Vol. 40 (2020) No. 2

HOPF DENSE GALOIS EXTENSIONS OVER A RING

HE Ji-wei, HU Hai-gang

(Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China)

Abstract: Let R be a commutative domain, let H be a Hopf R-algebra which is a finitely generated free R-module, and let A be an R-algebra which is also a H-comodule algebra. We will say that A/A^{coH} is a Hopf dense Galois extension if the cokernel of the associated canonical map $\beta: A \otimes_{A^{coH}} A \to A \otimes_{R} H$ is quotient finite. It is a generalization of Hopf dense Galois extension over a field. This paper shows that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over R. It is also proved that if the algebra A is almost commutative such that gr(A) is a domain, and the canonical map β is strict, then a Hopf dense Galois extension A/A^{coH} will imply that H is dual to a finite dimensional group algebra over an algebraic closed field containing R.

Keywords: Hopf dense Galois extension; localization; quotient category; filtered algebra 2010 MR Subject Classification: 16D90; 16W22; 16W70; 16T05

Document code: A Article ID: 0255-7797(2020)02-0175-10

1 Introduction

Motivated by the study of noncommutative isolated singularities, the He-Van Oystaeyen-Zhang introduced in [1] the concept of Hopf dense Galois extensions over a field. Hopf dense Galois extensions provide candidates of noncommutative resolutions of quotient isolated singularities. However, it is usually difficult to see when a Hopf action or coaction on an algebra results a Hopf dense Galois extension. When the algebra A under consideration has a big center, namely, A is finitely generated over its center, then the problem becomes relatively easy [2]. Indeed, we may use the mod-p method to reduce the problem to algebras over fields with positive characteristic. For example, if A is a universal enveloping algebra of a finite dimensional Lie algebra, or A is a Weyl algebra over a field of characteristic p > 0, then Ais finitely generated over its center. One of the essential parts to use the mod-p method is to find orders of Hopf actions. Hence it is necessary to consider the Hopf (co) actions and Hopf dense Galois extensions over a commutative domain.

In this paper, we introduce the concept of Hopf dense Galois extensions over a commutative domain. The theory involves several torsion theories. We show that Hopf dense Galois extensions work well. In particular, we prove that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over a commutative domain (cf. Theorem 3.7).

Received date: 2018-11-18 Accepted date: 2019-04-29

Foundation item: Supported by National Natural Science Foundation of China (11571239; 11671351); Natural Science Foundation of Zhejiang Province (LY19A010011).

Biography: He Jiwei (1976–), male, born at Dongyang, Zhejiang, professor, major in noncommutative algebra. E-mail: jwhe@hznu.edu.cn.

Journal of Mathematics

Hopf dense Galois extensions depend on the Hopf algebra (co) actions on the algebra under consideration. It was shown in [3, 4] that not too many semisimple Hopf algebras act inner faithfully on a graded commutative domain or Weyl algebras. Let R be a commutative domain of characteristic zero and let \Bbbk be an algebraically closed field containing R as its subring. Assume that H is a Hopf R-algebra which is a finitely generated free R-module. Suppose that H coacts on an almost commutative algebra A and the coaction preserves the filtration. If A is Hopf dense Galois over the invariant subalgebra A^{COH} , then $H^* \otimes_R \Bbbk$ is isomorphic to a group algebra over \Bbbk (cf. Theorem 4.10). Theorem 4.10 applies to Hopf algebra coactions on Sridharan enveloping algebras which including universal enveloping algebras of finite dimensional Lie algebras and Weyl algebras. In particular, if H is a finite dimensional Hopf algebra over an algebraically closed field of characteristic zero which acts on a Sridharan enveloping algebra of $U_f(\mathfrak{g})$ such that the action preserves the filtration of $U_f(\mathfrak{g})$ and the associated graded algebra of $U_f(\mathfrak{g})$ is a Hopf dense Galois extension on its invariant subalgebra, then H is isomorphic to a group algebra (cf. Corollary 5.12). This result partially generalizes [3, Theorem 4.2].

2 Torsion Theories over a Ring

Let R be a commutative domain. Let Q be the quotient field of R. Given a noetherian R-algebra A, the localizing $A \otimes_R Q$ is a Q-algebra. For simplicity, we write A_Q for the Q-algebra $A \otimes_R Q$. Similarly, if M is a right A-module, then $M_Q := M \otimes_R Q$ is a right A_Q -module. We will say that M is R-torsion free if for any $x \in M, r \in R, xr = 0$ implies r = 0. The localizing functor $- \otimes_R Q$ induces an exact functor $(-)_Q : \operatorname{Mod} A \longrightarrow \operatorname{Mod} A_Q$. We will frequently use the following properties of localizations.

Lemma 2.1 (i) Let M and N be R-modules. Then $(M \otimes_R N)_Q \cong M_Q \otimes_Q N_Q$.

(ii) Let M be a right A-module and N be a left A-module. Then $(M \otimes_A N)_Q \cong M_Q \otimes_{A_Q} N_Q$.

