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Abstract: In this paper, the problem of norm structures in the fuzzy normed space is studied.

By using the ”cut” method and introducing K function, we discuss the norm structures existing in

the fuzzy normed space with continuous t-norm in a broader sense, and give the relations between

these norm structures. The obtained results generalize the existing conclusions and provide a new

way for the further research of the fuzzy normed space.
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1 Introduction

Inspired by the notion of probabilistic metric spaces, Kramosil and Michalek [1] in 1975
introduced the notion of fuzzy metric, a fuzzy set in the Cartesian productX×X×(−∞+∞)
satisfying certain conditions. Later, George and Veeramani [2] used the concept of continuous
t-norm to modify this definition of fuzzy metric space and showed that every fuzzy metric
space generates a Hausdorff first countable topology. In 1994, Cheng and Mordeson [3]
introduced an idea of a fuzzy norm on a linear space in such a manner that the corresponding
fuzzy metric is of Kramosil and Michalek type [1]. Following Cheng and Mordeson, Bag and
Samanta [4] introduced a similar definition of fuzzy norm. The novelty of this definition is
the validity of a decomposition theorem for a special type of fuzzy norm into a family of
crisp norms. This concept was used in fuzzy functional analysis and its applications [5–8].
In [9], Sadeqi and Kia proved that a separating family of seminorms introduces a fuzzy norm
in general but it is not true in classical analysis. In [10], Alegre and Romaguera also dealt
with fuzzy normed spaces in the sense of [3], characterized fuzzy norms in terms of a non-
decreasing and separating family of seminorms, and generalized the classical Hahn-Banach
extension theorem for normed spaces. In addition to this, Bag and Samanta established
some principles of functional analysis in fuzzy settings, which represent a foundation for the
development of fuzzy functional analysis. Some other conclusions can be found in [11–16].
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In this paper, we introduce the concept of r-norm and show some norm structures
in a fuzzy normed space. Moreover, we investigate the relationships between the normed
topology and the topology induced by these norm structures. The structure of the paper
is as follows. In the next section, we give the preliminaries on a fuzzy normed space. In
Section 3, we show our main results.

In this paper, R is the set of all real numbers, R+ is the set of all positive real numbers,
X is a real linear space.

2 Preliminaries

In this section, we first recall some basic concepts of fuzzy normed spaces.
Definition 2.1 (see [17]) A binary operation ∗: [0, 1] × [0, 1] → [0, 1] is a continuous

t-norm, if ∗ satisfies the following conditions: ∀a, b, c, d ∈ [0, 1],
(1) commutative a ∗ b = b ∗ a;
(2) associative (a ∗ b) ∗ c = a ∗ (b ∗ c);
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d;
(4) a ∗ 1 = a;
(5) ∗ is continuous.
Lemma 2.1 (see [17]) Let ∗: [0, 1]× [0, 1] → [0, 1] be a continuous t-norm.
(1) If 1 > r1 > r2 > 0, then there exists r3 ∈ (0, 1) such that r1 ∗ r3 ≥ r2;
(2) If r4 ∈ (0, 1), then there exists r5 ∈ (0, 1) such that r5 ∗ r5 ≥ r4.
We can strengthen Lemma 2.1 to the following form.
Lemma 2.2 Let ∗: [0, 1]× [0, 1] → [0, 1] be a continuous t-norm.
(1) If 1 > r1 > r2 > 0, then there exists r3 ∈ (0, 1) such that r1 ∗ r3 > r2;
(2) If r4 ∈ (0, 1), then there exists r5 ∈ (r4, 1), such that r5 ∗ r5 > r4.
Proof (1) Let 1 > r1 > r2 > 0. Take r ∈ (r2, r1). From Lemma 2.1 (1), there exists

r3 ∈ (0, 1) such that r1 ∗ r3 ≥ r. Thus r1 ∗ r3 > r2.
(2) Let r4 ∈ (0, 1). Take r ∈ (r4, 1). From Lemma 2.1 (2), there exists r5 ∈ (0, 1) such

that r5 ∗ r5 ≥ r. Thus r5 ∗ r5 > r4.
In this paper, the definition of a fuzzy normed linear space in [4] is changed accordingly,

and the following definition is given.
Definition 2.2 Let X be a linear space, ∗ be a continuous t-norm, N be a fuzzy subset

of X × (0,+∞). N is called a fuzzy norm on X if the following conditions are satisfied: for
all x, y ∈ X,

