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Abstract: In this paper, we study an optimization problem of excess-of-loss reinsurance and
investment with delay and mispricing under the Jump-diffusion model. Using the stochastic control
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1 Introduction

An insurer can control risks through a number of measures, such as investment and
reinsurance. In recent years, the problem of the optimal investment and reinsurance has
been widely investigated, which was considered in the literature [1-3] and so on.

With the deepening of research in the insurance field, some scholars point out that the
risky asset’s price process is represented by a jump-diffusion model, which is more consistent
with the stock market. Ignoring jump risks on risky asset’s price process have an important
impact on the optimal problem (see [4,5]). A et al.[6] showed that the development of real-
world systems depends not only on their current state but also on their previous history. If
we believe that financial market exists bounded memory or the performance-related capital
inflow (outflow), then the wealth process with delay must be considered (see [7]). In addition,
due to the existence of frictions in markets which are not absolutely mature, insurers can
make a profit by mispricing, that is, by exploiting the price difference between a pair of

stocks, we can refer to [8,9].
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On the basis of previous literature, we establish a class of generalized optimal investment
and reinsurance risk model, we consider the optimization problem of excess-of-loss reinsur-
ance and investment with delay and mispricing under the Jump-diffusion model, and the
purpose is to obtain the equilibrium reinsurance-investment strategy and the corresponding
equilibrium value function. In which we introduce the performance-related capital inflow
(outflow) and the price processes of stocks are described by jump-diffusion models with mis-
pricing. Moreover, referring to Li et al.[10], the claim process is described by a spectrally
negative Lévy process.

The remainder of this paper is organized as follows. Section 2 gives the model framework.
Section 3 derives the explicit expressions of the equilibrium reinsurance-investment strategy
and the corresponding equilibrium value function, and provides two special cases of our

model. Section 4 provides some numerical examples for sensitivity analysis.

2 The Model

Let (0, F, {Fi }iepo,1), P) be a complete probability space that fulfills the usual condition,
where [0, 7] is a fixed and finite time horizon; F; is the information of the market available
up to time t and P is a reference measure.

Following the idea suggested by Li et al.[10], without reinsurance and investment, the
insurer’s surplus process modeled by a spectrally negative Lévy process defined on this

probability space with dynamics
dR; = cdt + 0dB(t) — / zN1(dz, dt), (2.1)
0

where

(i) Ni(dz,dt) is a Poisson random measure representing the number of insurance claims
of size (2, z + dz) within the time period (¢, + dt).

(ii) c¢is the premium rate, according to the expected value principle, ¢ = (14-0) fooo zv(dz),
where 6 > 0 is the safety loading of the insurer, o > 0 is the volatility rate, B(t) is a standard
Brownian motion.

Let Ny (dz, dt) = Ny (dz, dt) — v(dz)dt represent the compensated measure of N (dz, dt),
where v is a Lévy measure and fooo zv(dz) < oo, v(dz) represents the expected number of
insurance claims of size (z, z + dz) within a unit time interval.

£, is the size of the claim paid by the insurer when the claim equals Z; at time ¢ € [0, T7,
where 0 < ¢; < Z;. And Z;—/, is the residual part of Z; that needs to be paid by the reinsurer.
Let ¢, = ¢(Z;,t) be a reinsurance strategy, in which we slightly abuse notation by using ¢ on
both sides of this equation. So the premium rate of reinsurer is (1 4 ) fooo z—l(z,t)v(dz),
where 1 > 6 > 0 is the safety loading of the reinsurer.

