + k2T )ϕ2

n

) 1
2

≤ E, (5.16)

then, by the condition stability result (2.6), it can be obtained that

‖uα(y, ·)− u(y, ·)‖ ≤ 2
y

T+q

(
Kγe

√
KT

)− y
T+q

(τ + 1)1−
y

T+q E
y

T+q δ1− y
T+q . (5.17)

Finally, combining (5.13) with (5.17), we can obtain the convergence estimate (5.11).

5.2 Convergence Estimate for the Method of Problem (1.3)

5.2.1 A-Priori Convergence Estimate

Theorem 5.5 Let v given by (2.4) be the exact solution of problem (1.3), vδ
β defined

by (3.15) is the regularization solution, the measured data ψδ satisfies (3.16). If the exact
solution v satisfies

‖v(T, ·)‖2
Dv

γ,q
=

∞∑
n=1

(n2 + k2)2γe2(T+q)
√

n2+k2 |〈v(T, ·), Xn〉|2 ≤ E2, (5.18)

and the regularization parameter β is chosen as

β = δ/E, (5.19)

then for fixed 0 < y ≤ T , we have the following convergence estimate

‖vδ
β(y, ·)− v(y, ·)‖ ≤ 2C1

(
1 + 1/e

√
Ky

)
E

y
T+q δ1− y

T+q , (5.20)

where C1 is given in Theorem 4.3.

Proof Denote vβ be the solution defined by (3.15) with exact data ψ. Using the
triangle inequality, we get that

‖vδ
β − v‖ ≤ ‖vδ

β − vβ‖+ ‖vβ − v‖. (5.21)
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For 0 < y ≤ T + q, as n ≥ 1, sinh(
√

n2 + k2y) ≤ e
√

n2+k2y, sinh(
√

n2 + k2y) ≥ e
√

n2+k2y(1−
e−2

√
Ky)/2, from (3.15), (4.6), (3.16), we note that

‖vδ
β(y, ·)− vβ(y, ·)‖ (5.22)

≤
√√√√

∞∑
n=1

(
sinh(

√
n2 + k2y)√

n2 + k2(1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q)))

)2(ψδ
n − ψn)2

≤
√√√√

∞∑
n=1

(
e−(T+q−y)

√
n2+k2

√
K(β(n2 + k2)γ− 1

2 ( 1−e−2
√

K(T+q)

2
) + e−(T+q)

√
n2+k2

)
)2(ψδ

n − ψn)2

≤ 2C1δβ
− y

T+q .

On the other hand, by (2.4), (3.15), (4.6), (5.18), we have

‖vβ(y, ·)− v(y, ·)‖ (5.23)

≤
√√√√

∞∑
n=1

(
β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

)2(
sinh(

√
n2 + k2T )√

n2 + k2
ψn)2

≤ β

√√√√
∞∑

n=1

(
e
√

n2+k2y

√
n2 + k2e

√
n2+k2y(1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q)))
)2

×
√

(n2 + k2)2γe2(T+q)
√

n2+k2
(
sinh(

√
n2 + k2T )√

n2 + k2
ψn)2

≤ β

√√√√
∞∑

n=1

(
e
√

n2+k2y(n2 + k2)γe(T+q)
√

n2+k2 |〈v(T, ·), Xn〉|√
Ke

√
Ky(1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q)))
)2

≤ βE

e
√

Ky

√√√√
∞∑

n=1

(
e−(T+q−y)

√
n2+k2

√
K(β(n2 + k2)γ− 1

2 ( 1−e−2
√

K(T+q)

2
) + e−(T+q)

√
n2+k2

)
)2

≤ (2/e
√

Ky)C1Eβ
1− y

T+q .

From (5.19), (5.21), (5.22), (5.23), the convergence result (5.20) can be derived.