Let us recall some settings in [1]. For a right A_Q -module M, an element $x \in M$ is called an A_Q -torsion element if xA_Q is a finite dimensional Q-vector space. Let $\Gamma_{A_Q}(M)$ be the subset of M consisting of all the A_Q -torsion elements. Then $\Gamma_{A_Q}(M)$ is a right A_Q submodule of M. If $M = \Gamma_{A_Q}(M)$, then M is called an A_Q -torsion module. Let Tor A_Q be the full subcategory of Mod A_Q consisting of A_Q -torsion modules. Then Tor A_Q is a Serre subcategory of Mod A_Q . Denote the quotient category

$$Q \operatorname{Mod} A_Q := \frac{\operatorname{Mod} A_Q}{\operatorname{Tor} A_Q}.$$

We refer to the book [5] for the properties of the torsion theory and quotient categories.

Consider the composition of exact functors

$$F: \operatorname{Mod} A \xrightarrow{(-)_Q} \operatorname{Mod} A_Q \xrightarrow{\pi} Q \operatorname{Mod} A_Q.$$

176

Let Tor A be the full subcategory of Mod A consisting of right A-modules M such that F(M) = 0. We will say that M is torsion if $M \in \text{Tor } A$. Let $\varphi : M \to M_Q$ be the localizing map. We have the following easy observation.

Lemma 2.2 A right A-module M is in Tor A if and only if for each $x \in M$, $\varphi(x)A_Q$ is finite dimensional over Q.

For a right A-module M, let $\Gamma_A(M) = \{x \in M | \varphi(x) A_Q \text{ is finite dimensional}\}$. Then $\Gamma_A(M)$ is a torsion submodule of M.

Lemma 2.3 With the above notions, we have

(i) $\Gamma_A(M)$ is the largest torsion submodule of M and $M/\Gamma_A(M)$ is torsion free, which is to say, $\Gamma_A(M/\Gamma_A(M)) = 0$.

(ii) $\Gamma_A(M)_Q = \Gamma_{A_Q}(M_Q).$

Proof Statement (i) is easy to check. We next prove statement (ii). For $x \in M$ and an nonzero element $s \in R$, we have $(x/s)A_Q = \varphi(x)A_Q$. It follows that $(x/s)A_Q$ is finite dimensional if and only if $\varphi(x)A_Q$ is finite dimensional. Hence $\Gamma_A(M)_Q = \Gamma_{A_Q}(M_Q)$.

The subcategory Tor A is a Serre subcategory of Mod A. Denote the quotient category

$$Q \operatorname{Mod} A := \frac{\operatorname{Mod} A}{\operatorname{Tor} A}.$$

Then we obtain an exact functor (use the same notation)

$$(-)_Q : Q \operatorname{Mod} A \longrightarrow Q \operatorname{Mod} A_Q.$$

$$(2.1)$$

As usual conventions, for an object $M \in \text{Mod} A$, the corresponding object in Q Mod A is denoted by \mathcal{M} , and the object in $Q \text{Mod} A_Q$ corresponding to M_Q is denoted by \mathcal{M}_Q .

Let M and N be right A-modules. Assume that M is finitely generated. It is well known

$$\operatorname{Hom}_{A}(M, N)_{Q} \cong \operatorname{Hom}_{A_{Q}}(M_{Q}, N_{Q}).$$

$$(2.2)$$

We next show that the above isomorphism may be extended to the quotient categories.

Lemma 2.4 Let M be a right A-module. Let L be an A_Q -submodule of M_Q such that M_Q/L is finite dimensional. Then there is an A-submodule K of M such that $M_Q/L \cong M_Q/K_Q$ and M/K is R-torsion free.

Proof Let $\varphi : M \to M_Q$ be the localizing map, and $K = \{m \in M | \varphi(m) \in L\}$. Then $L = K_Q$. By the construction, we see that M/K is *R*-torsion free.

Proposition 2.1 Let M be a finitely generated right A-module. For every $N \in Mod A$, we have

$$\operatorname{Hom}_{Q\operatorname{Mod}A_Q}(\mathcal{M}_Q,\mathcal{N}_Q)\cong\operatorname{Hom}_{Q\operatorname{Mod}A}(\mathcal{M},\mathcal{N})_Q.$$

Proof We have the following computations

$$\operatorname{Hom}_{Q \operatorname{Mod} A_Q}(\mathcal{M}_Q, \mathcal{N}_Q) = \varinjlim \operatorname{Hom}_{A_Q}(L, N_Q/\Gamma_{A_Q}(N_Q)) \\ = \varinjlim \operatorname{Hom}_{A_Q}(K_Q, N_Q/\Gamma_{A_Q}(N_Q)),$$

where the first limit runs over all the A_Q -submodules L of M_Q such that M_Q/L is finite dimensional, and the second limit runs over all the A-submodules K such that $M_Q/K_Q \cong (M/K)_Q$ is finite dimensional. Let $T = \Gamma_A(N)$. Then $T_Q = \Gamma_{A_Q}(N_Q)$ by Lemma 2.3. Hence we have