In theory, we should first suppose that the reinsurance strategy relies on surplus. But in
the following Theorem 3.2, we find that the equilibrium reinsurance strategy is independent

of the surplus. Thus, for simplicity, we omit £'s possible dependency on the surplus. So the
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surplus process can be described as
dR, = / (0 —n)z+nl(z,t))v(dz)dt — / ((z,t)Ny (dz, dt) + odB(t). (2.2)
0 0

We assume that the insurer is allowed to invest in a financial market composing of one
risk-free asset, a market index and a pair of stocks with mispricing (see Gu et al. [8]). The

risk-free asset’s price process So(t) is described by

dSo(t)
So(t)

= rdt, (2.3)

where r > 0 represents the risk-free interest rate. The price process of the market index
P,.(t) follows as

) _ (r + o )dt + 0, d 2, (1), (2.4)

where the market risk premium pu,, and the market volatility o, are positive constants,

and {Z,,(t)} is a standard Brownian motion. The price processes of the pair of stocks are
described by

Na(t)
dsi(t) _ (r + p)dt + o1dZy (t) = ka X (B)dt +d Y Vi, S1(0) = S > 0, (2.5)
5i(0)
ds (t) Na(t)
2 = (r o+ p)dt + 01dZ(8) + ke X (8)dt +d Y Vi, S2(0) = Sa > 0, (2.6)
S:(t) i=1

(i) w, o1, k1 and ko are positive constants, o1dZ;(t) describes the risk of stock i in the
financial market, : = 1, 2.

(i1) {N2(t)}iepo,r) is homogeneous Poisson process with intensity (8, which represents
the number of the price jumps that occurred the first or second stock during time interval
[0,T7].

(iii) Yj; is the ith jump amplitude of the stock price, and Yy;, ¢ = 1,2,3,--- are
ii.d.random variables. We assume their distribution is G(y;), and they have finite first-

order moment /iy, and second-order moment o3, .
Ng(t)
(iv) Suppose that {Z1(t)}, {Z=(t)}, {Zn(t)}, {B(t)}, Ni(dz,dt), and ) Yi; are inde-
i=1
pendent and P(Yy; > —1) = 1,4 = 1,2,3,--- to guarantee that these two stocks’s prices

have always been positive.
(v) The term k;X (t)dt shows the effect of mispricing on the jth stock’s price, j = 1,2.

X (t) is the pricing error or mispricing between two stocks, and is defined as
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Based on egs.(2.5) and (2.6), using standard 1t6’s calculus, we find that the dynamics of the
mispricing X (¢) satisfy the following equation

Let ¢(Z;,t) represent the retained level of the excess-of-loss at time ¢, 7, (t) represent the
money amount invested in the market index at time ¢, 7;(¢) and my(t) represent the money
amount invested in two stocks. (W*"(t) —m,,(t) —m(t) — m2(t)) represents the money amount
invested in the risk-free asset, where W"(t) is the wealth process at time t. We denote the
whole reinsurance-investment strategy by u = {€(Z;,t), mm(t), m1(t), ma(t)}, t € [0,T].

In addition, we also consider that there exists capital inflow into or outflow from the
insurer’s current wealth. We can refer to A et al.[6]. Denote the average and pointwise

performance of the wealth in the past horizon [t — h,t] by Y (t) and M (t), respectively, i.e.,

_ fi)h e®*W (t + s)ds
Y(t) = 10 s
W fihe sds

M(t) = W(t—h), vtelo,T], (2.8)

where 6 > 0 is an average parameter and h > 0 is the delay parameter. Let Y (t) =
I°, W (t + s)ds, then Y (1) = Tz Let the function g(t, W (1) — Y (£), W(t) = M(t))
represent the capital inflow (out}i‘lo;vh) amount which is related to the past performance of
the wealth. W (t) — Y (¢) accounts for the average performance of the wealth between ¢t — h
and t, and W (t) — M(t) implies the absolute performance of the wealth in the time horizon
[t — h,t].

This capital inflow (outflow) may occur in a variety of situations, as described in A et
al. [6]. We assume that the amount of the capital inflow (outflow) is proportional to the

past performance of the insurer’s wealth, i.e.,
gt W(t) =Y (1), W(t) — M(t)) = b(W(t) = Y (1)) + c(W(t) — M(1)), (2.9)

where b and ¢ are nonnegative constants.
Thus, the insurer’s wealth process {W"(t),t € [0, T} is described by

de(t) ¢ dSl (t) dSQ(t)
RO AT Sa(t)

= ma(0) = ma(6) ) = gt WH(E) — V0, W (0) — M)

AW (t) =dR, + 7 (t) + ma(t) + (WH(t) — o (t)