5.2.2 A-Posteriori Convergence Estimate

We find β such that
‖(vδ

β)y(0, x)− ψδ(x)‖ = τδ, (5.24)

here τ > 1 is a constant.
Lemma 5.6 Let %(β) = ‖(vδ

β)y(0, x)− ψδ(x)‖, then we have the following conclusions
(a) %(β) is a continuous function;
(b) lim

β→0
%(β) = 0;

(c) lim
β→+∞

%(β) = ‖ψδ‖;
(d) For β ∈ (0,+∞), %(β) is a strictly increasing function.
Proof It can be easily proven by setting

%(β) =

( ∞∑
n=1

(
β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))
1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))

)2 (
ψδ

n

)2

)1/2

. (5.25)
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Lemma 5.6 means that there exists a unique solution for (5.24) if ‖ψδ‖ > τδ > 0.

Lemma 5.7 For the fixed τ > 1, the regularization solution (3.15) combining with
a-posteriori rule (5.24) determine that the regularization parameter β = β(δ, ψδ) satisfies
β ≥ sinh(

√
KT )(τ − 1) δ

E
.

Proof From (5.24), there holds

τδ =

∥∥∥∥∥
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

ψδ
nXn(x)

∥∥∥∥∥

≤
∥∥∥∥∥
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

(ψδ
n − ψn)Xn(x)

∥∥∥∥∥ (5.26)

+

∥∥∥∥∥
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

ψnXn(x)

∥∥∥∥∥

≤ δ +

∥∥∥∥∥
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

ψnXn(x)

∥∥∥∥∥ ,

and
∥∥∥∥∥
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

ψnXn(x)

∥∥∥∥∥

≤
( ∞∑

n=1

(
β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))
1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))

)2

ψ2
n

)1/2

≤
( ∞∑

n=1

β2(n2 + k2)2γ−1 sinh2(
√

n2 + k2(T + q))ψ2
n

)1/2

(5.27)

≤
( ∞∑

n=1

β2(n2 + k2)2γe2(T+q)
√

n2+k2

sinh2(
√

n2 + k2T )
· sinh2(

√
n2 + k2T )

(
√

n2 + k2)2
ψ2

n

)1/2

≤
( ∞∑

n=1

β2

sinh2(
√

KT )
· (n2 + k2)2γe2(T+q)

√
n2+k2 |〈v(T, ·), Xn〉|2

)1/2

≤ (1/ sinh(
√

KT ))βE,

combing with (5.26) and (5.27), we otain that (τ − 1)δ ≤ (1/ sinh(
√

KT ))βE.

Theorem 5.8 Let v given by (2.4) be the exact solution of problem (1.3), vδ
β defined

by (3.15) is the regularization solution, the measured data ϕδ satisfies (3.16). If the exact
solution v satisfies a priori bound (5.18), and the regularization parameter is chosen by
a-posteriori rule (5.24), then for fixed 0 < y ≤ T , we have the convergence estimate

‖vδ
β(y, ·)− v(y, ·)‖ ≤ C2E

y
T+q δ1− y

T+q , (5.28)
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where

C2 = max {2C1

(
sinh(

√
KT )(τ − 1)

)− y
T+q

,

2
y

T+q

(
K( 1

2−γ)−T+q
2y

) y
T+q

(
e
√

KT
(
1− e−2

√
KT

))− y
T+q

(τ + 1)1−
y

T+q },

C1 is given in Theorem 4.3.
Proof Notice that

‖vδ
β(y, ·)− v(y, ·)‖ ≤ ‖vδ

β(y, ·)− vβ(y, ·)‖+ ‖vβ(y, ·)− v(y, ·)‖. (5.29)

By (5.22) and Lemma 5.7, we get

‖vδ
β(y, ·)− vβ(y, ·)‖ ≤ 2C1δβ

− y
T+q ≤ 2C1

(
sinh(

√
KT )(τ − 1)

)− y
T+q

E
y

T+q δ1− y
T+q . (5.30)

Below, we do the estimate for the second term of (5.29). For fixed 0 < y ≤ T , we have

A2(y) (vβ(y, ·)− v(y, ·)) (5.31)

= A2(y)
∞∑

n=1

−β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q)) sinh(

√
n2 + k2y)√

n2 + k2
(
1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))
) ψnXn(x)

=
∞∑

n=1

β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

(ψδ
n − ψn)Xn(x)

