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Abstract: In this paper, we study an optimization problem of excess-of-loss reinsurance and

investment with delay and mispricing under the Jump-diffusion model. Using the stochastic control
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1 Introduction

An insurer can control risks through a number of measures, such as investment and
reinsurance. In recent years, the problem of the optimal investment and reinsurance has
been widely investigated, which was considered in the literature [1–3] and so on.

With the deepening of research in the insurance field, some scholars point out that the
risky asset’s price process is represented by a jump-diffusion model, which is more consistent
with the stock market. Ignoring jump risks on risky asset’s price process have an important
impact on the optimal problem (see [4,5]). A et al.[6] showed that the development of real-
world systems depends not only on their current state but also on their previous history. If
we believe that financial market exists bounded memory or the performance-related capital
inflow (outflow), then the wealth process with delay must be considered (see [7]). In addition,
due to the existence of frictions in markets which are not absolutely mature, insurers can
make a profit by mispricing, that is, by exploiting the price difference between a pair of
stocks, we can refer to [8,9].
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On the basis of previous literature, we establish a class of generalized optimal investment
and reinsurance risk model, we consider the optimization problem of excess-of-loss reinsur-
ance and investment with delay and mispricing under the Jump-diffusion model, and the
purpose is to obtain the equilibrium reinsurance-investment strategy and the corresponding
equilibrium value function. In which we introduce the performance-related capital inflow
(outflow) and the price processes of stocks are described by jump-diffusion models with mis-
pricing. Moreover, referring to Li et al.[10], the claim process is described by a spectrally
negative Lévy process.

The remainder of this paper is organized as follows. Section 2 gives the model framework.
Section 3 derives the explicit expressions of the equilibrium reinsurance-investment strategy
and the corresponding equilibrium value function, and provides two special cases of our
model. Section 4 provides some numerical examples for sensitivity analysis.

2 The Model

Let (Ω,F , {Ft}t∈[0,T ],P) be a complete probability space that fulfills the usual condition,
where [0, T ] is a fixed and finite time horizon; Ft is the information of the market available
up to time t and P is a reference measure.

Following the idea suggested by Li et al.[10], without reinsurance and investment, the
insurer’s surplus process modeled by a spectrally negative Lévy process defined on this
probability space with dynamics

dRt = cdt + σdB(t)−
∫ ∞

0

zN1(dz, dt), (2.1)

where
(i) N1(dz, dt) is a Poisson random measure representing the number of insurance claims

of size (z, z + dz) within the time period (t, t + dt).
(ii) c is the premium rate, according to the expected value principle, c = (1+θ)

∫∞
0

zv(dz),
where θ > 0 is the safety loading of the insurer, σ > 0 is the volatility rate, B(t) is a standard
Brownian motion.

Let Ñ1(dz, dt) = N1(dz, dt)− v(dz)dt represent the compensated measure of N1(dz, dt),
where v is a Lévy measure and

∫∞
0

zv(dz) < ∞, v(dz) represents the expected number of
insurance claims of size (z, z + dz) within a unit time interval.

`t is the size of the claim paid by the insurer when the claim equals Zt at time t ∈ [0, T ],
where 0 < `t < Zt. And Zt−`t is the residual part of Zt that needs to be paid by the reinsurer.
Let `t = `(Zt, t) be a reinsurance strategy, in which we slightly abuse notation by using ` on
both sides of this equation. So the premium rate of reinsurer is (1 + η)

∫∞
0

z − `(z, t)v(dz),
where η > θ > 0 is the safety loading of the reinsurer.

In theory, we should first suppose that the reinsurance strategy relies on surplus. But in
the following Theorem 3.2, we find that the equilibrium reinsurance strategy is independent
of the surplus. Thus, for simplicity, we omit `′s possible dependency on the surplus. So the
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surplus process can be described as

dRt =
∫ ∞

0

((θ − η)z + η`(z, t))v(dz)dt−
∫ ∞

0

`(z, t)Ñ1(dz, dt) + σdB(t). (2.2)

We assume that the insurer is allowed to invest in a financial market composing of one
risk-free asset, a market index and a pair of stocks with mispricing (see Gu et al. [8]). The
risk-free asset’s price process S0(t) is described by

dS0(t)
S0(t)

= rdt, (2.3)

where r > 0 represents the risk-free interest rate. The price process of the market index
Pm(t) follows as

dPm(t)
Pm(t)

= (r + µm)dt + σmdZm(t), (2.4)

where the market risk premium µm and the market volatility σm are positive constants,
and {Zm(t)} is a standard Brownian motion. The price processes of the pair of stocks are
described by

dS1(t)
S1(t)

= (r + µ)dt + σ1dZ1(t)− k1X(t)dt + d

N2(t)∑
i=1

Y1i, S1(0) = S10 > 0, (2.5)

dS2(t)
S2(t)

= (r + µ)dt + σ1dZ2(t) + k2X(t)dt + d

N2(t)∑
i=1

Y1i, S2(0) = S20 > 0, (2.6)

(i) µ, σ1, k1 and k2 are positive constants, σ1dZi(t) describes the risk of stock i in the
financial market, i = 1, 2.