—[IW () + f T+ i(1 + 72) + / (0= e+ (L ez )0(dz) — Bymy

+ komox + BY (t) + cM (t)]dt + 0dB(t) + o1mdZ(t) + 0172dZ(t) + O TmdZ,m ()

—/ E(Z,t)Nl(dZ,dt)-f—/ 7T1y1N2<dy1,dt)+/ Wgleg(dyl,dt), (210)
0

-1 -1

where [ =r —b—cand b = ﬁ, Tm, m1 and my are short for m,, (t), 71(t) and m(t).
hJ_p€ 0S8

We suppose that W"(t) = wg > 0, Vt € [—h, 0], which implies that the insurer is endowed
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with the initial wealth wq at time —h and do not start the business until time 0. Then the

initial value of the average performance wealth Y (0) is Y(0) = ™. Referring to Zeng

wo(1—e”

5
et al.[2] and Li et al.[10], we give two definitions.

Definition 2.1 (Admissible Strategy) A strategy u = {{(Z;,t), T (1), m1(t), m2(t) }iejo.1)
is admissible if

(i) for all t € [0,T], Z, > 0, 0 < U(Z;,t) < Zy;

(ii) w is predictable w.r.t.{F; }1c(o,77, and Et,w@,y[fOT | v(t) ||? dt] < oo, where || v(t) ||>=
(U(Ze, 1)) + (T (8))? + (m1(2))? + (m2(1))*;

(iii) V(¢t,w,z,y) € [0,T] x R x R x [—1,00), Eq.(2.10) has a pathwise unique solution
{W(t) beepo.ry with W (t) = w, X(t) =z, Y(t) = y.

Let II denote the set of all admissible strategies. In this paper, our main purpose
is to research the reinsurance and investment problem for an insurer under mean-variance

criterion, i.e., wishes to maximize J“(t,w,x,y), in which J* is given by
Tt w, ,y) = By ey [WE] — %v@rt,w,w[wg], (t,w,2,y) € [0,T] x R x R x [~1,00),

where v > 0 represents a constant absolute risk aversion coefficient. We know that mean-
variance criterion has the issue of time-inconsistency. But in many situations, time-consistency
of strategies is a basic requirement for rational investors. So, we tackle the problem from a
non-cooperative game point of view by defining an equilibrium strategy and its corresponding
equilibrium value function (see [11]).

Definition 2.2 For an admissible strategy u* = {{*(Z;,t), 7, (t), 7} (t), 75(t) }refo,m
for € > 0 with any fixed chosen initial state (t,w,z,y) € [0,7] x R x R x [—1,00), define the
strategy u®t by

o { (U(z,8), Tm(s), M1 (s), Ma(s)),  t<s<t+e, (2.11)

u* t+e<s<T,

S

where /(z, s) is an admissible reinsurance strategy and (7, (t), 71(t), T2(t)) € R x R x R,

w " qust +
hH(l)lnf J ( 7w7x7y) J ( 7w7x7y) Z 0.
e— £

Then u* is an equilibrium strategy and J* (t,w,x,y) is the corresponding equilibrium value
function. For V(t,w,z,y) € [0,T] x R X R x [—1,00), Vé(t,w,x,y) € C1*%1([0,T] x R x

R x [~1,00)), we define a variational operator A" as follows
AB(t,w,2,) = 60 + bullw + u(m (1) + m2(1)) + / (0= mz+ (1 + Mz )o(d)
+ T (t) — krm (B) + koo ()2 + by + cm] — ¢u (k1 + k2)x + ¢y (w — Sy — e " m)
+ 50unlo® + AT + ) + AT (D] + 0260n + (03T (0) — (1)
# [0t ) = ot )0 + Bl 0+ ()

- d)(tv w,x, y)] + ﬂlE[¢(t7 w + WQ(t)ylv xz, y) - d)(tv w, T, y)] (212)
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3 Optimization Problem and the Equilibrium Optimal Strategy

In this section, we consider the optimization problem and seek the optimal strategy,
and then analyze two special cases. We first provide a verification theorem whose proof is
similar to Theorem 1 of Kryger and Steffensen [12]. We omit it here.