+
∞∑

n=1

−β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

1 + β(n2 + k2)γ− 1
2 sinh(

√
n2 + k2(T + q))

ψδ
nXn(x),

using (3.16), (5.24), (5.31), we can obtain

‖A2(y) (vβ(y, ·)− v(y, ·)) ‖ ≤ δ + τδ = (τ + 1)δ. (5.32)

Meanwhile, according to the definition in (2.2) and a-priori bound condition (5.18), we have

‖vβ(y, ·)− v(y, ·)‖Dvβ−v
γ,q

(5.33)

= (
∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2

(
β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))
1 + β(n2 + k2)γ− 1

2 sinh(
√

n2 + k2(T + q))

)2

(
sinh(

√
n2 + k2y)√

n2 + k2

)2

ψ2
n)

1
2

≤
( ∞∑

n=1

(n2 + k2)2γe2(T+q)
√

n2+k2

(
sinh(

√
n2 + k2T )√

n2 + k2

)2

ψ2
n

) 1
2

≤ E,

then, by the condition stability result (2.8), we can get that

‖vβ(y, ·)− v(y, ·)‖ (5.34)

≤ 2
y

T+q

(
K( 1

2−γ)−T+q
2y

) y
T+q

(
e
√

KT
(
1− e−2

√
KT

))− y
T+q

(τ + 1)1−
y

T+q E
y

T+q δ1− y
T+q .
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Finally, combining (5.30) with (5.34), we can obtain the convergence estimate (5.28).

6 Numerical Experiments

In this section, we use numerical experiment to verify the efficiency of our method. For
the simplification, we only investigate the numerical efficiency of the regularization method
for (1.2), which is similar with the case of inhomogeneous Neumann data (1.3).

Example We can verify that u(y, x) = sin(x) cosh(
√

1 + k2y)(k > 0) is the exact
solution of problem (1.2). We take the Cauchy data ϕ(x) = u(0, x) = sin(x). Denote
∆x = π

N
as the step size for variable x, xı = ı∆x as the nodes in [0, π] for ı = 0, 1, 2, · · · , N ,

and choose the measured data as ϕδ = ϕ+εrandn(size(ϕ)), where ϕ is a (N+1)×1 dimension
vector, ε is the noisy level, the function randn(·) generates arrays of random numbers whose
elements are normally distributed with mean 0 and standard deviation 1, randn(size(ϕ))
returns an array of random entries that is of the same size as ϕ. The bound of measured
error δ is calculated in the sense of the root mean square error

δ := ‖ϕδ − ϕ‖l2 = (
1

N + 1

N∑
ı=0

|ϕδ(xı)− ϕ(xı)|2)1/2. (6.2)

For each 0 < y ≤ 1, the regularization solution uδ
α(y, x) is computed by (3.7) for

n = 1, 2, · · · ,M , and the relative root mean square error is computed by

ε(u) =

√
1

N+1

∑N

ı=0 (u(y, xı)− uδ
α(y, xı))

2

√
1

N+1

∑N

ı=0 u2(y, xı)
. (6.3)

Since the a-priori bound E is generally difficult to be obtained in practice, we only give
the numerical results by the a-posteriori selection rule (5.7) for the regularization parameter
α, here α is found by the Matlab command fzero, and we take τ = 1.1.

For k = 0.5, 1.5, γ = 2, q = 0.5, the relative root mean square errors for various noisy
level ε are presented in Tables 6.1–6.2. For k = 0.5, 1.5, taking ε = 0.01, q = 0.5, we
also compute the corresponding errors to investigate the influence of γ on numerical results,
which are shown in Tables 6.3–6.4. For k = 0.5, 1.5, taking ε = 0.01, γ = 2, we calculate the
errors to investigate the influence of q on numerical results, the results are shown in Tables
6.5–6.6.