(ii) {N2(t)}t∈[0,T ] is homogeneous Poisson process with intensity β1, which represents
the number of the price jumps that occurred the first or second stock during time interval
[0, T ].

(iii) Y1i is the ith jump amplitude of the stock price, and Y1i, i = 1, 2, 3, · · · are
i.i.d.random variables. We assume their distribution is G(y1), and they have finite first-
order moment µY1 and second-order moment σ2

Y1
.

(iv) Suppose that {Z1(t)}, {Z2(t)}, {Zm(t)}, {B(t)}, N1(dz, dt), and
N2(t)∑
i=1

Y1i are inde-

pendent and P (Y1i ≥ −1) = 1, i = 1, 2, 3, · · · to guarantee that these two stocks’s prices
have always been positive.

(v) The term kjX(t)dt shows the effect of mispricing on the jth stock’s price, j = 1, 2.
X(t) is the pricing error or mispricing between two stocks, and is defined as

X(t) = ln
S1(t)
S2(t)

.
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Based on eqs.(2.5) and (2.6), using standard Itô’s calculus, we find that the dynamics of the
mispricing X(t) satisfy the following equation

dX(t) = −(k1 + k2)X(t)dt + σ1(dZ1(t)− dZ2(t)), X(0) = x0. (2.7)

Let `(Zt, t) represent the retained level of the excess-of-loss at time t, πm(t) represent the
money amount invested in the market index at time t, π1(t) and π2(t) represent the money
amount invested in two stocks. (W u(t)−πm(t)−π1(t)−π2(t)) represents the money amount
invested in the risk-free asset, where W u(t) is the wealth process at time t. We denote the
whole reinsurance-investment strategy by u = {`(Zt, t), πm(t), π1(t), π2(t)}, t ∈ [0, T ].

In addition, we also consider that there exists capital inflow into or outflow from the
insurer’s current wealth. We can refer to A et al.[6]. Denote the average and pointwise
performance of the wealth in the past horizon [t− h, t] by Ȳ (t) and M(t), respectively, i.e.,

Ȳ (t) =

∫ 0

−h
eδsW (t + s)ds

1
h

∫ 0

−h
eδsds

, M(t) = W (t− h), ∀t ∈ [0, T ], (2.8)

where δ ≥ 0 is an average parameter and h > 0 is the delay parameter. Let Y (t) =∫ 0

−h
eδsW (t + s)ds, then Ȳ (t) = Y (t)

1
h

∫ 0
−h

eδsds
. Let the function g(t,W (t)− Ȳ (t),W (t)−M(t))

represent the capital inflow (outflow) amount which is related to the past performance of
the wealth. W (t)− Ȳ (t) accounts for the average performance of the wealth between t− h

and t, and W (t)−M(t) implies the absolute performance of the wealth in the time horizon
[t− h, t].

This capital inflow (outflow) may occur in a variety of situations, as described in A et
al. [6]. We assume that the amount of the capital inflow (outflow) is proportional to the
past performance of the insurer’s wealth, i.e.,

g(t,W (t)− Ȳ (t),W (t)−M(t)) = b(W (t)− Ȳ (t)) + c(W (t)−M(t)), (2.9)

where b and c are nonnegative constants.
Thus, the insurer’s wealth process {W u(t), t ∈ [0, T ]} is described by

dW u(t) =dRt + πm(t)
dPm(t)
Pm(t)

+ π1(t)
dS1(t)
S1(t)

+ π2(t)
dS2(t)
S2(t)

+ (W u(t)− πm(t)

− π1(t)− π2(t))
dS0(t)
S0(t)

− g(t,W u(t)− Ȳ (t),W u(t)−M(t))dt

=[lW u(t) + µmπm + µ(π1 + π2) +
∫ ∞

0

((θ − η)z + (1 + η)`(z, t))v(dz)− k1π1x

+ k2π2x + b̄Y (t) + cM(t)]dt + σdB(t) + σ1π1dZ1(t) + σ1π2dZ2(t) + σmπmdZm(t)

−
∫ ∞

0

`(z, t)N1(dz, dt) +
∫ ∞

−1

π1y1N2(dy1, dt) +
∫ ∞

−1

π2y1N2(dy1, dt), (2.10)

where l = r − b − c and b̄ = b
1
h

∫ 0
−h

eδsds
, πm, π1 and π2 are short for πm(t), π1(t) and π2(t).

