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Abstract: Let R be a commutative domain, let H be a Hopf R-algebra which is a finitely
generated free R-module, and let A be an R-algebra which is also a H-comodule algebra. We will
say that A/A°H is a Hopf dense Galois extension if the cokernel of the associated canonical map
B A® gcom A — A®p H is quotient finite. It is a generalization of Hopf dense Galois extension over
a field. This paper shows that a weaker version of Auslander theorem holds for Hopf dense Galois
extensions over R. It is also proved that if the algebra A is almost commutative such that gr(A) is
a domain, and the canonical map 3 is strict, then a Hopf dense Galois extension A/A°H will imply
that H is dual to a finite dimensional group algebra over an algebraic closed field containing R.
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1 Introduction

Motivated by the study of noncommutative isolated singularities, the He-Van Oystaeyen-
Zhang introduced in [1] the concept of Hopf dense Galois extensions over a field. Hopf dense
Galois extensions provide candidates of noncommutative resolutions of quotient isolated sin-
gularities. However, it is usually difficult to see when a Hopf action or coaction on an algebra
results a Hopf dense Galois extension. When the algebra A under consideration has a big
center, namely, A is finitely generated over its center, then the problem becomes relatively
easy [2]. Indeed, we may use the mod-p method to reduce the problem to algebras over fields
with positive characteristic. For example, if A is a universal enveloping algebra of a finite
dimensional Lie algebra, or A is a Weyl algebra over a field of characteristic p > 0, then A
is finitely generated over its center. One of the essential parts to use the mod-p method is
to find orders of Hopf actions. Hence it is necessary to consider the Hopf (co) actions and
Hopf dense Galois extensions over a commutative domain.

In this paper, we introduce the concept of Hopf dense Galois extensions over a commu-
tative domain. The theory involves several torsion theories. We show that Hopf dense Galois
extensions work well. In particular, we prove that a weaker version of Auslander theorem

holds for Hopf dense Galois extensions over a commutative domain (cf. Theorem 3.7).
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Hopf dense Galois extensions depend on the Hopf algebra (co) actions on the algebra
under consideration. It was shown in [3, 4] that not too many semisimple Hopf algebras act
inner faithfully on a graded commutative domain or Weyl algebras. Let R be a commutative
domain of characteristic zero and let k be an algebraically closed field containing R as its
subring. Assume that H is a Hopf R-algebra which is a finitely generated free R-module.
Suppose that H coacts on an almost commutative algebra A and the coaction preserves the
filtration. If A is Hopf dense Galois over the invariant subalgebra A“°# then H* ®p k is
isomorphic to a group algebra over k (cf. Theorem 4.10). Theorem 4.10 applies to Hopf
algebra coactions on Sridharan enveloping algebras which including universal enveloping
algebras of finite dimensional Lie algebras and Weyl algebras. In particular, if H is a finite
dimensional Hopf algebra over an algebraically closed field of characteristic zero which acts
on a Sridharan enveloping algebra U;(g) such that the action preserves the filtration of
Us(g) and the associated graded algebra of Uy(g) is a Hopf dense Galois extension on its
invariant subalgebra, then H is isomorphic to a group algebra (cf. Corollary 5.12). This

result partially generalizes [3, Theorem 4.2].

2 Torsion Theories over a Ring

Let R be a commutative domain. Let () be the quotient field of R. Given a noetherian
R-algebra A, the localizing A ®pr @ is a @Q-algebra. For simplicity, we write Ay for the
Q-algebra A ®p (. Similarly, if M is a right A-module, then Mg := M ®p @ is a right
Ag-module. We will say that M is R-torsion free if for any € M,r € R, xr = 0 implies
r = 0. The localizing functor — ®x @ induces an exact functor (—)o : Mod A — Mod Ag.

We will frequently use the following properties of localizations.

Lemma 2.1 (i) Let M and N be R-modules. Then (M ®r N)g = Mg ®¢ Ng.

(ii) Let M be a right A-module and N be a left A-module. Then (M ®4 N)g =
Mg ®.4, No.

Let us recall some settings in [1]. For a right Ag-module M, an element x € M is
called an Ag-torsion element if xAg is a finite dimensional Q-vector space. Let I'4, (M)
be the subset of M consisting of all the Ag-torsion elements. Then I'y, (M) is a right Ag-
submodule of M. If M =T 4,(M), then M is called an Ag-torsion module. Let Tor Ay be
the full subcategory of Mod A consisting of Ag-torsion modules. Then Tor Ag is a Serre
subcategory of Mod Ag. Denote the quotient category

Mod AQ

Mod Ap i= ———=.
@Mod Aq Tor Ag

We refer to the book [5] for the properties of the torsion theory and quotient categories.

