Vol. 40 (2020) No. 5

FAST AND SLOW DECAY SOLUTIONS FOR SUPERCRITICAL FRACTIONAL ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS

AO Wei-wei¹, LIU Chao¹, WANG Li-ping²

(1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

(2. Department of Mathematics; Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China)

1 Introduction and Main Results

We construct classic solutions of the following supercritical nonlinear fractional exterior problem

$$\begin{cases} (-\Delta)^s u - u^p = 0, \ u > 0 \text{ in } \mathbb{R}^N \setminus \overline{B_1}, \\ u = 0 \text{ in } \overline{B_1}, \quad \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
(1.1)

where $s \in (0,1)$, $p > \frac{N+2s}{N-2s}$ and B_1 is the unit ball in \mathbb{R}^N . As usual, the operator $(-\Delta)^s$ is the fractional Laplacian, defined at any point $x \in \mathbb{R}^N$ as

$$\begin{split} (-\Delta)^s u(x) &:= C(N,s) P.V. \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2s}} dy \\ &= C(N,s) \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{u(x) - u(y)}{|x - y|^{N+2s}} dy, \end{split}$$

here P.V. is a commonly used abbreviation for "in the principal value sense" and C(N, s) is a constant dependent of N and s. We refer to [6–7].

For classical Laplacian, namely, s = 1, which is the Lame-Emden-Fowler equation

$$\begin{cases} \Delta u + u^p = 0, \ u > 0 \text{ in } \mathbb{R}^N \setminus \overline{\Omega}, \\ u = 0 \text{ on } \partial \Omega, \quad \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
(1.2)

where Ω is a bounded open set with smooth boundary in \mathbb{R}^N and p > 1. Davila etc [4] proved (1.2) has infinitely many solutions with slow decay $O(|x|^{-\frac{2}{p-1}})$ at infinity with either $N \ge 4$ and $p > \frac{N+1}{N-3}$, or $N \ge 3$, $p > \frac{N+2}{N-2}$ and Ω is symmetric with respect to N coordinate axes. Later, this result was extended to $p > \frac{N+2}{N-2}$ and Ω is a smooth bounded domain by Davila

Received date: 2020-07-15 **Accepted date:** 2020-08-15

Foundation item: The research of the first author is supported by NSFC (11801421) and the research of the third author is supported by NSFC (11671144).

Biography: Ao Weiwei (1988–), female, born at Jingzhou, Hubei, professor, major in partial differential equation. E-mail: wwao@whu.edu.cn.

etc [5]. For fractional Laplacian, we will prove that this result also holds when $s \in (0, 1)$, $p > \frac{N+2s}{N-2s}$ and B_1 is the unit ball in \mathbb{R}^N . For problem (1.1) in general exterior domain, our method not be used to solve it, there exist some obstacles in Remark 1.

Our main results can be stated as follows:

Theorem 1.1 For any $s \in (0, 1)$ and $p > \frac{N+2s}{N-2s}$, there exists a continuum of solutions $u_{\lambda}, \lambda > 0$, to problem (1.1) such that

$$u_{\lambda}(x) = \beta^{\frac{1}{p-1}} |x|^{-\frac{2s}{p-1}} (1+o(1))$$
 as $|x| \to \infty$

and $u_{\lambda}(x) \to 0$ as $\lambda \to 0$, uniformly in $\mathbb{R}^N \setminus \overline{B_1}$.

Theorem 1.2 For any $s \in (0, 1)$, there exists a number $P_s > \frac{N+2s}{N-2s}$, such that for any $p \in (\frac{N+2s}{N-2s}, P_s)$, problem (1.1) has a fast decay solution u_p , $u_p(x) = O(|x|^{2s-N})$ as $|x| \to +\infty$.

In order to prove Theorem 1.1, we will take ω as approximation of (1.1) where ω is a smooth, radially symmetric, entire solution of the following problem

$$(-\Delta)^{s}\omega - \omega^{p} = 0, \ \omega > 0 \ \text{ in } \mathbb{R}^{N}, \ \omega(0) = 1, \ \lim_{|x| \to \infty} \omega(x)|x|^{\frac{2s}{p-1}} = \beta^{\frac{1}{p-1}},$$
(1.3)

here β is a positive constant chosen so that $\beta^{\frac{1}{p-1}}|x|^{-\frac{2s}{p-1}}$ is a singular solution to $(-\Delta)^s \omega - \omega^p = 0$ for which the existence and linear theory has been studied recently in [1] for the fractional case.