We suppose that W u(t) = w0 > 0, ∀t ∈ [−h, 0], which implies that the insurer is endowed
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with the initial wealth w0 at time −h and do not start the business until time 0. Then the
initial value of the average performance wealth Y (0) is Y (0) = w0(1−e−δh)

δ
. Referring to Zeng

et al.[2] and Li et al.[10], we give two definitions.
Definition 2.1 (Admissible Strategy) A strategy u = {`(Zt, t), πm(t), π1(t), π2(t)}t∈[0.T ]

is admissible if
(i) for all t ∈ [0, T ], Zt ≥ 0, 0 ≤ `(Zt, t) ≤ Zt;
(ii) u is predictable w.r.t.{Ft}t∈[0,T ], and Et,w,x,y[

∫ T

0
‖ v(t) ‖2 dt] < ∞, where ‖ v(t) ‖2=

(`(Zt, t))2 + (πm(t))2 + (π1(t))2 + (π2(t))2;
(iii) ∀(t, w, x, y) ∈ [0, T ] × R × R × [−1,∞), Eq.(2.10) has a pathwise unique solution

{W u(t)}t∈[0.T ] with W (t) = w, X(t) = x, Y (t) = y.
Let Π denote the set of all admissible strategies. In this paper, our main purpose

is to research the reinsurance and investment problem for an insurer under mean-variance
criterion, i.e., wishes to maximize Ju(t, w, x, y), in which Ju is given by

Ju(t, w, x, y) = Et,w,x,y[W u
T ]− γ

2
V art,w,x,y[W u

T ], (t, w, x, y) ∈ [0, T ]×R×R× [−1,∞),

where γ > 0 represents a constant absolute risk aversion coefficient. We know that mean-
variance criterion has the issue of time-inconsistency. But in many situations, time-consistency
of strategies is a basic requirement for rational investors. So, we tackle the problem from a
non-cooperative game point of view by defining an equilibrium strategy and its corresponding
equilibrium value function (see [11]).

Definition 2.2 For an admissible strategy u∗ = {`∗(Zt, t), π∗m(t), π∗1(t), π
∗
2(t)}t∈[0,T ]

for ε > 0 with any fixed chosen initial state (t, w, x, y) ∈ [0, T ]×R×R× [−1,∞), define the
strategy uε,t by

uε,t
s =

{
(¯̀(z, s), π̄m(s), π̄1(s), π̄2(s)), t ≤ s < t + ε,

u∗s, t + ε ≤ s ≤ T,
(2.11)

where ¯̀(z, s) is an admissible reinsurance strategy and (π̄m(t), π̄1(t), π̄2(t)) ∈ R×R×R,

lim
ε→0

inf
Ju∗(t, w, x, y)− Juε,t

(t, w, x, y)
ε

≥ 0.

Then u∗ is an equilibrium strategy and Ju∗(t, w, x, y) is the corresponding equilibrium value
function. For ∀(t, w, x, y) ∈ [0, T ] × R × R × [−1,∞), ∀φ(t, w, x, y) ∈ C1,2,2,1([0, T ] × R ×
R× [−1,∞)), we define a variational operator Au as follows

Auφ(t, w, x, y) = φt + φw[lw + µ(π1(t) + π2(t)) +
∫ ∞

0

((θ − η)z + (1 + η)`(z, t))v(dz)

+ µmπm(t)− k1π1(t)x + k2π2(t)x + b̄y + cm]− φx(k1 + k2)x + φy(w − δy − e−δhm)

+
1
2
φww[σ2 + σ2

1π
2
1(t) + σ2

1π
2
2(t) + σ2

mπ2
m(t)] + σ2

1φxx + φwx(σ2
1π1(t)− σ2

1π2(t))

+
∫ ∞

0

(φ(t, w − `, x, y)− φ(t, w, x, y))v(dz) + β1E[φ(t, w + π1(t)y1, x, y)

− φ(t, w, x, y)] + β1E[φ(t, w + π2(t)y1, x, y)− φ(t, w, x, y)]. (2.12)
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3 Optimization Problem and the Equilibrium Optimal Strategy

In this section, we consider the optimization problem and seek the optimal strategy,
and then analyze two special cases. We first provide a verification theorem whose proof is
similar to Theorem 1 of Kryger and Steffensen [12]. We omit it here.

Theorem 3.1 (Verification Theorem) Suppose there exist V (t, w, x, y) and g(t, w, x, y) ∈
C1,2,2,1([0, T ] × R × R × [−1,∞)) satisfying the following conditions: for all (t, w, x, y) ∈
([0, T ]×R×R× [−1,∞)),

sup
u∈Π

{AuV (t, w, x, y)− γ

2
Aug2(t, w, x, y) + γg(t, w, x, y)Aug(t, w, x, y)} = 0, (3.1)

V (T,w, x, y) = w, (3.2)

Au∗g(t, w, x, y) = 0, g(T, w, x, y) = w, (3.3)

and

u∗ := arg sup
u∈Π

{AuV (t, w, x, y)− γ

2
Aug2(t, w, x, y) + γg(t, w, x, y)Aug(t, w, x, y)}, (3.4)

then Ju∗(t, w, x, y) = V (t, w, x, y), E[W u∗(T )] = g(t, w, x, y) and u∗ is the equilibrium
reinsurance-investment strategy.