Consider the composition of exact functors

F: Mod A-—% Mod Ay —~ Q Mod Ag.
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Let Tor A be the full subcategory of Mod A consisting of right A-modules M such that
F(M) =0. We will say that M is torsion if M € Tor A. Let ¢ : M — M be the localizing

map. We have the following easy observation.

Lemma 2.2 A right A-module M is in Tor A if and only if for each x € M, ¢(z)Aq

is finite dimensional over ().

For a right A-module M, let I'y(M) = {x € M|p(x)Aq is finite dimensional}. Then
T'4(M) is a torsion submodule of M.

Lemma 2.3 With the above notions, we have

(i) Ta(M) is the largest torsion submodule of M and M/T" (M) is torsion free, which
is to say, ['a(M /T 4(M)) = 0.

(if) Ta(M)q = Tag(Mq).

Proof Statement (i) is easy to check. We next prove statement (ii). For x € M and
an nonzero element s € R, we have (z/s)Aq = p(x)Aq. It follows that (x/s)Aq is finite
dimensional if and only if ¢(z)Ag is finite dimensional. Hence I' 4 (M )q = T'a,, (Myg).

The subcategory Tor A is a Serre subcategory of Mod A. Denote the quotient category

Then we obtain an exact functor (use the same notation)

As usual conventions, for an object M € Mod A, the corresponding object in @ Mod A is
denoted by M, and the object in () Mod Ag corresponding to Mg is denoted by M.
Let M and N be right A-modules. Assume that M is finitely generated. It is well
known
Homu (M, N)q = Homa, (Mg, Ng). (2.2)

We next show that the above isomorphism may be extended to the quotient categories.

Lemma 2.4 Let M be a right A-module. Let L be an Ag-submodule of Mg such
that Mg /L is finite dimensional. Then there is an A-submodule K of M such that Mg /L =
Mg/Kqg and M/K is R-torsion free.

Proof Let ¢ : M — Mg be the localizing map, and K = {m € M|¢(m) € L}. Then
L = Kg. By the construction, we see that M /K is R-torsion free.

Proposition 2.1 Let M be a finitely generated right A-module. For every N €
Mod A, we have
HomQ Mod Ag (MQ,NQ) = HOIIlQ ModA(M,N)Q.

Proof We have the following computations

Homg pod aq (Mg, Ng) = limHoma, (L, No/T a,(Ng))
lim Hom s, (Kq, No/T'aq(Ng)),
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where the first limit runs over all the Ag-submodules L of Mg such that Mg/L is finite
dimensional, and the second limit runs over all the A-submodules K such that Mg /K =
(M/K)q is finite dimensional. Let T' =T 4(N). Then T = I'4, (Ng) by Lemma 2.3. Hence
we have
lim Hom 4, (Ko, No/T'4,(Nq))
= limHomy, (Ko, No/Tq) = limp Hom, (Kq, (N/T)q)
lim Hom 4 (K, N/T)q = Homqiea a(M, N)q.

1

3 Hopf Dense Galois Extensions

In this section, R is a noetherian commutative domain. Let @) be its quotient field. An
R-module M is said to be quotient-finite if M, is finite dimensional.

Suppose that A is a noetherian R-algebra which is projective as an R-module. Let H
be a Hopf R-algebra which is a finitely generated free R-module. Assume that H coacts on
A so that A is a right H-comodule algebra through the coaction p: A — A ®r H. As the
usual convention, we denote A« = {a € A|p(a) = a ® 1} the coinvariant subalgebra of A.

We next extend the concept of Hopf dense Galois extension (cf. [1]) to algebras over a

ring. Consider the following map
B:ARpon A— ARr H, a®b— (a®1)p(b).

We call A/AH is a Hopf dense Galois extension if the cokernel of 3 is quotient-finite. Note
that if 3 is an epimorphism, then A/A%# is a classical Hopf Galois extension (cf. [6, 7]).

Applying the localizing functor (—)g to the algebra A and the Hopf algebra H, we
obtain a finite dimensional Hopf algebra Hg and a right Hgp-comodule algebra Ag. Note
that the coaction of Hg on Ag is the map pg : Ag — Ag ®¢ Hop.

Lemma 3.5 With the notions as above, (A%, = (Ag)«fe.

Proof Let ¢ : A — Ag and ¢ : H — Hg be the localizing maps. Applying (—)o
to the inclusion map A" — A we obtain that (4°H)q is contained in (Ag)®°#2. On
the other hand, assume a € A and pg(p(a)) = ¢(a) ®qg 1. Since H is a finitely generated

free R-module and R is a noetherian commutative domain, we extend the unit 1 of R to an

R-basis hg = 1,hq,...,h, of H. Then we may write p(a) = >_ a; ®g h;. Then pg(p(a)) =

i=0
> w(a;) ®g ¢(h;). Since H is free, ¢(hg), . .., P(hy) is a Q-basis of Hg. Comparing with the
=0

a;sumption polp(a)) = p(a) ®q 1, we obtain ¢(ag) = ¢(a) and p(a;) =0 for i =1,...,n.
Since A is projective as an R-module, it is R-torsion free, hence ¢ is injective. It follows

that ap =a and a; =0 for = 1,...,n. Hence p(a) = a®g 1.