From Tables 6.1–6.6, we observe that our method is stable and feasible. From Tables
6.1–6.2, we see that numerical results become better as ε goes to zero, which verifies the
convergence of our method in practice. Tables 6.3–6.4 show that, for the same ε, q, the error
decreases as γ becomes large. Tables 6.5–6.6 indicate that, for the same ε, γ, numerical
results become well as q increases. Then, in order to guarantee to obtain the satisfied
calculational result, we should choose the parameter γ, q as a relative large positive number,
this conclusion are coincident with the expression of the regularization solution (3.7) and
the convergence result (5.11).
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Table 6.1 k = 0.5, γ = 2, q = 0.5, the relative root mean square errors for various noisy
level ε at y = 0.6, 1

ε 0.001 0.005 0.01 0.05 0.1

α 6.5541e-05 3.2747e-04 6.5333e-04 0.0031 0.0058

ε0.6(u) 6.5366e-04 0.0032 0.0062 0.0272 0.0495

ε1(u) 8.2972e-04 0.0040 0.0077 0.0315 0.0549

Table 6.2 k = 1.5, γ = 2, q = 0.5, the relative root mean square errors for various noisy
level ε at y = 0.6, 1

ε 0.001 0.005 0.01 0.05 0.1

α 3.5832e-06 1.7930e-05 3.5915e-05 1.8155e-04 3.6522e-04

ε0.6(u) 6.4477e-04 0.0032 0.0063 0.0304 0.0580

ε1(u) 7.7046e-04 0.0037 0.0074 0.0346 0.0650

Table 6.3 k = 0.5, q = 0.5, ε = 0.01, the relative root mean square errors for various γ

at y = 0.6, 1

γ 1 2 3 4 5 6

α 8.2264e-04 6.5333e-04 5.0207e-04 3.4938e-04 2.1572e-04 1.2325e-04

ε0.6(u) 0.0065 0.0062 0.0057 0.0049 0.0041 0.0035

ε1(u) 0.0082 0.0077 0.0067 0.0054 0.0043 0.0035

Table 6.4 k = 1.5, q = 0.5, ε = 0.01, the relative root mean square errors for various γ

at y = 0.6, 1

γ 1 2 3 4 5 6

α 1.1693e-04 3.5915e-05 1.1029e-05 3.3810e-06 1.0296e-06 3.0864e-07

ε0.6(u) 0.0064 0.0063 0.0063 0.0062 0.0060 0.0057

ε1(u) 0.0076 0.0074 0.0072 0.0071 0.0068 0.0063

7 Conclusion and Discussion

The article researches a Cauchy problem of the Helmholtz-type equation with nonho-
mogeneous Dirichlet and Neumann datum. For problems (1.2) and (1.3), we respectively
give the conditional stability estimate under an a-priori bound assumption for exact solu-
tion. One modified Lavrentiev method is constructed to solve these two problems, and some
convergence results of Hölder type for our method are derived under an a-priori and an
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Table 6.5 k = 0.5, γ = 2, ε = 0.01, the relative root mean square errors for various q at
y = 0.6, 1

q 0.1 0.5 1 1.5 2 2.5

α 9.7801e-04 6.5333e-04 3.7885e-04 2.1455e-04 1.1932e-04 6.5121e-05

ε0.6(u) 0.0063 0.0062 0.0061 0.0058 0.0056 0.0053

ε1(u) 0.0079 0.0077 0.0074 0.0070 0.0065 0.0060

Table 6.6 k = 1.5, γ = 2, ε = 0.01, the relative root mean square errors for various q at
y = 0.6, 1

q 0.1 0.5 1 1.5 2 2.5

α 7.2900e-05 3.5915e-05 1.4619e-05 5.9326e-06 2.4051e-06 9.7384e-07

ε0.6(u) 0.0064 0.0063 0.0063 0.0063 0.0062 0.0061

ε1(u) 0.0075 0.0074 0.0073 0.0072 0.0071 0.0070

a-posteriori selection rule for the regularization parameter, respectively. We also verify the
practicability of this method by making the corresponding numerical experiments.

It should be pointed out that the proposed method also can be used to solve the Cauchy
problem of elliptic equation in cylindrical domain. However this method can not be applied
to deal with some other problems in more general domains, which is a deficiency of this
article. In addition, in the procedure of the computation, we need to choose the suitable
parameters which include the regularization parameter α, positive integer N and positive
numbers γ, q. We choose the parameters N , γ and q by using the a-priori method, but not
to consider the a-posteriori rule for them. It is well know that the selection of the parameter
is a sensitive and widespread concerned issue in the inverse problems, their values often
can influence the numerical computation effect directly, so it is necessary to consider the
a-posteriori selection rule for the parameters N , γ and q in future works.