For an admissible strategy u∗ = {`∗(Zt, t), π∗m(t), π∗1(t), π
∗
2(t)}t∈[0,T ], the HJB function

(3.1) follows

sup
u∈Π

{
Vw

[
lw + µ(π1(t) + π2(t))− k1π1x + k2π2x +

∫ ∞

0

((θ − η)z + (1 + η)`(z, t))v(dz)

+µmπm(t) + b̄y + cm
]
+ Vt − Vx(k1 + k2)x + Vy(w − δy − e−δhm) +

1
2
(Vww − γg2

w)[σ2

+ σ2
1π

2
1(t) + σ2

1π
2
2(t) + σ2

mπ2
m(t)] + σ2

1(Vxx − γg2
x) + (Vwx − γgwgx)(σ2

1π1(t)− σ2
1π2(t))

+
∫ ∞

0

(
V (t, w − `, x, y)− γ

2
g2(t, w − `, x, y) + γg(t, w, x, y)g(t, w − `, x, y)

)
v(dz)

−
∫ ∞

0

(
V (t, w, x, y) +

γ

2
g2(t, w, x, y)

)
v(dz)− β1E

[
V (t, w, x, y) +

γ

2
g2(t, w, x, y)

]

+ β1E
[
V (t, w + π1y1, x, y)− γ

2
g2(t, w + π1y1, x, y) + γg(t, w, x, y)g(t, w + π1y1, x, y)

]

+ β1E
[
V (t, w + π2y1, x, y)− γ

2
g2(t, w + π2y1, x, y) + γg(t, w, x, y)g(t, w + π2y1, x, y)

]

−β1E
[
V (t, w, x, y) +

γ

2
g2(t, w, x, y)

]}
= 0. (3.5)

To solve eqs. (3.3) and (3.5), we try to conjecture the solutions in the following forms

V (t, w, x, y) = A(t)(w + αy) + B(t)x2 + C(t)x + P (t), (3.6)

g(t, w, x, y) = Ā(t)(w + αy) + B̄(t)x2 + C̄(t)x + P̄ (t) (3.7)
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with A(T ) = Ā(T ) = 1, B(T ) = C(T ) = B̄(T ) = C̄(T ) = P (T ) = P̄ (T ) = 0. For a detailed
introduction to w + αy, see A et al.[6]. The partial derivatives are

Vt = At(w + αy) + Btx
2 + Ctx + Pt, Vw = A, Vx = 2Bx + C, Vy = αA, (3.8)

Vxx = 2B, Vww = Vwx = 0, gxx = 2B̄, gww = gwx = 0, (3.9)

gt = Āt(w + αy) + B̄tx
2 + C̄tx + P̄t, gw = Ā, gx = 2B̄x + C̄, gy = αĀ, (3.10)

where V , g, A, B, C, P , Ā, B̄, C̄ and P̄ are short for V (t, w, x, y), g(t, w, x, y), A(t), B(t),
C(t), P (t), Ā(t), B̄(t),C̄(t) and P̄ (t).

Plugging the above derivatives into (3.5) and simplifying yields

sup
u∈Π

{
At(w + αy) + Btx

2 + Ctx + Pt + A[lw + µ(π1(t) + π2(t)) +
∫ ∞

0

((θ − η)z + η`(z, t))v(dz)

+µmπm(t)− k1π1(t)x + k2π2(t)x + β1µY1π1 + β1µY1π2 + b̄y + cm]− (2Bx + C)(k1 + k2)x

+αA(w − δy − e−δhm)− γ

2
Ā2[σ2 + σ2

1π
2
1(t) + σ2

1π
2
2(t) + σ2

mπ2
m(t) + β1σ

2
Y1

π2
1 + β1σ

2
Y1

π2
2 ]

+2Bσ2
1 − γσ2

1(2B̄x + C̄)2 − γĀ(2B̄x + C̄)(σ2
1π1(t)− σ2

1π2(t))−
∫ ∞

0

γ

2
Ā2`2(z, t)v(dz)

}

=0. (3.11)

Consider the terms involving ` in (3.11), that is,
∫ ∞

0

(Aη`(z, t)− γ

2
Ā2`2(z, t))v(dz). (3.12)

According to Li et al.[10], if we maximize the integrand in the integral in (3.12) z-
by-z for a given t ∈ [0, T ], then we will maximize the integral itself. With respect to `,
the graph of f(`) := Aη` − γ

2
Ā2`2, is a concave parabola that increases through the origin

(0, f(0)) = (0, 0); by the first-order condition w.r.t. `, we have

Aη − γĀ2` = 0, (3.13)

`∗(z, t) =
ηA

γĀ2
∧ z. (3.14)

By the first-order condition w.r.t. πm(t), π1(t) and π2(t), we have

π∗m(t) =
Aµm

γĀ2σ2
m

, (3.15)

π∗1(t) =
Aβ1µY1 + Aµ− γĀC̄σ2

1

(σ2
1 + β1σ2

Y1
)γĀ2

− Ak1 + 2γĀB̄σ2
1

(σ2
1 + β1σ2

Y1
)γĀ2

x, (3.16)