Theorem 3.1 (Verification Theorem) Suppose there exist V (¢, w, z,y) and g(t,w, x,y) €
C1221([0,T] x R x R x [—1,00)) satisfying the following conditions: for all (t,w,z,y) €
([0,7] x R x R x [—1,00)),

sup{ A"V (t,w, 2, y) = 2A"g*(t w,,y) +yg(t w, v, y) A'g(tw e y)} =0, (3.1)
uell
V(T w,2,5) = w, (3:2)
A gt w,,y) =0, g(T,w,z,y) = w, (33)

and

u” := arg sup{ A"V (t,w,z,y) — %Augz(t, w,x,y) +v9(t,w,x,y) A g(t,w,z,y)},  (3.4)
u€ell

then J* (t,w,z,y) = V(t,w,z,y), E]W* (T)] = g(t,w,r,y) and u* is the equilibrium
reinsurance-investment strategy.

For an admissible strategy u* = {€*(Z;,t), 7}, (t), 71 (t), 75(t) }rejo,m, the HIB function
(3.1) follows

uell

sup {Vw [lw + p(mi(t) + ma(t)) — kymix + komox + /OOO((G —n)z+ (1 +n)l(z,t))v(dz)
A T (1) + by + cm] + Vi = Vi(ky + ko)z + Vy(w — 6y — e "m) + = ( —~g2)[o?
+oimi(t) + oimy(t) + onmn ()] + 0% (Ve — 792) + (Vs — vgwgz)(om(t) - o%m(t))

+/ V(t7w - £7x7y) - %QQ(tvw - E,x,y) +’yg(t,w,x,y)g(t,w - €7x>y)> U(dZ)
0

(
— /OO (V(t w,z,y) + %g%t,w,x,y)) v(dz) — BLE |V (t,w,z,y) + %gz(t,w,x,y)}

+51E |:V t w+771y1735 y) - %g (tanFlel;x’y) +79(t7w’$7y)9(t7w+7T1y1a$7y)]
v

+ 6 E [V(t W+ Toy1, T, Y) — 59 2w+ moyr, T, y) + gt w, @ y)Q(taw+772yla'ray)]

-6 E [V t,w,z,y) + ggZ(t,w,x,y)}} =0. (3.5)

To solve egs. (3.3) and (3.5), we try to conjecture the solutions in the following forms

V(t,w,z,y) = At)(w + ay) + B(t)2* + C(t)z + P(t), (3.6)
g(t,w,z,y) = A(t)(w + ay) + B(t)z* + C(t)x + P(t) (3.7)
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with A(T) = A(T) =1, B(T) = C(T) = B(T) = C(T) = P(T) = P(T) = 0. For a detailed

introduction to w + ay, see A et al.[6]. The partial derivatives are

V, = Ay(w+ ay) + B> + Cix + P, Vy,=A, V,=2Bx+C, Vy, = oA, (3.8)
‘/:cx - 2B) wa - Vumt - 0, Gua = QB, Juww = Juwz = 0, (39)
g = Ay(w+ ay) + Bix® + Cox + Py, g = A, g, =2Bx+C, g, =aA, (3.10)

where V, g, A, B, C, P, A, B, C and P are short for V(t,w,x,y), g(t,w,z,y), A(t), B(t),
C(t), P(t), A(t), B(t),C(t) and P(t).

Plugging the above derivatives into (3.5) and simplifying yields
sup {At(w +ay) + Biz® + Cyx + P, + Allw + p(my (t) + mo(t)) + / ((0 —n)z+nl(z,t))v(dz)
uell 0

—I—,umwm(t) — klﬂ'l (t)l' + k:27r2(t)x + 61[143/17'(1 + ﬂlﬂylﬂ'g + I_Jy + cm] — (2B1} + C)(kl + kz)fE
+ad(w = oy — e="'m) = ZA[0 + ot (1) + 3T (E) + 0% (1) + Brod,E + Brod, )