 $\lim \operatorname{Hom}_{A_Q}(K_Q, N_Q/\Gamma_{A_Q}(N_Q))$

- $\cong \lim \operatorname{Hom}_{A_Q}(K_Q, N_Q/T_Q) \cong \lim \operatorname{Hom}_{A_Q}(K_Q, (N/T)_Q)$
- $\cong \lim \operatorname{Hom}_A(K, N/T)_Q = \operatorname{Hom}_{\operatorname{QMod} A}(\mathcal{M}, \mathcal{N})_Q.$

3 Hopf Dense Galois Extensions

In this section, R is a noetherian commutative domain. Let Q be its quotient field. An R-module M is said to be quotient-finite if M_Q is finite dimensional.

Suppose that A is a noetherian R-algebra which is projective as an R-module. Let H be a Hopf R-algebra which is a finitely generated free R-module. Assume that H coacts on A so that A is a right H-comodule algebra through the coaction $\rho : A \to A \otimes_R H$. As the usual convention, we denote $A^{\operatorname{co} H} = \{a \in A | \rho(a) = a \otimes 1\}$ the coinvariant subalgebra of A.

We next extend the concept of Hopf dense Galois extension (cf. [1]) to algebras over a ring. Consider the following map

$$\beta: A \otimes_{A^{\mathrm{co}H}} A \to A \otimes_R H, \ a \otimes b \mapsto (a \otimes 1)\rho(b).$$

We call $A/A^{\text{co}H}$ is a Hopf dense Galois extension if the cokernel of β is quotient-finite. Note that if β is an epimorphism, then $A/A^{\text{co}H}$ is a classical Hopf Galois extension (cf. [6, 7]).

Applying the localizing functor $(-)_Q$ to the algebra A and the Hopf algebra H, we obtain a finite dimensional Hopf algebra H_Q and a right H_Q -comodule algebra A_Q . Note that the coaction of H_Q on A_Q is the map $\rho_Q : A_Q \to A_Q \otimes_Q H_Q$.

Lemma 3.5 With the notions as above, $(A^{\operatorname{co} H})_Q \cong (A_Q)^{\operatorname{co} H_Q}$.

Proof Let $\varphi : A \to A_Q$ and $\phi : H \to H_Q$ be the localizing maps. Applying $(-)_Q$ to the inclusion map $A^{\operatorname{co} H} \to A$, we obtain that $(A^{\operatorname{co} H})_Q$ is contained in $(A_Q)^{\operatorname{co} H_Q}$. On the other hand, assume $a \in A$ and $\rho_Q(\varphi(a)) = \varphi(a) \otimes_Q 1$. Since H is a finitely generated free R-module and R is a noetherian commutative domain, we extend the unit 1 of R to an R-basis $h_0 = 1, h_1, \ldots, h_n$ of H. Then we may write $\rho(a) = \sum_{i=0}^n a_i \otimes_R h_i$. Then $\rho_Q(\varphi(a)) = \sum_{i=0}^n \varphi(a_i) \otimes_Q \phi(h_i)$. Since H is free, $\phi(h_0), \ldots, \phi(h_n)$ is a Q-basis of H_Q . Comparing with the assumption $\rho_Q(\varphi(a)) = \varphi(a) \otimes_Q 1$, we obtain $\varphi(a_0) = \varphi(a)$ and $\varphi(a_i) = 0$ for $i = 1, \ldots, n$. Since A is projective as an R-module, it is R-torsion free, hence φ is injective. It follows that $a_0 = a$ and $a_i = 0$ for $i = 1, \ldots, n$. Hence $\rho(a) = a \otimes_R 1$.

Proposition 3.2 Let A be an R-algebra which is projective as an R-module, and let H be an R-Hopf algebra which is R-free. Assume A is a right H-comodule algebra. Then $A/A^{\operatorname{co} H}$ is Hopf dense Galois if and only if $A_Q/(A_Q)^{\operatorname{co} H_Q}$ is Hopf dense Galois.

Proof Applying $(-)_Q$ to the map $\beta : A \otimes_{A^{coH}} A \to A \otimes_R H$, we obtain

$$\beta_Q: A_Q \otimes_{(A_Q)^{coH_Q}} A_Q \to A_Q \otimes_Q H_Q$$

by Lemma 3.5. Then the condition that the cokernel of β_Q is finite dimensional implies both $A/A^{\operatorname{co} H}$ and $A_Q/(A_Q)^{\operatorname{co} H_Q}$ are Hopf dense Galois.

Since the torsion functor Γ_A is left exact, it has right derived functors. Let $R^i \Gamma_A$ $(i \ge 0)$ denotes the *i*-th right derived functor of Γ_A . Similarly, we have $R^i \Gamma_{A_O}$.