π∗2(t) =
Aβ1µY1 + Aµ + γĀC̄σ2

1

(σ2
1 + β1σ2

Y1
)γĀ2

+
Ak2 + 2γĀB̄σ2

1

(σ2
1 + β1σ2

Y1
)γĀ2

x, (3.17)

we find that the amounts invested in the two stocks, π∗1(t) and π∗2(t), are functions of x.
Plugging eqs. (3.14)–(3.17) into eq. (3.11) and eq. (3.3), we have

At(w + αy) + A[(l + α)w + (b̄− αδ)y] + A(c− αe−δh)m + Btx
2 + Ctx + Pt
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+ A

∫ ∞

0

((θ − η)m + η`∗(z, t))v(dz)− 2B(k1 + k2)x2 − C(k1 + k2)x− γ

2
Ā2σ2

−
∫ ∞

0

γ

2
Ā2(`∗(z, t))2v(dz)− 4γB̄2σ2

1x
2 − 4γB̄C̄σ2

1x− γσ2
1C̄

2 +
A2µ2

m

2Ā2σ2
mγ

+
(Aβ1µY1 + Aµ− γĀC̄σ2

1)
2

2(σ2
1 + β1σ2

Y1
)γĀ2

+
(Ak1 + 2γĀB̄σ2

1)
2x2

2γĀ2(σ2
1 + β1σ2

Y1
)

+
(Ak2 + 2γĀB̄σ2

1)
2x2

2γĀ2(σ2
1 + β1σ2

Y1
)

− (Aβ1µY1 + Aµ− γĀC̄σ2
1)(Ak1 + 2γĀB̄σ2

1)x
(σ2

1 + β1σ2
Y1

)γĀ2
+

(Aβ1µY1 + Aµ + γĀC̄σ2
1)

2

2(σ2
1 + β1σ2

Y1
)γĀ2

+ 2Bσ2
1 +

(Aβ1µY1 + Aµ + γĀC̄σ2
1)(Ak2 + 2γĀB̄σ2

1)x
(σ2

1 + β1σ2
Y1

)γĀ2
= 0, (3.18)

Āt(w + αy) + Ā[(l + α)w + (b̄− αδ)y] + Ā(c− αe−δh)m + B̄tx
2 + C̄tx + P̄t

+ Ā

∫ ∞

0

((θ − η)z + η`∗(z, t))v(dz) +
AĀµ2

m

Ā2σ2
mγ

− 2B̄(k1 + k2)x2 − C̄(k1 + k2)x

+
(Aβ1µY1 + Aµ + γĀC̄σ2

1)Āk2x

(σ2
1 + β1σ2

Y1
)γĀ2

− (Aβ1µY1 + Aµ− γĀC̄σ2
1)Āk1x

(σ2
1 + β1σ2

Y1
)γĀ2

+ 2B̄σ2
1

+
2AĀ(µ + β1µY1)2

(σ2
1 + β1σ2

Y1
)γĀ2

+
(β1µY1 + µ)ĀA(k2 − k1)x

(σ2
1 + β1σ2

Y1
)γĀ2

+
Āk1(Ak1 + 2γĀB̄σ2

1)x
2

(σ2
1 + β1σ2

Y1
)γĀ2

+
Āk2(Ak2 + 2γĀB̄σ2

1)x
2

(σ2
1 + β1σ2

Y1
)γĀ2

= 0. (3.19)

To make the problem solvable, we assume the following conditions on parameters

c = αe−δh, (3.20)

b̄e−δh = (δ + l + α)c. (3.21)

So, we have A(c− αe−δh)m = 0. In order to obtain the expressions of A, Ā, B, B̄, C, C̄, P

and P̄ , let At, A, Āt and Ā satisfy the following differential equations

At(w + αy) + A[(l + α)w + (b̄− αδ)y] = 0, (3.22)

Āt(w + αy) + Ā[(l + α)w + (b̄− αδ)y] = 0 (3.23)

with boundary condition A(T ) = Ā(T ) = 1. Based on condition (3.21), we have b̄ − αδ =
(l + α)α. So we have

A(t) = e(l+α)(T−t), Ā(t) = e(l+α)(T−t). (3.24)

By separating the variables with and without x, x2, we can derive the following equations

B̄t − B̄
2β1σ

2
Y1

(k1 + k2)
σ2

1 + β1σ2
Y1

+
(k2

1 + k2
2)AĀ

(σ2
1 + β1σ2

Y1
)γĀ2

= 0,

C̄t − C̄
(k1 + k2)β1σ

2
Y1

σ2
1 + β1σ2

Y1

+
2(µ + β1µY1)(k2 − k1)AĀ

(σ2
1 + β1σ2

Y1
)γĀ2

= 0,
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Bt − 2B(k1 + k2)− B̄2
4γσ2

1β1σ
2
Y1

σ2
1 + β1σ2

Y1

+ B̄
2(k1 + k2)σ2

1AĀ

Ā2(σ2
1 + β1σ2

Y1
)