+2Bo} — y03(2Bx + C)? —yA(2Bx + C) (o7 (t) — o3 ma(t)) — / %21262(2, t)v(dz)}
0

=0. (3.11)

Consider the terms involving ¢ in (3.11), that is,

/O OO(AnE(z, t) — %AQEQ(z,t))v(dz). (3.12)

According to Li et al.[10], if we maximize the integrand in the integral in (3.12) z-
by-z for a given t € [0,T], then we will maximize the integral itself. With respect to ¢,
the graph of f(¢) := Antl — %/PE?, is a concave parabola that increases through the origin
(0, £(0)) = (0,0); by the first-order condition w.r.t. ¢, we have

An —yA%0 =0, (3.13)
. _n4
By the first-order condition w.r.t. m,,(t), m1(t) and 7(t), we have
A,
()= — 3.15
() = APy, + Ap — 'yf__lc_’af Ak + 2'714_130_% - (3.16)
! (0F + proy, )y A? (0F + Broy, )y A2 ’ .
. APy, + Ap+~yACo?  Aky + 2yABo?
ma(t) = CETEADE ! (2 5 14_12:5, (3.17)
1 10y, )Y 01 +ﬁ10y1)’y

we find that the amounts invested in the two stocks, 77 (¢) and 73(t), are functions of x.
Plugging egs. (3.14)—(3.17) into eq. (3.11) and eq. (3.3), we have

Ai(w + ay) + Al(l+ @)w + (b — ad)y] + Alc — ae™*"Ym + Bya? + Ciz + P,
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+ A/ (0 —n)m 4+ nl*(z,t))v(dz) — 2B(k1 + ko)a® — C(ky + ko)x — %AQUQ
0

[T R0 (0, 0)0(de) -ty Bola? — aqBCot — 40307 4 tm
, 2 2202

(ABypy, + Ap —yACo?)?  (Aky + 2vABo?)22?  (Aky + 2yABo?)22?
2(0f + prof, )y A? 29A4%(0f + roy,)  29A%(0f + Biot)
(ABipy, + Ap —vACa?)(Aky + 2yABat)z | (ABipy, + Ap+~vACo?)?
(0f + i3, )7 A2 2(0f + Pro, )y A
(ABipy, + A+ vACo?)(Aky + 2yABo?)z

2Bo? — =0, 3.18
+ (o + (0% +51032/1)’YA2 ( )

Ay(w + ay) + A[(1 4+ a)w + (b — ad)y] + Alc — ae™")m + B;a® + Cix + P,

_ [ AAu2 _ _
+ A/ ((9 — 77)2 + 775*(2, t))v(dz) + /_120"[;7’:/ — QB(]{:I + ]{:2):1:2 _ C(k’l + kg)l’
0 m

(ABipy, + Au+ yACoY Aksr  (APupy, + Ap = yACoY Az, 5
(0F + frog, )7 A (07 + froy, )7 A '
2AA(u + By, )? N (Brpty, + p)AA(ky — k) Ak (Aky + 2yABo?)x?
(of + Brog, )y A? (0F + Brog, )y A? (0f + Broy, )y A?
Aky(Aky + 2yABo?)x?
(0F + Broy, )y A?

To make the problem solvable, we assume the following conditions on parameters

= 0. (3.19)

c = ae (3.20)
be " = (§+1+a)e. (3.21)

So, we have A(c — ae~?")m = 0. In order to obtain the expressions of A, A, B, B, C, C, P
and P, let A;, A, A; and A satisfy the following differential equations

Ar(w + ay) + A[(l + a)w + (b — ad)y] = 0, (3.22)
Ay(w+ay) + A[(l+a)w + (b—ad)y] =0 (3.23)

with boundary condition A(T) = A(T) = 1. Based on condition (3.21), we have b — ad =

(I + a)a. So we have
A(t) = eWFT=D 1 f(t) = eF(T=D), (3.24)

By separating the variables with and without z, 22, we can derive the following equations