(1) ∀t > 0, N (x, t) > 0;
(2) (∀t > 0, N (x, t) = 1) iff x = θ, where θ is the zero element of X;
(3) ∀t > 0, N (λx, t) = N

(
x, t

|λ|

)
if λ 6= 0;

(4) ∀t, s > 0, N (x, t) ∗N (y, s) ≤ N (x + y, t + s);
(5) N (x, ·) : (0+∞) → (0, 1] is continuous.
The 3-tuple (X, N, ∗) is said to be a fuzzy normed linear space. Obviously, if N is a

fuzzy norm, then N (x, ·) is non-decreasing for all x ∈ X.
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Remark 2.1 If (1) and (5) are replaced by
(N1) ∀t ∈ R with t ≤ 0, N (x, t) = 0;
(N5) N (x, ·) is a non-decreasing function of R and lim

t→∞
N (x, t) = 1; respectively, then

N is a fuzzy norm in the sense of [4].
Example 2.1 Let X be a linear normed space, N : X × (0,+∞) → (0, 1] is defined

by N (x, t)= t
t+‖x‖ , then N is a fuzzy norm on X.

In the rest of this paper, we always suppose the function K : [0, 1] → [0, 1] satisfies the
following conditions: K (0) = 0, K (t) 6≡ 0, K is increasing and continuous at 0.

Theorem 2.1 Let (X, N, ∗) be a fuzzy normed linear space. For x ∈ X, r ∈ (0, 1),
t > 0, we define

BN (x, r, t) = {y ∈ X : N (x− y, t)+K (r) > 1} .

Then {BN (x, r, t) : r ∈ (0, 1) , t > 0} is a base of neighborhoods at x.
Proof (1) ∀x ∈ X, t > 0, r ∈ (0, 1), x ∈ BN (x, r, t).
(2) ∀x ∈ X, 0 < r1, r2 < 1, t1, t2 > 0, there exists r3=min {r1, r2}, t3 = {t1, t2},

from the non-decreasing of N (x, ·), we have BN (x, r3, t3) ⊆ BN (x, r2, t2), BN (x, r3, t3) ⊆
BN (x, r1, t1), so BN (x, r3, t3) ⊆ BN (x, r2, t2) ∩BN (x, r1, t1).

(3) For any BN (x, r, t), from Lemma 2.2, we have 0 < r1 < r such that (1−K(r1)) ∗
(1−K(r1)) > 1−K(r). Let y ∈ BN (x, r1, t) ⊆ BN (x, r, t), we know N (x− y, t)+K (r1) >

1. Since N (x− y, ·) is continuous, we can take δ > 0 such that N (x− y, t− δ)+K (r1) > 1.
Therefore, for any z ∈ BN (y, r1, δ), we have N(y − z, δ) + K(r1) > 1 and

N(x− z, t) + K(r) ≥ N(x− y, t− δ) ∗N(y − z, δ) + K(r)
≥ (1−K(r1)) ∗ (1−K(r1)) + K(r) > 1−K(r) + K(r) = 1.
Thus, z ∈ BN (x, r, t). From the arbitrariness of z, we know BN (y, r1, δ) ⊆ BN (x, r, t).

From (1)–(3), we can conclude that {BN (x, r, t) : x ∈ X, r ∈ (0, 1), t > 0} forms a base of
neighborhoods at x ∈ X.

Based on the {BN (x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}, we have a topology τN which is said
to be the topology generated by the fuzzy norm N . It is easy to see the topology τN is the
first countable. In fact, the countable collection of balls {BN (x, 1/n, 1/n) : x ∈ X, n = 2, 3, ...}
forms a base of neighborhoods at x ∈ X.

3 Main Results

In this section, we shall introduce norm structures in a fuzzy normed space, and inves-
tigate the relationships between the fuzzy topology τN and the topologies induced by these
norm structures. For simplicity, we always suppose a fuzzy normed space (X, N, ∗) satisfies
the regular condition: ∀x ∈ X, there exists t > 0 such that N (x, t) = 1.