+
(k2

1 + k2
2)A

2

2(σ2
1 + β1σ2

Y1
)γĀ2

= 0,

Ct − C(k1 + k2)− B̄C̄
4γσ2

1β1σ
2
Y1

σ2
1 + β1σ2

Y1

− A2(k1 − k2)(µ + β1µY1)
(σ2

1 + β1σ2
Y1

)γĀ2
+ C̄

(k1 + k2)σ2
1AĀ

(σ2
1 + β1σ2

Y1
)Ā2

= 0,

P̄t + Ā

∫ ∞

0

((θ − η)z + η`∗(z, t))v(dz) + 2B̄σ2
1 +

AĀµ2
m

Ā2σ2
mγ

+
2AĀ(µ + β1µY1)2

(σ2
1 + β1σ2

Y1
)γĀ2

= 0,

Pt + A

∫ ∞

0

((θ − η)z + η`∗(z, t))v(dz)− γ

2
Ā2σ2 −

∫ ∞

0

γ

2
Ā2(`∗(z, t))2v(dz)− γσ2

1C̄
2

+ 2Bσ2
1 +

A2µ2
m

2Ā2σ2
mγ

+
(Aβ1µY1 + Aµ− γĀC̄σ2

1)
2

2(σ2
1 + β1σ2

Y1
)γĀ2

+
(Aβ1µY1 + Aµ + γĀC̄σ2

1)
2

2(σ2
1 + β1σ2

Y1
)γĀ2

= 0.

With boundary condition B(T ) = B̄(T ) = C(T ) = C̄(T ) = P (T ) = P̄ (T ) = 0, we have

B(t) = −e1−2(k1+k2)(T−t)

∫ T

t

h1(s)e−1+2(k1+k2)(T−s)ds, (3.25)

C(t) = −e1−(k1+k2)(T−t)

∫ T

t

h2(s)e−1+(k1+k2)(T−s)ds, (3.26)

B̄(t) =
ε2

ε1

(1− e−ε1(T−t)), C̄(t) =
ε4

ε3

(1− e−ε3(T−t)), (3.27)

P (t) =− (
µ2

m

2γσ2
m

+
(µ + β1µY1)2

γ(σ2
1 + β1σ2

Y1
)
)(T − t)− γσ2

4(l + α)
(1− e2(l+α)(T−t))

−
∫ T

t

(h3(s) + h4(s))ds, (3.28)

P̄ (t) =− (
µ2

m

γσ2
m

+
2(µ + β1µY1)2

γ(σ2
1 + β1σ2

Y1
)
)(T − t)−

∫ T

t

2σ2B̄(s)ds

−
∫ T

t

e(l+α)(T−s)

∫ ∞

0

((θ − η)z + η`∗(z, s))v(dz)ds, (3.29)

where

h1(s) =
4γσ2

1β1σ
2
Y1

B̄2(s)
σ2

1 + β1σ2
Y1

− 2(k1 + k2)σ2
1B̄(s)

σ2
1 + β1σ2

Y1

− k2
1 + k2

2

2γ(σ2
1 + β1σ2

Y1
)
, (3.30)

h2(s) =
4γσ2

1β1σ
2
Y1

σ2
1 + β1σ2

Y1

B̄(s)C̄(s) + C̄(s)
(k1 + k2)σ2

1

γ(σ2
1 + β1σ2

Y1
)

+
(k1 − k2)(µ + β1µY1)

γ(σ2
1 + β1σ2

Y1
)

, (3.31)

h3(s) =
∫ ∞

0

(
e(l+α)(T−s)((θ − η)z + η`∗(z, s))− γ

2
e2(l+α)(T−s)(`∗(z, s))2

)
v(dz), (3.32)

h4(s) = γσ2
1C̄(s)− γσ4

1

σ2
1 + β1σ2

Y1

C̄2(s)− 2σ2
1B(s), (3.33)

ε1 =
2β1σ

2
Y1

(k1 + k2)
σ2

1 + β1σ2
Y1

, ε2 =
k2

1 + k2
2

γ(σ2
1 + β1σ2

Y1
)
, (3.34)

ε3 =
(k1 + k2)β1σ

2
Y1

σ2
1 + β1σ2

Y1

, ε4 =
2(k2 − k1)(µ + β1µY1)

γ(σ2
1 + β1σ2

Y1
)

. (3.35)
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Theorem 3.2 According to the wealth process (2.10) and the reinsurance-investment
problem, the equilibrium value function is

V (t, w, x) =e(l+α)(T−t)(w + αy)− x2e1−2(k1+k2)(T−t)

∫ T

t

h1(s)e−1+2(k1+k2)(T−s)ds

− xe1−(k1+k2)(T−t)

∫ T

t

h2(s)e−1+(k1+k2)(T−s)ds−
∫ T

t

(h3(s) + h4(s))ds

−
(

µ2
m

2γσ2
m

+
(µ + β1µY1)2

γ(σ2
1 + β1σ2

Y1
)

)
(T − t)− γσ2

4(l + α)
(1− e2(l+α)(T−t)), (3.36)

where h1(s), h2(s), h3(s) and h4(s) are given by (3.30)–(3.33). The corresponding equilib-
rium strategy is given by

u∗ = (`∗(z, t), π∗m(t), π∗1(t), π
∗
2(t)), (3.37)

where `∗(z, t) is determined by (3.14), π∗m(t), π∗1(t) and π∗2(t) are given by (3.15)–(3.17).
In the following sections, we analyze two special cases of our model, i.e., without jump

and without mispricing, and give the corresponding equilibrium strategies and equilibrium
value functions.

