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1 Introduction and Main Results

We construct classic solutions of the following supercritical nonlinear fractional exterior
problem
(=A)*u—uP =0, u>0in RV \ By,
{ u=0 in By, ‘llim u(x) =0, (1.1)

where s € (0,1), p > %fgi and B is the unit ball in RY. As usual, the operator (—A)? is

the fractional Laplacian, defined at any point x € RV as

(=A)*u(z) : = C(N, s)P.V. Mdy

Ry |7 — y[NF2
: u(r) —u(y)
=C(N,s) lim dy,
0" Jrv\p,(a) [T — Y[V

here P.V. is a commonly used abbreviation for ”in the principal value sense” and C(N, s) is
a constant dependent of N and s. We refer to [6-7].

For classical Laplacian, namely, s = 1, which is the Lame-Emden-Fowler equation

Au+uP =0, u>0in RV\Q,
(1.2)

u=0 on 09, |l‘im u(z) =0,

— 00

where 2 is a bounded open set with smooth boundary in RY and p > 1. Davila etc [4] proved

(1.2) has infinitely many solutions with slow decay O(|z|~#-7) at infinity with either N > 4

and p > %, or N >3, p> &£ and Q is symmetric with respect to N coordinate axes.

3 N—2
Later, this result was extended to p > % and 2 is a smooth bounded domain by Davila
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etc [5]. For fractional Laplacian, we will prove that this result also holds when s € (0, 1),
p > NE2% and B is the unit ball in RY. For problem (1.1) in general exterior domain, our
method not be used to solve it, there exist some obstacles in Remark 1.

Our main results can be stated as follows:

Theorem 1.1  For any s € (0,1) and p > %f%i, there exists a continuum of solutions
ux, A > 0, to problem (1.1) such that

ux(@) = BT [z 77T (1+0(1))  as |z| — oo

and uy(z) — 0 as A — 0, uniformly in RV \ B;.

Theorem 1.2  For any s € (0, 1), there exists a number P, > %fgz, such that for any
p € (512, P,), problem (1.1) has a fast decay solution u,, u,(z) = O(|z|**~V) as |z] — +o0.

In order to prove Theorem 1.1, we will take w as approximation of (1.1) where w is a
smooth, radially symmetric, entire solution of the following problem
(~A)Yw—wP =0, w>0 inRY, w(0)=1, | llirn w(x)|z|7T = BT, (1.3)
here 3 is a positive constant chosen so that 871 |x|7% is a singular solution to (—A)*w —
wP = 0 for which the existence and linear theory has been studied recently in [1] for the
fractional case.
The basic idea in the proof of Theorem 1.2 is to consider as an initial approximation

N—-2
2

the function A Sw**()\x + &), where

1 2
Was (1) = <1+ANJ2> (1.4)

is the unique positive radial smooth solution of the problem

N+2s

(—A)Ywy =w mRY, w,,(0)=1.

These scalings will constitute good approximations for small A if p is sufficiently close to

N+2s
N-—2s

of a lower order term.

. We prove then adjusting both £ and A, produces a solution as desired after addition

i(z) = AP (x i 5)

and the maximum principle (see the page 39 of [3]), problem (1.1) is equivalent to

By the change of variables

(“A)T—[aP =0, a0 inR¥\ By,

EZO in Bl)\,§7 lim a(l‘) =0

|z|—o0

where A > 0 is a small parameter and B ¢ is the shrinking domain

Bl/\75 = {/\$+§ ‘ HAS Bl}
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Remark 1 To prove Theorem 1.1 and Theorem 1.2, we will construct solutions of
the equivalent problem (1.5) with the form ©w = w + ¢) + ¢ and u = w.. + @ + ¢. To obtain
the decay of u, we need to know that the decay of ¢y + ¢. Using the Poisson Kernel P(z,y)
in RN \ By, we first obtain the decay of ¢, is no more than O(|z — £]**7V). Secondly, we
can derive the decay of ¢ by the Green function G(z,y) in RY \ B;. But for general exterior
domain, there is a lack of the explicit formulas and the decay of Poisson Kernel and Green’s

function of fractional Laplace operator(—A)®.

The proof of Theorem 1.1 and Theorem 1.2 refers to [2] in detail.
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