Theorem 3.1 Let (X, N, ∗) be a fuzzy normed space. Define a function ‖·‖0 on X as
follows

‖x‖0 = inf {t > 0, N (x, t) = 1} ,∀x ∈ X, (3.1)

then ‖·‖0 is a norm on X.
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Proof Obviously, for all x ∈ X, ‖x‖0 ≥ 0, ‖x‖0 = 0 if and only if x = θ. Now, for any
x, y ∈ X, ε > 0, from the definition of ‖·‖0, we get that

N
(
x, ‖x‖0 +

ε

2

)
= 1, N

(
y, ‖y‖0 +

ε

2

)
= 1.

Therefore

N (x+y, ‖x‖0+‖y‖0 + ε) ≥ N
(
x, ‖x‖0 +

ε

2

)
∗N

(
y, ‖y‖0 +

ε

2

)
= 1,

and hence ‖x+y‖0 ≤ ‖x‖0 + ‖y‖0+ε. From the arbitrariness of ε > 0, we have

‖x+y‖0 ≤ ‖x‖0 + ‖y‖0.

Additionally, ∀α ∈ R\ {0}, we have

‖αx‖0 = inf {t > 0, N (αx, t) = 1}= |α| inf
{

t

|α| > 0, N

(
x,

t

|α|

)
= 1

}
= |α| ‖x‖0.

Obviously, ‖αx‖0 = |α| ‖x‖0 if α = 0. Thus ‖·‖0 is a norm on X.
Theorem 3.2 (X, N, ∗) is a fuzzy normed space, ‖·‖0 is the norm defined by (3.1).

Let r ∈ (0, 1], x ∈ X,
‖x‖r = inf {t > 0 : N (x, t)+K (r) ≥ 1} . (3.2)

Then, for a fixed point x ∈ X, ‖x‖r is a decreasing function with respect to r ∈ (0, 1], and

‖x‖0 = lim
r→0+

‖x‖r = sup
r∈(0,1]

‖x‖r. (3.3)

Proof Given x ∈ X, r1, r2 ∈ (0, 1) with r1 ≥ r2, we have

{t > 0, N (x, t)+K (r1) ≥ 1} ⊇ {t > 0, N (x, t) + K (r2) ≥ 1} ,

hence ‖x‖r1
≤ ‖x‖r2

, which means ‖x‖r is decreasing with respect to r ∈ (0, 1]. So lim
r→0+

‖x‖r

exists and
lim

r→0+
‖x‖r = sup

r∈(0,1]

‖x‖r.

Moreover, for any ε > 0, x ∈ X, N (x, ‖x‖0 + ε) = 1. From (3.2), we obtain

‖x‖r ≤ ‖x‖0 + ε for any r ∈ (0, 1] .

From the arbitrariness of ε > 0, we know

sup
r∈(0,1]

‖x‖r ≤ ‖x‖0. (3.4)

On the other hand, for any ε > 0, we know t > ‖x‖0 − ε whenever N (x, t) = 1 from
the definition of ‖·‖0. That is, N (x, t) < 1 on (0, ‖x‖0 − ε]. Recalling that K is increasing
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and continuous at 0, there exists r0 = r0(ε) such that N (x, t) + K (r0) < 1 on (0, ‖x‖0 − ε].
That is, t > ‖x‖0 − ε whenever N (x, t)+K (r0) ≥ 1. Then we have

‖x‖0 − ε ≤ inf {t > 0 : N (x, t) + K (r0) ≥ 1} ≤ sup
r∈(0,1]

inf {t > 0 : N (x, t) + K (r) ≥ 1} ,

which together with the arbitrariness of ε implies that

‖x‖0 ≤ sup
r∈(0,1]

‖x‖r. (3.5)

Inequalities (3.4) and (3.5) imply the equation (3.3).
Remark 3.1 In [4], ‖x‖r was defined as inf {t > 0 : N (x, t) ≥ r}. Therefore, the def-

inition (3.2) of ‖x‖r is a generalization of that in [4]. We call ‖·‖r the r-norm in a fuzzy
normed space (X, N, ∗).

Lemma 3.1 Let (X, N, ∗) be a fuzzy normed space, x ∈ X. If N (x, ·) is strictly
increasing, then

‖x‖r = inf {t > 0 : N (x, t)+K (r) > 1} for any r ∈ (0, 1) . (3.6)

Proof For any r ∈ (0, 1), let t0 = inf {t > 0 : N (x, t)+K (r) > 1}. From (3.2), we get
‖x‖r ≤ t0. If ‖x‖r < t0, then there is 0 < t2 < t0 such that N (x, t2) + K (r) ≥ 1. Since
N (x, ·) is strictly increasing, then N (x, t0) + K (r) > 1. From the continuity of N (x, ·),
there is δ > 0 such that N (x, t0 − δ) + K (r) > 1 which conflicts with the definition of t0.
Thus, ‖x‖r = t0 = inf {t > 0 : N (x, t) + K (r) > 1}.

