HYPOELLIPTIC ESTIMATE FOR SOME COMPLEX VECTOR FIELDS

LI Wei-xi¹, LIU Lv-qiao², ZENG Juan²

(1. School of Mathematics and Statistics; Statistics and Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China)

(2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

1 Introduction and Main Results

Let $\Omega \subset \mathbb{R}^n$ be a neighborhood of 0, and denote by *i* the square root of -1. We consider the following system of complex vector fields

$$\mathcal{P}_{j} = \partial_{x_{j}} - i \left(\partial_{x_{j}} \varphi(x) \right) \partial_{t}, \quad j = 1, \cdots, n, \quad (x, t) \in \Omega \times \mathbb{R}, \tag{1.1}$$

where $\varphi(x)$ is a real-valued function defined in Ω . This system was first studied by Treves [4], and considered therein is more general case for t varies in \mathbb{R}^m rather than \mathbb{R} . Denote by (ξ, τ) the dual variables of (x, t). Then the principle symbol σ for the system $\{\mathcal{P}_j\}_{1 \le j \le n}$ is

$$\sigma(x,t;\xi,\tau) = \left(i\xi_1 + (\partial_{x_1}\varphi)\,\tau,\cdots,i\xi_j + (\partial_{x_j}\varphi)\,\tau\right) \in \mathbb{C}^n$$

with $(x,t;\xi,\tau) \in T^*(\Omega \times \mathbb{R}_t) \setminus \{0\}$, and thus the characteristic set is

$$\left\{ (x,t;\xi,\tau) \in T^* \left(\Omega \times \mathbb{R}_t \right) \setminus \{0\} \mid \xi = 0, \ \tau \neq 0, \ \nabla \varphi(x) = 0 \right\}.$$

Since outside the characteristic set the system $\{\mathcal{P}_j\}_{1 \le j \le n}$ is (microlocally) elliptic, we only need to study the microlocal hypoellipticity in the two components $\{\tau > 0\}$ and $\{\tau < 0\}$ under the assumption that

$$\nabla \varphi(0) = 0. \tag{1.2}$$

Note we may assume $\varphi(0) = 0$ if replacing φ by $\varphi - \varphi(0)$. Throughout the paper we will always suppose φ satisfies the following condition of finite type

$$\sum_{1 \le |\alpha| \le k-1} |\partial^{\alpha} \varphi(0)| = 0 \quad \text{and} \quad \sum_{|\alpha|=k} |\partial^{\alpha} \varphi(0)| > 0.$$
(1.3)

* Received date: 2020-07-15 Accepted date: 2020-08-15

Foundation item: Supported by National Natural Science Foundation of China (10671182).

Biography: Li Weixi (1980–), male, born at Yicheng, Hubei, professor, major in partial differential equations. E-mail: wei-xi.li@whu.edu.cn.

for some positive integer k. In view of (1.2) it suffices to consider the nontrivial case of $k \geq 2$ for the maximal hypoellipticity. By maximal hypoellipticity (in the sense of Helffer-Nourrigat [2]), it means the existence of a neighborhood $\tilde{\Omega} \subset \Omega$ of 0 and a constant C such that for any $u \in C_0^{\infty}(\tilde{\Omega} \times \mathbb{R})$, we have

$$\|\partial_x u\|_{L^2(\mathbb{R}^{n+1})} + \|(\partial_x \varphi) \partial_t u\|_{L^2(\mathbb{R}^{n+1})} \le C \Big(\sum_{j=1}^n \|\mathcal{P}_j u\|_{L^2(\mathbb{R}^{n+1})} + \|u\|_{L^2(\mathbb{R}^{n+1})}\Big),$$
(1.4)

where and throughout paper we use the notation $\|\vec{a}\|_{L^2} = \left(\sum_{1 \le j \le n} \|a_j\|_{L^2}^2\right)^{1/2}$ for vectorvalued functions $\vec{a} = (a_1, \cdots, a_n)$. Note that the maximal hypoellipticity along with the condition (1.3) yields the following subellptic estimate

$$\|\partial_x u\|_{L^2(\mathbb{R}^{n+1})} + \||D_t|^{\frac{1}{k}} u\|_{L^2(\mathbb{R}^{n+1})} \le C \Big(\sum_{j=1}^n \|\mathcal{P}_j u\|_{L^2(\mathbb{R}^{n+1})} + \|u\|_{L^2(\mathbb{R}^{n+1})}\Big).$$

Thus the subellipticity is in some sense intermediate between the maximal hypoellipticity and the local hypoellipticity.