Corollary 3.1 (Without Jump) We consider the optimal reinsurance-investment
problem in which the price processes of these two stocks are represented by diffusion models.
If we don’t consider jump risk in our model, under the measure P , the wealth process
becomes

dW ū(t) =[lw + µmπm(t) + µ(π1(t) + π2(t)) +
∫ ∞

0

((θ − η)z + (1 + η)`(z, t))v(dz)− k1π1(t)x

+ k2π2(t)x + b̄Y (t) + cM(t)]dt + σdB(t) + σ1π1(t)dZ1(t) + σ1π2(t)dZ2(t)

+ σmπm(t)dZm(t)−
∫ ∞

0

`(z, t)N1(dz, dt). (3.38)

The corresponding optimization problem becomes

sup
ū∈Π

{
Et,w,x,y[W ū

T ]− γ

2
V art,w,x,y[W ū

T ]
}

. (3.39)

Then, by some similar calculations, the equilibrium reinsurance-investment strategy ū∗ =
(¯̀∗(z, t), π̄∗m(t), π̄∗1(t), π̄

∗
2(t)), t ∈ [0.T ], is given by

¯̀∗(z, t) =
ηA

γĀ2
∧ z = `∗(z, t), π̄∗1(t) =

Aµ− γĀC̄σ2
1

σ2
1γĀ2

− Ak1 + 2γĀB̄σ2
1

σ2
1γĀ2

x, (3.40)

π̄∗m(t) =
Aµm

γĀ2σ2
m

= π∗m(t), π̄∗2(t) =
Aµ + γĀC̄σ2

1

σ2
1γĀ2

+
Ak2 + 2γĀB̄σ2

1

σ2
1γĀ2

x, (3.41)

and the corresponding equilibrium value function V̄ (t, w, x, y) is

V̄ (t, w, x, y) =e(l+α)(T−t)(w + αy)− x2e1−2(k1+k2)(T−t)

∫ T

t

h̄1(s)e−1+2(k1+k2)(T−s)ds
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− xe1−(k1+k2)(T−t)

∫ T

t

h̄2(s)e−1+(k1+k2)(T−s)ds− (
µ2

m

2γσ2
m

+
µ2

γσ2
1

)(T − t)

− γσ2

4(l + α)
(1− e2(l+α)(T−t))−

∫ T

t

(h3(s) + h̄4(s))ds, (3.42)

where

h̄1(s) = −2B̄(s)(k1 + k2)− k2
1 + k2

2

2γσ2
1

, B̄(t) =
k2

1 + k2
2

γσ2
1

(T − t), (3.43)

h̄4(s) = γσ2
1C̄(s)− γσ2

1C̄
2(s)− 2σ2

1B(s), C̄(t) =
2(k2 − k1)µ

γσ2
1

(T − t), (3.44)

h̄2(s) =
k1 + k2

γ
C̄(s) +

(k1 − k2)µ
γσ2

1

. (3.45)

When Gu et al.[8] ignores mean reversion, we find that the equilibrium investment
strategies given in Eqs.(3.40) and (3.41) are similar to that in Gu et al.[8], which considers
the robust portfolio selection with the utility maximization.

Corollary 3.2 (Without Mispricing) In this case, we assume that the insurer
ignores the mispricing between stock 1 and stock 2 in the market. If we don’t consider
mispricing in our model, under the measure P , the wealth process becomes

dW ũ(t) =[lw + µmπm + µ(π1 + π2) +
∫ ∞

0

((θ − η)z + (1 + η)`(z, t))v(dz) + b̄y + cm]dt

+ σdB(t) + σ1π1dZ1(t) + σ1π2dZ2(t) + σmπmdZm(t)−
∫ ∞

0

`(z, t)N1(dz, dt)

+
∫ ∞

−1

π1(t)y1N2(dt, dy1) +
∫ ∞

−1

π2(t)y1N2(dt, dy1). (3.46)

The corresponding optimization problem becomes

sup
ũ∈Π

{
Et,w,y[W ũ

T ]− γ

2
V art,w,y[W ũ

T ]
}

. (3.47)

Then, by some similar calculations, the equilibrium reinsurance-investment strategy ũ∗ =
(˜̀∗(z, t), π̃∗m(t), π̃∗1(t), π̃