References

[1] Cheng H W, Huang J F, Leiterman T J. An adaptive fast solver for the modified Helmholtz equation

in two dimensions[J]. J. Comput. Phys., 2006, 211(2): 616–637.

[2] Juffer A H, Botta E F F, Van Keulen B A M, Ploeg A V D, Berendsen H J C. The electric potential of

a macromolecule in a solvent: a fundamental approach[J]. J. Comput. Phys., 1991, 97(4): 144–171.

[3] Liang J, Subramaniam S. Computation of molecular electrostatics with boundary element meth-

ods[J]. Biophys. J., 1997, 73(4): 1830–1841.

[4] Russel W B, Saville D A, Schowalter W R. Colloidal dispersions[M]. Cambridge: Cambridge Uni-

versity Press, 1991.



No. 5 Modified Lavrentiev regularization method for the Cauchy problem of Helmholtz-type equation 537

[5] Hadamard J. Lectures on cauchy problem in linear partial differential equations[M]. New Haven:

Yale University Press, 1923.

[6] Isakov V. Inverse problems for partial differential equations[M]. Applied Mathematical Sciences,

Vol.127. New York: Springer, 1998.

[7] Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems[M]. New York: John Wiley and Sons,

1997.

[8] Engl H W, Hanke M, Neubauer A. Regularization of inverse problems[M]. Mathematics and Its

Applications, Vol. 375. Dordrecht: Kluwer Academic, 1996.

[9] Kirsch A. An introduction to the mathematical theory of inverse problems[M]. Applied Mathematical

Sciences, Vol. 120. New York: Springer, 2011.

[10] Shi R, Wei T, Qin H H. Fourth-order modified method for the Cauchy problem of the modified

Helmholtz equation[J]. Numerical Mathematics: Theory, Methods and Applications, 2009, 3: 326–

340.

[11] Qian A L, Yang X M, Wu Y S. Optimal error bound and a quasi-boundary value regularization

method for a Cauchy problem of the modified helmholtz equation[J]. International Journal of Com-

puter Mathematics, 2016, 93(12): 2028–2041.

[12] Qin H H, Wei T. Quasi-reversibility and truncation methods to solve a Cauchy problem for the

modified Helmholtz equation[J]. Mathematics and Computers in Simulation, 2009, 80(2): 352–366.

[13] Yang H, Yang Y. A quasi-reversibility regularization method for a Cauchy problem of the modified

helmholtz-type equation[J]. Boundary Value Problems, 2019, 2019(1): 1–19.

[14] Xiong X T, Shi W X, Fan X Y. Two numerical methods for a Cauchy problem for modified Helmholtz

equation[J]. Applied Mathematical Modelling, 2011, 35(10): 4951–4964.

[15] Cheng H. Filtering method for the Cauchy problem of the modified Helmholtz equation[J]. Journal

of Lanzhou University, 2013, 6: 323–328.

[16] Cheng H, Zhu P, Gao J. A regularization method for the Cauchy problem of the modified helmholtz

equation[J]. Mathematical Methods in the Applied Sciences, 2015, 38(17): 3711–3719.

[17] He S Q, Feng X F. A regularization method to solve a Cauchy problem for the two-dimensional

modified Helmholtz equation[J]. Mathematics, 2019, 7, DOI:10.3390/math7040360.

[18] He S Q, Feng X F. A mollification method with Dirichlet kernel to solve Cauchy problem for

two-dimensional Helmholtz equation[J]. International Journal of Wavelets Multiresolution and In-

formation Processing, 2019, DOI: 10.1142/S0219691319500292.

[19] Qian A, Mao J, Liu L. A spectral regularization method for a Cauchy problem of the modified

helmholtz equation[J]. Boundary Value Problems, 2010, 2010(1): 212056.