AR N (k? + k3)AA

B,— B _ .
t o? + 61012/1 (o2 + 510%1)7142
¢, — Bt k)BIoY 2t B ) (ke —)AA

ot + Bioy, (0F + Bro, )y A?
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5 yalﬂlayl B2(k1 +ky)o2AA (k3 +k3)A2
o} + Bio3, AQ(U%+510%1) Q(U%JF@U%I)’YIZP
470151%1 A%(ky — ko) (4 Bipy,) | A (ki + ko)o7 AA

B, — 2B(k1 + ko) —

)

C,—Cky + k - = +C — =0,
v = Ot ke) = BC G e — (7 prot 2 (07 + Bro?, ) A2
_ I _ A[Luz 2AA(M + B1py, )2
P+ A 0 — (2, t))v(d 2Bo? + —tm L=
ot /0 (6 =m)z 40 (z 1))v(dz) + 2By + A202 " (0F + proy, )y A? ’

P+A /OOO((e — )z + 0l (z,1))v(dz) — 1;1202 - /OOO g;x?(e*(z,t))%(dz) ~o? (2

+2Bo? + 11_12'u$” (APrpy, + Ap—~ _0 1)? " (AB1py, +A,u+7f_1_C_’af)2 _
PRy T 20+ Bioy, A2 207 1 Bro%, )7 A2

With boundary condition B(T) = B(T) = C(T) = C(T) = P(T) = P(T) = 0, we have

T
Bt) = _61—2(k1+k2)(T—t)/ hl(8)6_1+2(k1+k2)(T_5)d5, (3.25)
Clt) = —e!-ttk@ / e TR ds, (3.26)
B) = E?l—e*“Tt» @>=Zjl—e*ﬂfﬂx (3.21)

P(t) — ( ,u“m + (,u + 51.“’1/1)2 )(T _ t) _ 702 (1 _ e2(H—o¢)(T—t))

2’}/O'm 7(0—% + 510}2/1) 4(l + a)
T
/ (hs(s) + ha(s))ds, (3.28)
t
D :um 2(“—’_/31#1/1)2 /T 2R
P(t - T—-1)— 20°B(s)d
(t) = (702 7(0%+610%1))( ) 2 (s)ds
T o)
—/ e(HO‘)(T_S)/ (60 —n)z +nl*(z,s))v(dz)ds, (3.29)
¢ 0
where
ha(s) = 4yo? B0t B2 (s) ~2(k1 + ky)o2B(s) 3 k? + k32 (3.30)
1 of + fo?, ot + /oy, (ot +hod,)’ '
dyoipio?, ~ ooy (Bt k)oi (k= ko) (p+ Bupyy)
h = ————5B(s)C(s)+ C + L 3.31
(= o o, PO O ) T e ) 330
hs(s) = / (e(“’“)(T_S)((H —n)z+nl*(z,8)) — %62(l+“)(T_S)(€*(z, s))Q) v(dz), (3.32)
0
ha(s) = v02C(s) — Lc?(s) — 202B(s), (3.33)
4 Vo1 o2 + 510)/1 1 .
26105, (k1 + k2) k3 + k3
_ 2By, etk 3.34
R = A T R .
€ = (k1 + ko) Bro3, = 2(ky — k1) (p + ﬂl/j'Yl). (3.35)

of + pioy, v(of + pro%,)
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Theorem 3.2 According to the wealth process (2.10) and the reinsurance-investment

problem, the equilibrium value function is

T
V(t,w,x) :e(lJra)(Tft)(w + ay) _ I2612(k1+k2)(Tt)/ hy (S>671+2(k1+k2)(T75)d8
t

T T

— ge'~(htk)(T=1) / hy(s)e 1 kitka)(T=) g _ / (h3(s) + ha(s))ds

t t
2 2 2
Him (1 + Bipyy) Yo 2(l+a)(T—t)

- + /A S A . (3.36
(e 2t oy ) -0 - i B
where hq(s), ha(s), hs(s) and hy(s) are given by (3.30)—(3.33). The corresponding equilib-

rium strategy is given by

ut = (g*(zvt)van(t)vwr(t)vﬂg(t))v (337)

where ¢*(z,t) is determined by (3.14), 7% (t), 7;(t) and 73 (t) are given by (3.15)—(3.17).