Lemma 3.6 If $R^i \Gamma_A(M) = 0$ for all $i \leq k$, then $R^i \Gamma_{A_Q}(M_Q) = 0$ for all $i \leq k$.

Proof Let $0 \to M \to I^0 \to I^1 \to \cdots \to I^k \to \cdots$ be an injective resolution of M. Since the localizing functor $(-)_Q$ preserves injective modules, it follows that $0 \to M_Q \to I_Q^0 \to I_Q^1 \to \cdots \to I_Q^k \to \cdots$ is an injective resolution of M_Q . Let I^{\bullet} be the complex $0 \to I^0 \to \cdots \to I^k \to \cdots$. By Lemma 2.3, $R^i \Gamma_{A_Q}(M_Q) = H^i \Gamma_{A_Q}(I_Q^{\bullet}) \cong H^i(\Gamma_A(I^{\bullet})_Q) \cong H^i(\Gamma_A(I^{\bullet})_Q) = R^i \Gamma_A(M)_Q$. So $R^i \Gamma_{A_Q}(M_Q) = 0$ for all $i \leq k$ in case $R^i \Gamma_A(M) = 0$ for $i \leq k$.

Since by assumption H is a finitely generated R-algebra, then similar to equation (2.2), we have an isomorphism of Hopf algebras $\operatorname{Hom}_R(H, R) \otimes_R Q \cong \operatorname{Hom}_Q(H \otimes_R Q, Q)$. Thus we can write

$$H_Q^* = (H^*)_Q \cong (H_Q)^*,$$
 (3.1)

where $H^* = \operatorname{Hom}_R(H, R)$ is the dual Hopf algebra of H.

An important feature of Hopf dense Galois extensions over a field is the truth of Auslander theorem (cf. [1, Theorem 3.10]). Note that Theorem 3.10 of [1] is still true if the characteristic is positive. Next result shows that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over a commutative domain.

Theorem 3.7 Let A and H be the algebras as in the beginning of this section. Assume further that H_Q is cosemisimple. If $A/A^{\operatorname{co} H}$ is a Hopf dense Galois extension, and $R^i\Gamma_A(A) = 0$ for $i \leq 2$, then the natural map

$$\psi: A \# H^* \longrightarrow \operatorname{End}_{A^{\operatorname{co} H}}(A), a \otimes \alpha \mapsto [b \mapsto a(\alpha \cdot b)]$$

is injective. Moreover, for each $f \in \operatorname{End}_{A^{\operatorname{co} H}}(A)$, there exist $0 \neq r \in R$ and $\sum_{i=1}^{n} a_i \# \alpha_i \in A \# H^*$ such that $rf(b) = \sum_{i=1}^{n} a_i(\alpha_i \cdot b)$ for all $b \in A$.

Proof By Proposition 3.2, $A_Q/(A_Q)^{\operatorname{co} H_Q}$ is a Hopf dense Galois extension over the field Q. By Lemma 3.6, $R^i \Gamma_{A_Q}(A_Q) = 0$ for $i \leq 2$. Then [1, Theorem 3.10] insures that the natural map

$$\xi: A_Q \# H_Q^* \longrightarrow \operatorname{End}_{(A_Q)^{\operatorname{co} H_Q}}(A_Q)$$

is an isomorphism. By Lemma 3.5, we have $(A_Q)^{\operatorname{co} H_Q} = (A^{\operatorname{co} H})_Q$. It follows $\operatorname{End}_{(A_Q)^{\operatorname{co} H_Q}}(A_Q) = \operatorname{End}_{A^{\operatorname{co} H}}(A)_Q$. Moreover, since $A_Q \# H_Q^* = (A \# H^*)_Q$, it follows that $\xi = \psi_Q : (A \# H^*)_Q \longrightarrow \operatorname{End}_{A^{\operatorname{co} H}}(A)_Q$. We next show that ψ is a monomorphism. Let $K = \ker \psi$ and $M = \operatorname{coker} \psi$. Then $K_Q = \ker \xi = 0$ and $M_Q = \operatorname{coker} \xi = 0$. Since A is projective over R and H is R-free, it follows that $A \# H^*$ is projective over R. Since R is a domain, $A \# H^*$ is R-torsion free. Hence K is R-torsion free, which implies K = 0. Therefore ψ is injective. Moreover, since $M_Q = 0$, it follows that for each $f \in \operatorname{End}_{A^{\operatorname{co}H}}(A)$, there is an element $0 \neq r \in R$ such that rf lies in the image of ψ , that is $rf = \psi(\sum_{i=1}^n a_i \# \alpha_i)$ for some $\sum_{i=1}^n a_i \# \alpha_i \in A \# H^*$. Hence $rf(b) = \sum_{i=1}^n a_i(\alpha_i \cdot b)$ for all $b \in A$.

