FAST AND SLOW DECAY SOLUTIONS FOR SUPERCRITICAL FRACTIONAL ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS

AO Wei－wei ${ }^{1}$ ，LIU Chao ${ }^{1}$ ，WANG Li－ping ${ }^{2}$
（1．School of Mathematics and Statistics，Wuhan University，Wuhan 430072，China）
（2．Department of Mathematics；Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice， East China Normal University，Shanghai 200241，China）

1 Introduction and Main Results

We construct classic solutions of the following supercritical nonlinear fractional exterior problem

$$
\left\{\begin{array}{l}
(-\Delta)^{s} u-u^{p}=0, u>0 \text { in } \mathbb{R}^{N} \backslash \overline{B_{1}}, \tag{1.1}\\
u=0 \text { in } \overline{B_{1}}, \quad \lim _{|x| \rightarrow \infty} u(x)=0,
\end{array}\right.
$$

where $s \in(0,1), p>\frac{N+2 s}{N-2 s}$ and B_{1} is the unit ball in \mathbb{R}^{N} ．As usual，the operator $(-\Delta)^{s}$ is the fractional Laplacian，defined at any point $x \in \mathbb{R}^{N}$ as

$$
\begin{aligned}
(-\Delta)^{s} u(x): & =C(N, s) P . V \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y \\
& =C(N, s) \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y
\end{aligned}
$$

here P．V．is a commonly used abbreviation for＂in the principal value sense＂and $C(N, s)$ is a constant dependent of N and s ．We refer to［6－7］．

For classical Laplacian，namely，$s=1$ ，which is the Lame－Emden－Fowler equation

$$
\left\{\begin{array}{l}
\Delta u+u^{p}=0, u>0 \text { in } \mathbb{R}^{N} \backslash \bar{\Omega} \tag{1.2}\\
u=0 \text { on } \partial \Omega, \quad \lim _{|x| \rightarrow \infty} u(x)=0
\end{array}\right.
$$

where Ω is a bounded open set with smooth boundary in \mathbb{R}^{N} and $p>1$ ．Davila etc［4］proved （1．2）has infinitely many solutions with slow decay $O\left(|x|^{-\frac{2}{p-1}}\right)$ at infinity with either $N \geq 4$ and $p>\frac{N+1}{N-3}$ ，or $N \geq 3, p>\frac{N+2}{N-2}$ and Ω is symmetric with respect to N coordinate axes． Later，this result was extended to $p>\frac{N+2}{N-2}$ and Ω is a smooth bounded domain by Davila

[^0]etc [5]. For fractional Laplacian, we will prove that this result also holds when $s \in(0,1)$, $p>\frac{N+2 s}{N-2 s}$ and B_{1} is the unit ball in \mathbb{R}^{N}. For problem (1.1) in general exterior domain, our method not be used to solve it, there exist some obstacles in Remark 1.

Our main results can be stated as follows:
Theorem 1.1 For any $s \in(0,1)$ and $p>\frac{N+2 s}{N-2 s}$, there exists a continuum of solutions $u_{\lambda}, \lambda>0$, to problem (1.1) such that

$$
u_{\lambda}(x)=\beta^{\frac{1}{p-1}}|x|^{-\frac{2 s}{p-1}}(1+o(1)) \quad \text { as } \quad|x| \rightarrow \infty
$$

and $u_{\lambda}(x) \rightarrow 0$ as $\lambda \rightarrow 0$, uniformly in $\mathbb{R}^{N} \backslash \overline{B_{1}}$.
Theorem 1.2 For any $s \in(0,1)$, there exists a number $P_{s}>\frac{N+2 s}{N-2 s}$, such that for any $p \in\left(\frac{N+2 s}{N-2 s}, P_{s}\right)$, problem (1.1) has a fast decay solution $u_{p}, u_{p}(x)=O\left(|x|^{2 s-N}\right)$ as $|x| \rightarrow+\infty$.

In order to prove Theorem 1.1, we will take ω as approximation of (1.1) where ω is a smooth, radially symmetric, entire solution of the following problem

$$
\begin{equation*}
(-\Delta)^{s} \omega-\omega^{p}=0, \omega>0 \text { in } \mathbb{R}^{N}, \quad \omega(0)=1, \quad \lim _{|x| \rightarrow \infty} \omega(x)|x|^{\frac{2 s}{p-1}}=\beta^{\frac{1}{p-1}} \tag{1.3}
\end{equation*}
$$

here β is a positive constant chosen so that $\beta^{\frac{1}{p-1}}|x|^{-\frac{2 s}{p-1}}$ is a singular solution to $(-\Delta)^{s} \omega-$ $\omega^{p}=0$ for which the existence and linear theory has been studied recently in [1] for the fractional case.