In the following sections, we analyze two special cases of our model, i.e., without jump
and without mispricing, and give the corresponding equilibrium strategies and equilibrium
value functions.

Corollary 3.1 (Without Jump) We consider the optimal reinsurance-investment
problem in which the price processes of these two stocks are represented by diffusion models.
If we don’t consider jump risk in our model, under the measure P, the wealth process

becomes
AW (1) =[lw + 7o (£) + (s (8) + 7a(8)) + / T =)+ (0 D)(de) — k()

+ ]{7271'2 (t)ZE + EY(t) + CM(t)]dt + O'dB(t) + 01T (t)le (t) + 0179 (t)ng(t)

+ O T (8)dZ, (1) —/ 0(z,t)Ny(dz, dt). (3.38)
0
The corresponding optimization problem becomes
sug {Et7u,,x7y[W}1] - %Vart,w7x7y[W}2]} : (3.39)
ue

Then, by some similar calculations, the equilibrium reinsurance-investment strategy a* =
(B (2,8), 75, (), 71(), 73(1)), ¢ € [0.T), is given by

 Ap—~ACo} Ak, +27ABo?

0% _ 77A _ % — %

/ (Z,t) = @ Nz=1{ (Z,t), Ut (t) U%'yA_2 — g%f)/Az Z, (340)
. Ay, . . Ap+~yACo?  Aky +2yABo?

7 (t) = Aol =7, (t), 7(t) = psy e e x, (3.41)

and the corresponding equilibrium value function V (¢, w,z,y) is

T
V(t,w,m,y) :e(lJra)(T*t)(w +ay) — 172@12(k1+k2)(Tt)/ Ry (s)e*HQ(kl*kZ)(T*S)ds
t
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1—(k1+ks) (T —t) T 1+ (k1+ko)(T—s) I 0
_xe*1+2 t/ h 567+ 1+k2 —S)ds — m +7) —t)
[ s (o + 2
T
— L‘z(l — 2F(T=)y _ / (hs(s) + hy(s))ds, (3.42)
41+ «) :
where
_ _ /{52 k,z _ kz /{52
hi(s) = —2B(s)(ki+ k) — 2 By =124y (3.43)
07 1
h = ~02C 202(s) — 202 B oty = 2k = kw 44
a(s) = 707C(s) —v01C*(s) o1 B(s), (t) = ~o? ( t), (3.44)
1
- ki + ko ~ (k1 — k2)p
ha(s) = ——=C s)+7 (3.45)
2 Y ( 701
When Gu et al.[8] ignores mean reversion, we find that the equilibrium investment

strategies given in Eqgs.(3.40) and (3.41) are similar to that in Gu et al.[8], which considers
the robust portfolio selection with the utility maximization.

Corollary 3.2 (Without Mispricing)
ignores the mispricing between stock 1 and stock 2 in the market.

In this case, we assume that the insurer
If we don’t consider

mispricing in our model, under the measure P, the wealth process becomes
AWH(O) =l10 -+ o + 14 72+ [ (0= W)z (1 ) )0(d2) + By + e
0

+ 0dB(t) + o1m1dZ1(t) + 0172dZ5(t) + O TmdZm( / 0(z,t)Ny(dz, dt)

+ / T (t)leQ (dt, dy1> + / 7T2(t>y1N2(dt, dyl) (346)
-1 -1
The corresponding optimization problem becomes
sup {Et wWE] = 2Var, w,y[WT}} (3.47)
ue

Then, by some similar calculations, the equilibrium reinsurance-investment strategy 4* =

(£ (2, 1), 3 (), 71 (1), 73(t)), t € [0.T], is given by
% _ 77A * ~ % _ A/,l,m _ *
0 (z,t) = A ANz=1L0"(z1t), @ (t)= SA%L (1), (3.48)
A A
Fre) = PumtAn L. (3.49)

(of + Broy, )y A?
and the corresponding equilibrium value function Va(t,w,y) is

2

Hom
T—1
2v0?2 ( )

m

V(t,w,y) =e"TT0 (w4 ay) —

_ (ﬁlMY1 + /1’)2 (T _ t).