[20] Qian A L, Wu Y J. Optimal error bound and approximation methods for a Cauchy problem of the

modified helmholtz equation[J]. International Journal of Wavelets Multiresolution and Information

Processing, 2011, 9(2): 305–315.

[21] Marin L. A relaxation method of an alternating iterative MFS algorithm for the Cauchy problem

associated with the two-dimensional modified Helmholtz equation[J]. Numerical Methods for Partial

Differential Equations, 2012, 28(3): 899–925.

[22] Johansson B T, Marin L. Relaxation of alternating iterative algorithms for the Cauchy problem

associated with the modified Helmholtz equation[J]. Cmc-Tech Science Press, 2009, 13(2): 153–189.

[23] Qin H H, Wen D W. Tikhonov type regularization method for the Cauchy problem of the modified

Helmholtz equation[J]. Applied Mathematics and Computation, 2008, 203(2): 617–628.

[24] Sun P, Feng X L. A simple method for solving the Cauchy problem for the modified Helmholtz

equation[J]. Journal of Mathematics, 2011, 31(4): 756–762.



538 Journal of Mathematics Vol. 40

[25] Liu C S, Qu W, Chen W, Lin J. A novel trefftz method of the inverse Cauchy problem for 3d modified

helmholtz equation[J]. Inverse Problems in Science and Engineering, 2017, 25(9): 1278–1298.

[26] You L. The weighted generalized solution Tikhonov regularization method for Cauchy problem for

the modified Helmholtz equation[J]. Advances in Information Technology and Education, 2011, 201:

343–350.

[27] Alessandrini G, Rondi L, Rosset E, Vessella S. The stability for the Cauchy problem for elliptic

equations[J]. Inv. Prob., 2009, 25: 123004.

[28] Cheng J, Yamamoto M. One new strategy for a priori choice of regularizing parameters in Tikhonov’s

regularization[J]. Inv. Prob., 2000, 16(4): 31–38.

[29] Payne L E. Bounds in the Cauchy problem for the Laplace equation[J]. Arch, Rational Mech. Anal.,

1960, 5: 35–45.

[30] Tautenhahn U. Optimal stable solution of Cauchy problems of elliptic equations[J]. J. Anal. Appl.,

1996, 15: 961–984.

[31] Nashed M Z. A new approach to classification and regularization of ill-posed operator equations[M].

Inverse and Ill-Posed Problems (SanktWolfgang, 1986), Notes Rep. Math. Sci. Engrg., Vol. 4. Boston

(MA): Academic Press, 53-75, 1987.

[32] Hofmann B, Plato R. On ill-posedness concepts, stable solvability and saturation, Journal of In-

verseand Ill-Posed Problems[J], 2017, DOI: 10.1515/jiip-2017-0090.

[33] Nair M T, Tautenhahn U. Lavrentiev regularization for linear ill-posed problems under general

source conditions[J]. J. Anal. Appl., 2014, 23(1): 167–185.

[34] Nair M T, Tautenhahn U. Convergence rates for Lavrentiev-type regularization in Hilbert scales[J].

Comput. Methods Appl. Math., 2008, 8(3): 279–293.

[35] Lavrentiev M. M. Some improperly posed problems in mathematical physics[M]. Berlin: Springer-

Verlag, 1967.
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Helmholtz型方程柯西问题的修正Lavrentiev正则化方法

张宏武 1,张晓菊 2

(1. 北方民族大学数学与信息科学学院,宁夏银川 750021)

(2. 北方民族大学教师教学发展中心,宁夏银川 750021)

摘要: 本文研究了带非齐次Dirichlet及Neumann数据的一类Helmholtz型方程柯西问题. 文章在解的

先验假设下建立问题的条件稳定性结果, 利用修正Lavrentiev正则化方法克服其不适定性, 并结合正则化参

数的先验与后验选取规则获得了正则化解的收敛性结果, 相应的数值实验结果验证了所提方法是稳定可行

的, 推广了已有文献在Helmholtz型方程柯西问题正则化理论与算法方面的相关研究结果.
关键词: 不适定问题; 柯西问题; Helmholtz型方程; 修正Lavrentiev正则化方法; 收敛性估计
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