4 Hopf Dense Galois Extensions of Almost Commutative Algebras

In this section, R is a noetherian commutative domain of characteristic zero, and k is an algebraic closed field containing R as a subring. H is an R-Hopf algebra which is a finitely generated free R-module. The filtration of a filtered R-algebra A is an ascending filtration

$$0 \subseteq F_0 A \subseteq F_1 A \subseteq \cdots \subseteq F_i A \subseteq \cdots, \ i \in \mathbb{N}.$$

We call an *R*-algebra A is almost commutative if A is a filtered *R*-algebra and the associated graded algebra gr(A) is a graded commutative algebra. Similar to equation (3.1), we will write

$$H_{\Bbbk}^* = \operatorname{Hom}_R(H, R) \otimes_R \Bbbk \cong \operatorname{Hom}_{\Bbbk}(H \otimes_R \Bbbk, \Bbbk)$$

for simplicity.

Lemma 4.8 Let $B = B_0 \oplus B_1 \oplus \cdots$ be a graded *R*-algebra which is a commutative domain and is projective over *R*. Let $\rho : B \to B \otimes_R H$ be a right *H*-coaction on *B* which preserves the gradings. If $B/B^{\operatorname{co} H}$ is a Hopf dense Galois extension, then $H^*_{\mathbb{k}}$ is isomorphic to a group algebra.

Proof We write $B_{\Bbbk} = B \otimes_R \Bbbk$ and $H_{\Bbbk} = H \otimes_R \Bbbk$. Applying $- \otimes_R \Bbbk$ to the right coaction $\rho : B \to B \otimes_R H$, we obtain a coaction $\rho_{\Bbbk} : B_{\Bbbk} \to B_{\Bbbk} \otimes_{\Bbbk} H_k$. Consider the canonical map $\beta_{\Bbbk} : B_{\Bbbk} \otimes_{B^{coH_k}} B_{\Bbbk} \longrightarrow B_{\Bbbk} \otimes_{\Bbbk} H_{\Bbbk}$. Since *B* is commutative, β_{\Bbbk} is indeed an algebra homomorphism, where we view $B_{\Bbbk} \otimes_{\Bbbk} H_{\Bbbk}$ as the algebra by the usual multiplication of tensor products of algebras. The same proof of Proposition 3.2 shows that $B_{\Bbbk}/(B_{\Bbbk})^{coH_{\Bbbk}}$ is a Hopf dense Galois extension, then the cokernel of β_{\Bbbk} is finite dimensional over \Bbbk . Then there is an integer $n \ge 0$ such that $(\bigoplus_{i\ge n} B_i)_{\Bbbk} \otimes_{\Bbbk} H_{\Bbbk} \subseteq \operatorname{im} \beta_{\Bbbk}$. Since by assumption *B* is commutative, which implies $B_{\Bbbk} \otimes_{B^{coH_{\Bbbk}}} B_{\Bbbk}$ is commutative, and thus $\operatorname{im} \beta_{\Bbbk}$ is commutative. For $g, h \in H$, taking nonzero elements $a, b \in (\bigoplus_{i\ge n} B_i)_{\Bbbk}$, then $(a \otimes_{\Bbbk} g), (b \otimes_{\Bbbk} h) \in \operatorname{im} \beta_{\Bbbk}$, which implies $(a \otimes_{\Bbbk} g)(b \otimes_{\Bbbk} h) = (b \otimes_{\Bbbk} h)(a \otimes_{\Bbbk} g)$. Then $ab \otimes_{\Bbbk} gh = ba \otimes_{\Bbbk} hg = ab \otimes_{\Bbbk} hg$. Since *B* is a domain and *B* is projective over *R*, $ab \ne 0$. Hence we have gh = hg, that is, H_{\Bbbk} is commutative. Since *H* is finitely generated as an *R*-module, H_{\Bbbk} is finite dimensional. Therefore the dual Hopf algebra H_{\Bbbk}^* is cocommutative. Since \Bbbk is algebraic closed with characteristic zero, H_{\Bbbk}^* is isomorphic to a group algebra.

Let *B* be a filtered *R*-algebra. Let *M* be a filtered right *B*-module and let *N* be a left filtered *B*-module. The tensor product $M \otimes_B N$ has an induced filtration defined by $F_n(M \otimes_B N)$ to be the abelian subgroup of $M \otimes_B N$ generated by elements $x \otimes y$ for all

 $x \in F_i M$ and $y \in F_j N$ such that i + j = n. There is a graded epimorphism (cf. [8, §6, Chapter I])

$$\varphi_{M,N}: gr(M) \otimes_{gr(B)} gr(N) \longrightarrow gr(M \otimes_B N), \ \overline{x} \otimes \overline{y} \mapsto \overline{x \otimes y}, \tag{4.1}$$

where $x \in F_i M \setminus F_{i-1}M$, $y \in F_j N \setminus F_{j-1}N$ and $\overline{x}, \overline{y}$ are corresponding elements in the associated graded modules, similarly $\overline{x \otimes y}$ is the corresponding element in the graded abelian group associated to $M \otimes_B N$.