The basic idea in the proof of Theorem 1.2 is to consider as an initial approximation the function $\lambda^{\frac{N-2 s}{2}} \omega_{* *}(\lambda x+\xi)$, where

$$
\begin{equation*}
\omega_{* *}(r)=\left(\frac{1}{1+A_{N, s} r^{2}}\right)^{\frac{N-2 s}{2}} \tag{1.4}
\end{equation*}
$$

is the unique positive radial smooth solution of the problem

$$
(-\Delta)^{s} \omega_{* *}=\omega_{* *}^{\frac{N+2 s}{N-2 s}} \text { in } \mathbb{R}^{N}, \quad \omega_{* *}(0)=1
$$

These scalings will constitute good approximations for small λ if p is sufficiently close to $\frac{N+2 s}{N-2 s}$. We prove then adjusting both ξ and λ, produces a solution as desired after addition of a lower order term.

By the change of variables

$$
\widetilde{u}(x)=\lambda^{-\frac{2}{p-1}} u\left(\frac{x-\xi}{\lambda}\right)
$$

and the maximum principle (see the page 39 of [3]), problem (1.1) is equivalent to

$$
\left\{\begin{array}{l}
(-\Delta)^{s} \widetilde{u}-|\widetilde{u}|^{p}=0, \widetilde{u} \not \equiv 0 \quad \text { in } \mathbb{R}^{N} \backslash \overline{B_{1 \lambda, \xi}}, \tag{1.5}\\
\widetilde{u}=0 \text { in } \overline{B_{1 \lambda, \xi}}, \lim _{|x| \rightarrow \infty} \widetilde{u}(x)=0
\end{array}\right.
$$

where $\lambda>0$ is a small parameter and $B_{1 \lambda, \xi}$ is the shrinking domain

$$
B_{1 \lambda, \xi}=\left\{\lambda x+\xi \mid x \in B_{1}\right\}
$$

Remark 1 To prove Theorem 1.1 and Theorem 1.2, we will construct solutions of the equivalent problem (1.5) with the form $\widetilde{u}=\omega+\varphi_{\lambda}+\phi$ and $\widetilde{u}=\omega_{* *}+\varphi_{\lambda}+\phi$. To obtain the decay of \widetilde{u}, we need to know that the decay of $\varphi_{\lambda}+\phi$. Using the Poisson Kernel $P(x, y)$ in $R^{N} \backslash B_{1}$, we first obtain the decay of φ_{λ} is no more than $O\left(|x-\xi|^{2 s-N}\right)$. Secondly, we can derive the decay of ϕ by the Green function $G(x, y)$ in $R^{N} \backslash B_{1}$. But for general exterior domain, there is a lack of the explicit formulas and the decay of Poisson Kernel and Green's function of fractional Laplace operator $(-\Delta)^{s}$.

The proof of Theorem 1.1 and Theorem 1.2 refers to [2] in detail.

References

[1] Ao Weiwei, Chan Hardy, Gonzalez Maria del Mar, Wei Juncheng. Bound state solutions for the supercritical fractional Schrödinger equation[J]. Nonlinear Analysis, DOI: 10.1016/j.na.2019.02.002, 2019.
[2] Ao Weiwei, Liu Chao, Wang Liping. Fast and slow decay solutions for supercritical fractional elliptic problems in exterior domains[J]. preprint.
[3] Chen Wenxiong, Li Yan, Ma Pei. The fractional Laplacian[R]. Report, May 2017.
[4] Dávila Juan, Del Pino Manuel, Musso Monica. The supercritical Lane-Emden-Fowler equation in exterior domains[J]. Comm. Partial Differential Equations, 2007, 32(7-9): 1225-1243.
[5] Dávila Juan, Del Pino Manuel, Musso Monica, Wei Juncheng. Fast and slow decay solutions for supercritical elliptic problems in exterior domains[J]. Calc. Var. Partial Differential Equations, 2008, 32(4): 453-480.
[6] Di Nezza Eleonora, Palatucci Giampiero, Valdinoci Enrico. Hitchhiker's guide to the fractional Sobolev spaces[J]. Bull. Sci. Math., 2012, 136(5): 521-573.
[7] Landkof N S. Foundations of modern potential theory[M]. Die Grundlehren der Mathematischen Wissenschaften180, Heidelberg: Springer, 1972.

[^0]: ＊Received date：2020－07－15 Accepted date：2020－08－15
 Foundation item：The research of the first author is supported by NSFC（11801421）and the research of the third author is supported by NSFC（11671144）．

 Biography：Ao Weiwei（1988－），female，born at Jingzhou，Hubei，professor，major in partial differential equation．E－mail：wwao＠whu．edu．cn．