Lemma 3.2 (X, N, ∗) is a fuzzy normed space. N (x, ·) is strictly increasing for
the fixed point x ∈ X. Let t > 0 and r ∈ (0, 1). Then ‖x− y‖r < t if and only if
N (x− y, t) + K (r) > 1, that is BN (x, r, t) = Nr(x, t), where

Nr (x, t) = {y ∈ X : ‖x− y‖r < t} . (3.7)

Proof Suppose ‖x− y‖r < t. From Lemma 3.1, there exists 0 < t0 < t such that
N (x− y, t0) + K (r) > 1. Hence, N (x− y, t) + K (r) > N (x− y, t0) + K (r) > 1. So
BN (x, r, t) ⊇ Nr (x, t).

Now, we suppose N (x− y, t) + K (r) > 1. Since N (x− y, ·) is continuous, there exists
0 < t1 < t such that N (x− y, t1) + K (r) > 1. From (3.6), we know ‖x− y‖r ≤ t1 < t. So
BN (x, r, t) ⊆ Nr (x, t). This completes the proof.

Theorem 3.3 (X, N, ∗) is a fuzzy normed space, N (x, ·) is strictly increasing for the
fixed point x ∈ X. Then ‖x‖r = ‖x‖0 for r ∈ (0, 1] if and only if N satisfies the following
condition: for all t > 0,

N (x, t) = 1 whenever N (x, t) + K (r) > 1. (3.8)

Proof The sufficiency is obvious.
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To prove the necessity, we suppose that ‖x‖r = ‖x‖0 and N (x, t)+K (r) > 1. From the
definition of ‖x‖r, ‖x‖r ≤ t, that is ‖x‖0 ≤ t. For any ε > 0, from the definition of ‖·‖0, we
get t′ > 0 such that t + ε > t′ and N (x, t′) = 1. Therefore, N (x, t + ε) = 1, which together
with the continuity of N (x, ·) implies that N (x, t) = 1.

Theorem 3.4 If (X, N, ∗) is a fuzzy normed space, then
(i) the topology τ0 generated by ‖·‖0 is stronger than the topology τN ;
(ii) τ0=τN if and only if N satisfies the following condition: for each x ∈ X, t > 0 and

y ∈ N0(x, t), there exist r′ ∈ (0, 1), t′ > 0 and 0 < s′ < t such that

N (x− z, s′) = 1 whenever N (z − y, t′) + K (r′) > 1 for any z ∈ X, (3.9)

where
N0 (x, t) = {y ∈ X : ‖x− y‖0 < t} . (3.10)

Proof (i) To prove τ0 ⊇ τN , it is sufficient to prove {xn} is convergent to x0 with respect
to τN whenever {xn} is convergent to x0 with respect to τ0. In fact, if {xn} is convergent
to x0 with respect to τ0, then for any ε > 0, there exists N such that sup

r∈(0,1]

‖xn − x0‖r < ε

for all n ≥ N . Therefore, for any r ∈ (0, 1], we have ‖xn − x0‖r < ε for all n ≥ N . From
Lemma 3.2, we have N (xn − x0, ε) + K(r) > 1 for all n ≥ N . That is, xn ∈ BN (x0, r, ε) for
all n ≥ N . Thus, {xn} is convergent to x0 with respect to τN .

(ii) Necessity We suppose that τ0=τN . Then, for each x ∈ X and t > 0, N0 (x, t) ∈
τ0 ⊆ τN . Hence, for each y ∈ N0(x, t), there exist r′ ∈ (0, 1) and t′ > 0 such that
BN (y, r′, t′) ⊆ N0 (x, t), that is, ‖x− z‖0 < t whenever N(y − z, t′) + K (r′) > 1 for any
z ∈ X. Obviously, ‖x− z‖0 < t is equivalent to that there exists 0 < s′ < t such that
N(x− z, s′) = 1.