The basic idea in the proof of Theorem 1.2 is to consider as an initial approximation the function $\lambda^{\frac{N-2s}{2}}\omega_{**}(\lambda x + \xi)$, where

$$\omega_{**}(r) = \left(\frac{1}{1 + A_{N,s}r^2}\right)^{\frac{N-2s}{2}}$$
(1.4)

is the unique positive radial smooth solution of the problem

$$(-\Delta)^s \omega_{**} = \omega_{**}^{\frac{N+2s}{N-2s}} \quad \text{in } \mathbb{R}^N, \quad \omega_{**}(0) = 1.$$

These scalings will constitute good approximations for small λ if p is sufficiently close to $\frac{N+2s}{N-2s}$. We prove then adjusting both ξ and λ , produces a solution as desired after addition of a lower order term.

By the change of variables

$$\widetilde{u}(x) = \lambda^{-\frac{2}{p-1}} u\left(\frac{x-\xi}{\lambda}\right)$$

and the maximum principle (see the page 39 of [3]), problem (1.1) is equivalent to

$$\begin{cases} (-\Delta)^s \widetilde{u} - |\widetilde{u}|^p = 0, \ \widetilde{u} \neq 0 & \text{in } \mathbb{R}^N \setminus \overline{B_{1\lambda,\xi}}, \\ \widetilde{u} = 0 & \text{in } \overline{B_{1\lambda,\xi}}, \ \lim_{|x| \to \infty} \widetilde{u}(x) = 0 \end{cases}$$
(1.5)

where $\lambda > 0$ is a small parameter and $B_{1\lambda,\xi}$ is the shrinking domain

$$B_{1\lambda,\xi} = \{\lambda x + \xi \mid x \in B_1\}.$$

Remark 1 To prove Theorem 1.1 and Theorem 1.2, we will construct solutions of the equivalent problem (1.5) with the form $\tilde{u} = \omega + \varphi_{\lambda} + \phi$ and $\tilde{u} = \omega_{**} + \varphi_{\lambda} + \phi$. To obtain the decay of \tilde{u} , we need to know that the decay of $\varphi_{\lambda} + \phi$. Using the Poisson Kernel P(x, y)in $\mathbb{R}^N \setminus B_1$, we first obtain the decay of φ_{λ} is no more than $O(|x - \xi|^{2s-N})$. Secondly, we can derive the decay of ϕ by the Green function G(x, y) in $\mathbb{R}^N \setminus B_1$. But for general exterior domain, there is a lack of the explicit formulas and the decay of Poisson Kernel and Green's function of fractional Laplace operator $(-\Delta)^s$.

The proof of Theorem 1.1 and Theorem 1.2 refers to [2] in detail.

References

- Ao Weiwei, Chan Hardy, Gonzalez Maria del Mar, Wei Juncheng. Bound state solutions for the supercritical fractional Schrödinger equation[J]. Nonlinear Analysis, DOI: 10.1016/j.na.2019.02.002, 2019.
- [2] Ao Weiwei, Liu Chao, Wang Liping. Fast and slow decay solutions for supercritical fractional elliptic problems in exterior domains[J]. preprint.
- [3] Chen Wenxiong, Li Yan, Ma Pei. The fractional Laplacian[R]. Report, May 2017.
- [4] Dávila Juan, Del Pino Manuel, Musso Monica. The supercritical Lane-Emden-Fowler equation in exterior domains[J]. Comm. Partial Differential Equations, 2007, 32(7–9): 1225–1243.
- [5] Dávila Juan, Del Pino Manuel, Musso Monica, Wei Juncheng. Fast and slow decay solutions for supercritical elliptic problems in exterior domains[J]. Calc. Var. Partial Differential Equations, 2008, 32(4): 453–480.
- [6] Di Nezza Eleonora, Palatucci Giampiero, Valdinoci Enrico. Hitchhiker's guide to the fractional Sobolev spaces[J]. Bull. Sci. Math., 2012, 136(5): 521–573.
- [7] Landkof N S. Foundations of modern potential theory[M]. Die Grundlehren der Mathematischen Wissenschaften 180, Heidelberg: Springer, 1972.