Observe the system $\{\mathcal{P}_j\}_{1 \leq j \leq n}$ is translation invariant for t. So we may perform partial Fourier transform with respect to t, and study the maximal microhypoellipticity, in the two directions $\tau > 0$ and $\tau < 0$. Indeed we only need consider without loss of generality the maximal microhypoellipticity in positive direction $\tau > 0$, since the other direction $\tau < 0$ can be treated similarly by replacing φ by $-\varphi$. Consider the resulting system as follows after taking partial Fourier transform for $t \in \mathbb{R}$.

$$\partial_{x_j} + \tau \left(\partial_{x_j} \varphi \right), \quad j = 1, \cdots, n, \quad x \in \Omega \subset \mathbb{R}^n,$$
(1.5)

and we will show the maximal microhypoellipticity at 0 in the positive direction in $\tau > 0$, which means the existence of a positive number $\tau_0 > 0$, a constant C > 0 and a neighborhood $\tilde{\Omega} \subset \Omega$ of 0 such that

$$\forall \tau \ge \tau_0, \ \forall u \in C_0^{\infty}(\tilde{\Omega}), \\ \|\partial_x u\|_{L^2}^2 + \|\tau(\partial_x \varphi) u\|_{L^2}^2 \le C\Big(\|\partial_x + \tau(\partial_x \varphi) u\|_{L^2}^2 + \|u\|_{L^2}^2\Big),$$
(1.6)

where and throughout the paper we denote $\|\cdot\|_{L^2(\mathbb{R}^n)}$ by $\|\cdot\|_{L^2}$ for short if no confusion occurs. We remark the operators defined in (1.5) is closely related to the semi-classical Witten Laplacian $\triangle_{\tau V}^{(0)} = -\triangle_x + \tau^2 |\partial_x V|^2 - \tau \triangle_x V$ with τ^{-1} the semi-classical parameter, by the relationship

$$\|\partial_x + \tau \left(\partial_x \varphi\right) u\|_{L^2}^2 = \left(\triangle_{\tau V}^{(0)} u, \ u\right)_{L^2},$$

where $(\cdot, \cdot)_{L^2}$ stands for the inner product in $L^2(\mathbb{R}^n)$. Helffer-Nier [1] conjectured $\Delta_{\tau V}^{(0)}$ is subelliptic near 0 if φ is analytic and has no local minimum near 0, and this still remains open so far. Note (1.6) is a local estimate concerning the sharp regularity near $0 \in \mathbb{R}^n$ for $\tau > 0$, and we have also its global counterpart, which is of independent interest for analyzing the spectral property of the resolvent and the semi-classical lower bound of Witten Laplacian. We refer to Helffer-Nier's work [1] for the detailed presentation on the topic of global maximal hypoellipticity and its application to the spectral analysis on Witten Laplacian.

Theorem 1.1 (Maximal microhypoellipticity for $\tau > 0$) Let φ be a polynomial satisfying condition (1.3) with $k \ge 2$. Denote by $\lambda_j, 1 \le j \le n$, the eigenvalues of the Hessian matrix $(\partial_{x_i}\partial_{x_j}\varphi)_{n\times n}$. Suppose there exists a constant $C_* > 0$ such that for any $x \in \Omega$, we have the following estimates: if k = 2, then

$$\sum_{\lambda_j(x)>0} \lambda_j(x) \le C_* \Big(\sum_{\lambda_j(x)<0} |\lambda_j(x)| + |\partial_x \varphi(x)|^{\epsilon_0} \Big),$$
(1.7)

and if k > 2, then

$$\sum_{\lambda_j(x)>0} \lambda_j(x) \le C_* \Big(\sum_{\lambda_j(x)<0} |\lambda_j(x)| + |\partial_x \varphi(x)|^{\frac{k-2}{k-1}} + \sum_{2\le |\beta|\le k-1} \left|\partial_x^\beta \varphi(x)\right|^{\mu_\beta} \Big),$$
(1.8)

where $\epsilon_0 > 0$ is an arbitrarily small number and μ_{β} are given numbers with $\mu_{\beta} > (k-2)/(k-|\beta|)$ for $2 \le |\beta| \le k-1$. Then the system \mathcal{P}_j defined in (1.1) is maximally microhypoelliptic in positive position $\tau > 0$, that is, estimate (1.6) holds.

Replacing φ by $-\varphi$ we can get the maximal microhypoellipticity for $\tau < 0$, and thus the maximal hypoellipticity for all τ .

Corollary 1.2 (Maximal hypoellipticity) Under the same assumption as Theorem 1.1 with (1.7) and (1.8) replaced by the estimate that for any $x \in \Omega$,

$$\sum_{j=1}^{n} |\lambda_j(x)| \leq \begin{cases} C_* |\partial_x \varphi(x)|^{\epsilon_0}, & \text{if } k = 2, \\ C_* \Big(|\partial_x \varphi(x)|^{\frac{k-2}{k-1}} + \sum_{2 \leq |\beta| \leq k-1} |\partial_x^\beta \varphi(x)|^{\mu_\beta} \Big), & \text{if } k > 2, \end{cases}$$

the system \mathcal{P}_i defined in (1.1) is maximally hypoelliptic, that is, estimate (1.4) holds.

Remark 1.3 We need only verify conditions (1.7) and (1.8) for these points where $\Delta \varphi$ is positive, since it obviously holds for the points where $\Delta \varphi \leq 0$.

The details of the proof for the main result were given by [3].

References

- Helffer B, Nier F. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[M]. Lecture Notes in Mathematics Volume 1862, Berlin: Springer–Verlag, 2005.
- [2] Helffer B, Nourrigat J. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs[M]. Progress in Mathematics Volume 58. Boston, MA: Birkhäuser Boston Inc., 1985.
- [3] Li Weixi, Liu Lvqiao, Zeng Juan. Hypoelliptic estimate for some complex vector fields[J]. Preprint.
- [4] François Treves. Study of a model in the theory of complexes of pseudodifferential operators[J]. Ann. of Math., 1976, 104(2): 269–324.