Suppose that there is a right *H*-coaction $\rho: B \to B \otimes_R H$ which preserves the filtration, where the filtration of $B \otimes_R H$ is induced by the filtration of *B*. Then the induced map

$$gr(\rho): gr(B) \longrightarrow gr(B) \otimes_R H$$

is a right *H*-coaction on the associated graded algebra gr(B). Then the filtration of *B* induces a filtration on B^{coH} . Associated to this filtration, there is a graded algebra $gr(B^{coH})$. Then $gr(B^{coH})$ is a graded subalgebra of $(gr(B))^{coH}$. In general, $gr(B^{coH})$ is not equal to $(gr(B))^{coH}$.

Let X and Y be filtered R-modules. An R-module homomorphism $f: X \to Y$ is called a strict filtered map [8] if f preserves the filtration and $F_nY \cap \text{im } f = f(F_nX)$ for all n.

Lemma 4.9 Keep the notations as above. If $B/B^{\operatorname{co} H}$ is a Hopf dense Galois extension and the canonical map $\beta : B \otimes_{B^{\operatorname{co} H}} B \to B \otimes_R H$ is strict, then $gr(B)/(gr(B))^{\operatorname{co} H}$ is a Hopf dense Galois extension.

Proof Let $gr(\rho) : gr(B) \to gr(B) \otimes_R H$ be the induced *H*-coaction on gr(B). Let

$$\beta_{ar}: gr(B) \otimes_{(ar(B))^{coH}} gr(B) \to gr(B) \otimes_R H, \ a \otimes b \mapsto (a \otimes 1)(gr(\rho)(b))$$

be the canonical map associated to $gr(\rho)$. Denote $K = \operatorname{coker} \beta$. Then K has a natural filtration inherits from $B \otimes_R H$. Since β is strict, by [8, Theorem 4.2.4, Chapter I], we have an exact sequence

$$gr(B \otimes_{B^{coH}} B) \xrightarrow{gr(\beta)} gr(B \otimes_R H) \longrightarrow gr(K) \longrightarrow 0.$$

By equation (4.1), the map $\varphi_{B,B} : gr(B) \otimes_{gr(B^{coH})} gr(B) \longrightarrow gr(B \otimes_{B^{coH}} B)$ is an epimorphism. Note that $gr(B \otimes_R H) = gr(B) \otimes_R H$, we have the following commutative diagram

where p is an epimorphism induced by the fact that $gr(B^{coH})$ is a graded subalgebra of $(gr(B))^{coH}$. Since $\varphi_{B,B}$ and p are both epic, we have coker $\beta_{gr} = \operatorname{coker} gr(\beta) \cong gr(K)$. By assumption, B/B^{coH} is a Hopf dense Galois extension, thus K_Q is finite dimensional over Q. Then $(gr(K))_Q = gr(K_Q)$ is also finite dimensional over Q. Therefore $gr(B)/(gr(B))^{coH}$ is a Hopf dense Galois extension.

Theorem 4.10 Let A be an almost commutative R-algebra such that gr(A) is a domain. Assume that A is a right H-comodule algebra such that the right H-coaction preserves the filtration. If A/A^{coH} is a Hopf dense Galois extension and the canonical map $\beta : A \otimes_{A^{coH}} A \to A \otimes_{R} H$ is strict, then H_{\Bbbk}^{*} is isomorphic to a group algebra over \Bbbk .

Proof As before, we write $A_{\Bbbk} = A \otimes_R \Bbbk$ and $H_{\Bbbk} = H \otimes_R \Bbbk$. Since A is a filtered R-algebra, A_{\Bbbk} is also a filtered k-algebra with the obvious induced filtration. Since the right H-coaction preserves the filtration, it induces a right H-coaction on the associated graded algebra gr(A). Applying the functor $- \otimes_R \Bbbk$ to the right H-coaction $\rho : A \to A \otimes_R H$, we obtain that A_{\Bbbk} is a right H_{\Bbbk} -comodule algebra and $A_{\Bbbk}/(A_{\Bbbk})^{coH_{\Bbbk}}$ is a Hopf dense Galois extension. Moreover, since β is strict, the induced canonical map β_{\Bbbk} is also a strict filtered map. By Lemma 4.9, $gr(A_{\Bbbk})/(gr(A_{\Bbbk}))^{coH_{\Bbbk}}$ is a Hopf dense Galois extension. Since A is almost commutative, gr(A) is a commutative domain. Then $gr(A_{\Bbbk}) = gr(A) \otimes_R \Bbbk$ is a commutative domain over \Bbbk . By Lemma 4.8, H_{\Bbbk}^* is a group algebra.

For a filtered algebra A and a filtration preserving right H-coaction, the canonical map

$$\beta: A \otimes_{A^{\mathrm{co}H}} A \to A \otimes_R H$$

may be not a strict map. Hence the associated graded algebra gr(A) may not be a Hopf dense Galois extension over $(gr(A))^{\operatorname{co} H}$. Some further discussions will be given in the next section.

5 Some Corollaries

In this section, k is an algebraically closed field of characteristic zero. All the algebras and modules in this section are over k. Let H be a finite dimensional Hopf algebra.