∗
2(t)), t ∈ [0.T ], is given by

˜̀∗(z, t) =
ηA

γĀ2
∧ z = `∗(z, t), π̃∗m(t) =

Aµm

γĀ2σ2
m

= π∗m(t), (3.48)

π̃∗1(t) =
Aβ1µY1 + Aµ

(σ2
1 + β1σ2

Y1
)γĀ2

= π̃∗2(t). (3.49)

and the corresponding equilibrium value function V2(t, w, y) is

Ṽ (t, w, y) =e(l+α)(T−t)(w + αy)− µ2
m

2γσ2
m

(T − t)− γσ2

4(l + α)
(1− e2(l+α)(T−t))−

∫ T

t

h3(s)ds

− (β1µY1 + µ)2

(γσ2
1 + γβ1σ2

Y1
)
(T − t). (3.50)
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We find that the equilibrium investment strategies given in eqs.(3.48) and (3.49) are similar
to that in Zeng et al. [2], if Zeng et al. [2] considers the impact of delay on the optimal
strategies.

4 Numerical Simulations

In this section, we supply some numerical examples to explain the effects of model
parameters on the equilibrium investment strategy and utility losses from ignoring jump
risk and mispricing. We suppose that the jump size Y1i follow exponential distribution with
parameter λY1 , i.e., the density functions of Y1i is given by g(y1) = λY1 exp{−λY1(y1 + 1)},
y1 ≥ −1. Throughout the numerical analyses, unless otherwise stated, the basic parameters
are given by β1 = λY1 = 1, r = 0.03, µ = 0.05, σ1 = 0.3, θ = 0.2, η = 0.1, γ = 1, h = 0.5,
δ = 1.5 k1 = 0.2, k2 = 0.6, w = 1, T = 4, t = 0.

4.1 Sensitivity Analysis of the Equilibrium Investment Strategy

Figure 1 provides a sensitivity analysis of the mispricing x, the delayed parameter h,
jump intensity β1 and parameter λY1 of the jump’s distribution function of these two stocks’s
price processes for the equilibrium investment strategy π∗i (t), i = 1, 2 .

In parts (a) of Figure 1, we find that π∗1(t) decreases w.r.t. β1 and increases w.r.t. λY1 .
This is because when β1 becomes larger, the intensity of the jump in the first stock’s price
process becomes stronger and the first stock becomes higher, so the money is invested in the
first stock becomes less. At the same time, when λY1 becomes larger, the mean and variance
of Y1i become smaller. Therefore, under the same risk tolerance, the insurer will invest more
in the first stock. In parts (b) of Figure 1, for π∗2(t), the analysis about it is similar to π∗1(t).

In part (d) of Figure 1, we find that when the retention level π2(t) becomes smaller,
the delayed horizon h becomes smaller. In part (c) of Figure 1, we find that π∗1(t) decreases
w.r.t. x and π∗2(t) increases w.r.t. x. In other words, as mispricing increases, the insurer
will reduce their investment in stock 1 and increase their investment in stock 2.

4.2 Sensitivity Analysis of the Utility Loss Functions

In this subsection, we discuss the utility loss that can be caused when jump risks and
mispricing are ignored for the insurer.

For equity but without loss of generality, we assume that the appreciation and volatility
rates of stocks without jumps are the same as those with jumps, i.e., µY1i

|no jump = µ +
β1E[Y1i] and σ2

Y1i
|no jump = σ2 + β1E[(Y1i)2].

So, the utility loss that ignores jump risks is defined as

H1(t) = 1− V̄ (t, w, x, y)
V (t, w, x, y)

. (4.1)

As shown in (a) of Figure 2, we find that the utility loss increases w.r.t. the remaining
time T − t and the effect of the remaining time T − t on the utility loss H1(t) is significant.
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Figure 1 The effects of parameters on the equilibrium investment strategy
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Figure 2 The effects of parameters on the utility loss functions

Then, we discuss the utility loss that can be caused when the mispricing is ignored for
the insurer. The utility loss that ignores mispricing is defined as

H2(t) = 1− Ṽ (t, w, y)
V (t, w, y)

. (4.2)

From (b) of Figure 2, we can see that when the remaining time T − t increases, the
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utility loss H2(t) will also increase. And when T − t = 0.3, we can find that the loss utility
is less than 10%, however, when T − t = 4, we can find that the loss utility is more than
80%. This means that taking advantage of mispricing is more important for long-horizon
investors than that for short-horizon investors.
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在跳跃扩散模型下带延迟和错误定价的超额损失再保险和投资的最

优化问题

黄 晴,马世霞,龚晓琴

(河北工业大学理学院,天津 300401)

摘要: 本文研究了在跳跃扩散模型下带延迟和错误定价的超额损失再保险和投资的最优化问题. 利用

随机控制理论, 求解扩展的HJB方程, 推导出均衡再保险投资策略和相应的均衡值函数. 最后, 介绍模型和结

果的一些特殊情况, 并为其结果提供了一些数值分析.
关键词: 超额损失再保险; Lévy保险模型;错误定价;随机微分延迟方程;跳跃–扩散模型
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