(yoi +7610%,)

C4(l+

yo?

T
(1 — 2+ T=1)y _ / hs(s)ds
t

a)

(3.50)
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We find that the equilibrium investment strategies given in eqgs.(3.48) and (3.49) are similar
to that in Zeng et al. [2], if Zeng et al. [2] considers the impact of delay on the optimal

strategies.

4 Numerical Simulations

In this section, we supply some numerical examples to explain the effects of model
parameters on the equilibrium investment strategy and utility losses from ignoring jump
risk and mispricing. We suppose that the jump size Yi; follow exponential distribution with
parameter \y,, i.e., the density functions of Y;; is given by g(y1) = Ay, exp{— Ay, (y1 + 1)},
y1 > —1. Throughout the numerical analyses, unless otherwise stated, the basic parameters
are given by 1 = Ay, =1, r =0.03, £ = 0.05, 01 =03, 0 =0.2, n =0.1, y =1, h = 0.5,
0=15k =02,k =06, w=1,T=4,t=0.

4.1 Sensitivity Analysis of the Equilibrium Investment Strategy

Figure 1 provides a sensitivity analysis of the mispricing x, the delayed parameter h,
jump intensity 5, and parameter Ay, of the jump’s distribution function of these two stocks’s
price processes for the equilibrium investment strategy = (t), i = 1,2 .

In parts (a) of Figure 1, we find that 77 (t) decreases w.r.t. 5; and increases w.r.t. Ay,.
This is because when (3; becomes larger, the intensity of the jump in the first stock’s price
process becomes stronger and the first stock becomes higher, so the money is invested in the
first stock becomes less. At the same time, when Ay, becomes larger, the mean and variance
of Y7; become smaller. Therefore, under the same risk tolerance, the insurer will invest more
in the first stock. In parts (b) of Figure 1, for 75 (), the analysis about it is similar to 7} (¢).

In part (d) of Figure 1, we find that when the retention level m5(¢) becomes smaller,
the delayed horizon h becomes smaller. In part (c) of Figure 1, we find that «7(¢) decreases
w.r.t. x and 75(t) increases w.r.t. x. In other words, as mispricing increases, the insurer

will reduce their investment in stock 1 and increase their investment in stock 2.

4.2 Sensitivity Analysis of the Utility Loss Functions
In this subsection, we discuss the utility loss that can be caused when jump risks and
mispricing are ignored for the insurer.

For equity but without loss of generality, we assume that the appreciation and volatility

rates of stocks without jumps are the same as those with jumps, i.e., ty;;|no jump = & +
p1E[Y1;] and Uf/u no jump = 02 + B1E[(Y1;)?].
So, the utility loss that ignores jump risks is defined as
V(t7 w? :I;7 y)
H({t)=1- ——"£. 4.1
1( ) V(t7w7m7y) ( )

As shown in (a) of Figure 2, we find that the utility loss increases w.r.t. the remaining

time T' — ¢t and the effect of the remaining time 7' — ¢ on the utility loss H;(t) is significant.
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Figure 1 The effects of parameters on the equilibrium investment strategy

0.9 T T T T T T T 0.9

o
)
o
)

=3
3
=3
3

= =
T 06 T 06
c c
S S
% 05 % 05
w w
@2 04 @ 041
S S
2 03 2 03
5 35

o
N
o
S

o
=3

o
o

0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
@ Tt b Tt

o

Figure 2 The effects of parameters on the utility loss functions

Then, we discuss the utility loss that can be caused when the mispricing is ignored for

the insurer. The utility loss that ignores mispricing is defined as

V(t,w,y)

Ha() =1 = G gy

(4.2)

From (b) of Figure 2, we can see that when the remaining time 7" — ¢ increases, the
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utility loss Hs(t) will also increase. And when T'—t = 0.3, we can find that the loss utility
is less than 10%, however, when T — ¢t = 4, we can find that the loss utility is more than
80%. This means that taking advantage of mispricing is more important for long-horizon

investors than that for short-horizon investors.
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