Sufficiency From (i), we only have to prove τ0 ⊆ τN . To do that, it is sufficient to
prove N0 (x, t) ∈ τN for each x ∈ X, t > 0. In fact, for any y ∈ N0(x, t), by the supposition,
there exist r′ ∈ (0, 1), t′ > 0 and 0 < s′ < t such that (3.9) holds, Which means that
BN (y, r′, t′) ⊆ N0 (x, t). Thus N0 (x, t) ∈ τN .

Corollary 3.1 (X, N, ∗) is a fuzzy normed space. N (x, ·) is strictly increasing for the
fixed point x ∈ X. If N satisfies the following condition: there exists r′ ∈ (0, 1) such that
for any t > 0, x ∈ X,

N (x, t) = 1 whenever N (x, t)+K (r′) > 1. (3.11)

Then τ0=τN .
Proof Let x ∈ X, t > 0 and y ∈ N0(x, t) arbitrarily, by the definition of N0(x, t),

there exists 0 < s∗ < t such that N (x− y, s∗) = 1. Take s∗ < s′ < t, t′ = s′ − s∗. By the
supposition, when N (z − y, t′) + K (r′) > 1, we have N (z − y, t′) = 1, and hence

N (x− z, s′) ≥ N (x− y, s∗) ∗N (y − z, t′) = 1 ∗ 1 = 1.

From Theorem 3.4 (ii), we know τ0=τN .
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Theorem 3.5 (X, N, ∗) is a fuzzy normed space, N (x, ·) is strictly increasing for the
fixed point x ∈ X. ‖·‖r is defined by (3.2) for any r ∈ (0, 1). Then ‖·‖r is a pseudo-
norm on X if and only if N satisfies the following condition: for any x, y ∈ X, t1, t2 > 0,
N (x− z, t1)+K (r) > 1 and N (z − y, t2)+K (r) > 1 imply that N (x− y, t1 + t2)+K (r) >

1.
Proof Sufficiency It is easy to see that ‖x‖r ≥ 0, ‖x‖r = 0 if x = θ.
For any ε > 0, we obtain

N
(
x− z, ‖x− z‖r +

ε

2

)
+K (r) > 1, N

(
z − y, ‖z − y‖r +

ε

2

)
+K (r) > 1.

By the supposition, we obtain

N (x− y, ‖x− z‖r + ‖z − y‖r + ε) + K (r) > 1.

Therefore
‖x− y‖r ≤ ‖x− z‖r + ‖z − y‖r+ε.

From the arbitrariness of ε > 0, we know

‖x− y‖r ≤ ‖x− z‖r + ‖z − y‖r.

Now, we prove ‖αx‖r = |α| ‖x‖r. In fact, ∀α ∈ R\ {0}, we have

‖αx‖r = inf {t > 0 : N (αx, t) + K (r) > 1} = inf{t > 0 : N(x,
t

|α|) + K (r) > 1}

= inf{|α| t′ : N (x, t′) + K (r) > 1} = |α| inf {t′ : N (x, t′) + K (r) > 1}
= |α| ‖x‖r.

Obviously, ‖αx‖r = |α| ‖x‖r if α = 0.
Necessity Suppose that N (x− z, t1) + K (r) > 1 and N (z − y, t2) + K (r) > 1.

By the continuity of N (x, ·), there exists δ > 0 such that N (x− z, t1 − δ) + K (r) > 1
and N (z − y, t2 − δ) + K (r) > 1. So ‖x− z‖r ≤ t1 − δ and ‖z − y‖r ≤ t2 − δ. Since
‖x− y‖r ≤ ‖x− z‖r + ‖z − y‖r, we have ‖x− y‖r ≤ t1 + t2 − 2δ < t1 + t2. By (3.2), there
exists t0 < t1 + t2 such that N (x− y, t0)+K (r) ≥ 1. Since N (x− y, ·) is strictly increasing,
we get N (x− y, t1 + t2) + K (r) > 1.
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模糊赋范空间的范数结构

李欣欣 ,吴健荣

(苏州科技大学数理学院, 江苏 苏州 215009)

摘要: 本文研究了模糊赋范空间中的范数结构问题. 利用“切片”的方法, 通过引入K函数, 在更广泛

意义下讨论了带连续 t-模的模糊范数空间中存在的范数结构, 给出了这些范数结构之间的关系. 所得结果推

广了现有的结论, 并为模糊赋范空间的进一步研究提供了一种新的途径.
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