The next result is a direct consequence of [2, Proposition 3.6] if A is noetherian and H is semisimple. We give a direct proof and drop the assumptions in [2, Proposition 3.6].

Proposition 5.3 Let A be a filtered algebra with an ascending filtration

$$0 \subseteq F_0 A \subseteq F_1 A \subseteq \cdots \subseteq F_i A \subseteq \cdots, \ i \in \mathbb{N}$$

such that $F_i A$ is finite dimensional for all $i \ge 0$. Assume that A is a right H-comodule algebra and the coaction preserving the filtration. If the associated graded algebra gr(A) is a Hopf dense Galois extension over $(gr(A))^{\operatorname{co} H}$, then $A/A^{\operatorname{co} H}$ is a Hopf dense Galois extension.

Proof Let $\beta : A \otimes_{A^{coH}} A \to A \otimes_{\Bbbk} H$ be the canonical map. Similar to the diagram (4.2), we have the following commutative diagram

Since $gr(A)/(gr(A))^{coH}$ is a Hopf dense Galois extension, which is to say that coker β_{gr} is finite dimensional. It follows that there is a positive number n such that for all $k \ge n$, we have

$$\beta_{qr}(gr(A) \otimes_{(qr(A))^{coH}} gr(A))_k = (F_k A / F_{k-1} A) \otimes_{\Bbbk} H.$$

We claim that $\beta(F_k(A \otimes_{A^{coH}} A)) + F_{n-1}A \otimes_{\Bbbk} H = F_kA \otimes_{\Bbbk} H$ for all $k \ge n$. By the commutative diagram (5.1), for every $x \in F_nA \otimes_{\Bbbk} H$, there is an element $y \in F_n(A \otimes_{A^{coH}} A)$ such that $\beta(y) + z = x$ for some $z \in F_{n-1}A \otimes_{\Bbbk} H$. Hence $\beta(F_n(A \otimes_{A^{coH}} A)) + F_{n-1} \otimes_{\Bbbk} H = F_nA \otimes_{\Bbbk} H$. Now assume that $\beta(F_i(A \otimes_{A^{coH}} A)) + F_{n-1}A \otimes_{\Bbbk} H = F_iA \otimes_{\Bbbk} H$ for $i \ge n$. By the commutative diagram (5.1), we have $\beta(F_{i+1}(A \otimes_{A^{coH}} A)) + F_iA \otimes_{\Bbbk} H = F_{i+1}A \otimes_{\Bbbk} H$. Then

$$F_{i+1}A \otimes_{\Bbbk} H = \beta(F_{i+1}(A \otimes_{A^{\operatorname{co} H}} A)) + \beta(F_i(A \otimes_{A^{\operatorname{co} H}} A)) + F_{n-1}A \otimes_{\Bbbk} H$$
$$= \beta(F_{i+1}(A \otimes_{A^{\operatorname{co} H}} A)) + F_{n-1}A \otimes_{\Bbbk} H.$$

Hence we have $\dim((A \otimes_{\Bbbk} H) / \operatorname{im} \beta) \leq \dim(F_{n-1}A \otimes_{\Bbbk} H) < \infty$. Therefore, $A/A^{\operatorname{co} H}$ is a Hopf dense Galois extension.

Combined with Lemma 4.9, we have the following corollary.

Corollary 5.11 With the same conditions in Proposition 5.3, if in addition the canonical map $\beta : A \otimes_{A^{coH}} A \to A \otimes_{\Bbbk} H$ is strict, then A/A^{coH} is a Hopf dense Galois extension if and only if $gr(A)/(gr(A))^{coH}$ is a Hopf dense Galois extension.

Let \mathfrak{g} be a finite dimensional Lie algebra, and let $f : \mathfrak{g} \times \mathfrak{g} \to \mathbb{k}$ be a 2-cocycle, that is, for every $x, y, z \in \mathfrak{g}$, f(x, x) = 0, f(x, [y, z]) + f(z, [x, y]) + f(y, [z, x]) = 0. Then a Sridharan enveloping algebra [9] of \mathfrak{g} is defined to be the associative algebra

$$U_f(\mathfrak{g}) = T(\mathfrak{g})/I,$$

where $T(\mathfrak{g})$ is the tensor algebra of \mathfrak{g} over k and I is the ideal of $T(\mathfrak{g})$ generated by elements

$$x \otimes y - y \otimes x - [x, y] - f(x, y)$$
 for all $x, y \in \mathfrak{g}$.

Assume that $\{x_1, \ldots, x_n\}$ is an *R*-basis of \mathfrak{g} . Then $U_f(\mathfrak{g})$ is a free *R*-module and it has a basis $\{x_1^{i_1}x_2^{x_2}\cdots x_n^{i_n}|i_1,i_2,\ldots,i_n\geq 0\}$ (cf. [9, Theorem 2.6]). And $U_f(\mathfrak{g})$ is a filtered algebra with an ascending filtration defined by

$$F_k U_f(\mathfrak{g}) = \operatorname{span}\{x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} | i_1 + i_2 + \cdots + i_n \le k\}$$

for all $k \geq 0$. The associated graded algebra of $U_f(\mathfrak{g})$ is the commutative polynomial ring $\mathbb{k}[x_1,\ldots,x_n]$.

Suppose that there is a right *H*-coaction $\rho_{\mathfrak{g}} : U_f(\mathfrak{g}) \to U_f(\mathfrak{g}) \otimes_{\Bbbk} H$ which preserves the filtration defined as above. Then the associated graded map $gr(\rho_{\mathfrak{g}}) : grU_f(\mathfrak{g}) \to grU_f(\mathfrak{g}) \otimes_{\Bbbk} H$ is a right *H*-coaction on $grU_f(\mathfrak{g})$.

Corollary 5.12 With the notions as above, if $grU_f(\mathfrak{g})$ is a Hopf dense Galois extension over $(grU_f(\mathfrak{g}))^{coH}$, then $U_f(\mathfrak{g})$ is a Hopf dense Galois extension over $U_f(\mathfrak{g})^{coH}$ and H^* is isomorphic to a group algebra.

Proof The first part follows from Proposition 5.3. The second part follows from Lemma 4.8 since $grU_f(\mathfrak{g}) \cong \Bbbk[x_1, \ldots, x_n]$.

As we know, a right *H*-coaction on an algebra *A* is equivalent to a left *H*-action on *A*. Moreover, we have $A^{\text{co}H} = A^H$, where $A^H = \{a \in A | ha = \varepsilon(h)a$, for all $h \in H\}$. Hence we may rewrite Corollary 5.12 in the Hopf action version.

Corollary 5.13 Suppose that H acts on a Sridharan enveloping algebra $U_f(\mathfrak{g})$. If the H-action preserves the filtration of $U_f(\mathfrak{g})$ and $grU_f(\mathfrak{g})$ is a right H^* -Hopf dense Galois extension over $(grU_f(\mathfrak{g}))^H$, then $U_f(\mathfrak{g})$ is a right H^* -Hopf dense Galois extension over $U_f(\mathfrak{g})^H$, and H is isomorphic to a group algebra.

References

- He J W, Van O F, Zhang Y H. Hopf dense Galois extensions with applications[J]. J. Algebra, 2017, 476: 134–160.
- [2] Bao Y H, He J W, Zhang J J. Noncommutative Auslander theorem[J]. Trans. Amer. Math. Soc., 2018, 370 (12): 8613–8638.
- [3] Cuadra J, Etingof P, Walton C. Semisimple Hopf actions on Weyl algebras[J]. Adv. Math., 2015, 282: 47–55.
- [4] Etingof P, Walton C. Semisimple Hopf actions on commutative domains[J]. Adv. Math., 2014, 251: 47–61.
- [5] Popescu N, Popescu L. Theory of categories[M]. Romania: Sijthoff & Noordhoff International Publishers, 1979.
- [6] Cohen M, Fischman D, Montgomery S. Hopf Galois extensions, smash products, and Morita equivalence[J]. J. Algebra, 1990, 133: 351–372.
- [7] Kreimer H F, Takeuchi M. Hopf algebras and Galois extensions of an algebra[J]. Indiana Univ. Math. J., 1981, 30: 675–692.
- [8] Li Huishi, Van Oystaeyen F. Zariskian filtrations[M]. New York: Springer Science+Business Media Dordrecht, 1996.
- [9] Sridharan R. Filtered algebras and representations of Lie algebras[J]. Trans. Amer. Math. Soc., 1961, 100: 530–550.

环上的Hopf稠密伽罗瓦扩张

何济位, 胡海刚

(杭州师范大学数学系,浙江杭州 311121)

摘要: 给定交换整环*R*, 以及Hopf *R*-代数*H*, 且*H*是一个有限生成的自由*R*-模. 设*A*是一个*R*-代数, 并 且*A*是*H*-余模代数. 如果自然映射β: *A* ⊗_{*A*^{coH}}*A* → *A* ⊗_{*R*}*H*的余核是商有限的, 则称*A*/*A*^{coH}是一个Hopf稠 密伽罗瓦扩张. 它是域上Hopf稠密伽罗瓦扩张的推广. 本文证明了*R*上的Hopf稠密伽罗瓦扩张隐含了一个弱 化的Auslander定理. 此外, 假设*A*是几乎可交换代数, 且*gr*(*A*)是一个整环. 如果*A*/*A*^{coH}是Hopf稠密伽罗瓦 扩张, 且自然映射β是严格的, 本文证明了在此情形下, *H*在一个包含*R*的代数闭域上对偶于一个有限群代数. 关键词: Hopf稠密伽罗瓦扩张; 局域化; 商范畴; 滤过代数

MR(2010)主题分类号: 16D90;16W22;16W70;16T05 中图分类号: O153