Proposition 3.2 Let A be an R-algebra which is projective as an R-module, and let
H be an R-Hopf algebra which is R-free. Assume A is a right H-comodule algebra. Then
A/AH is Hopf dense Galois if and only if Ag/(Ag)°@ is Hopf dense Galois.
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Proof Applying (—)¢g to the map f: A®qcon A — A®p H, we obtain
Bq : Aq O oo Aq = A ®q Hg

by Lemma 3.5. Then the condition that the cokernel of 3 is finite dimensional implies both
AJA®H and Ag/(Ag)®He are Hopf dense Galois.

Since the torsion functor I' 4 is left exact, it has right derived functors. Let R'T'4 (i > 0)
denotes the i-th right derived functor of T'4. Similarly, we have R'T 4.

Lemma 3.6 If R'T 4(M) =0 for all i <k, then R'T' 4, (Mg) =0 for all i < k.

Proof Let0 — M — I° — I' — ... — I¥ — ... be an injective resolution of M.
Since the localizing functor (—)¢g preserves injective modules, it follows that 0 — Mg —
I — I — --- — I — --- is an injective resolution of Mq. Let I*® be the complex
0— I — ... — I* ... By Lemma 2.3, RIT s, (Mg) = H'T 4, (I8) = H(T4(I*)q) =
H (T 4(I%))g = RT4(M)gq. So RT4,(Mg) =0forall i < kin case R'T' o(M) = 0 for i < k.

Since by assumption H is a finitely generated R-algebra, then similar to equation (2.2),
we have an isomorphism of Hopf algebras Homg(H, R) ® Q = Homg(H ®r Q, Q). Thus we
can write

Hy = (H)q = (Hq)", (3.1)

where H* = Hompg(H, R) is the dual Hopf algebra of H.

An important feature of Hopf dense Galois extensions over a field is the truth of Aus-
lander theorem (cf. [1, Theorem 3.10]). Note that Theorem 3.10 of [1] is still true if the
characteristic is positive. Next result shows that a weaker version of Auslander theorem

holds for Hopf dense Galois extensions over a commutative domain.

Theorem 3.7 Let A and H be the algebras as in the beginning of this section.
Assume further that Hg is cosemisimple. If A/A“H is a Hopf dense Galois extension, and
RT4(A) =0 for ¢ < 2, then the natural map

Y A#H" — Endgcon (A),a @ a+— [b+— a(a - b)]

is injective. Moreover, for each f € Endjcon(A), there exist 0 # r € R and Y a;#o; €
i=1

A#H* such that rf(b) = > a;(a; - b) for all b € A.
=1

Proof By Proposition 3.2, Ag/(Ag)®He is a Hopf dense Galois extension over the
field Q. By Lemma 3.6, R'T'4,(Ag) = 0 for i < 2. Then [1, Theorem 3.10] insures that the
natural map

S : AQ#H& — End(AQ)coHQ (AQ)

is an isomorphism. By Lemma 3.5, we have (Aq)®"@ = (A" )q. It follows End, ,  conq (Ag) =
End 4cor (A)g. Moreover, since Ag#H(, = (A#H™)q, it follows that § = ¢ : (A#H*)g —
End 4corr (A)g. We next show that 1) is a monomorphism. Let K = kert and M = coker 1.
Then K¢g = ker{ = 0 and Mg = coker{ = 0. Since A is projective over R and H is R-free,
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it follows that A#H* is projective over R. Since R is a domain, A#H* is R-torsion free.
Hence K is R-torsion free, which implies K = 0. Therefore 1 is injective. Moreover, since
Mg = 0, it follows that for each f € Endcon (A), there is an element 0 # r € R such that

rf lies in the image of ¥, that is rf = ¥(>_ a;#q;) for some »_ a;#a; € A#H*. Hence

i=1 i=1

rf(b) = > a;(a; - b) for all b € A.
i=1

4 Hopf Dense Galois Extensions of Almost Commutative Algebras

In this section, R is a noetherian commutative domain of characteristic zero, and k is an
algebraic closed field containing R as a subring. H is an R-Hopf algebra which is a finitely
generated free R-module. The filtration of a filtered R-algebra A is an ascending filtration

0CFRACFAC---CFAC---,ieN.

We call an R-algebra A is almost commutative if A is a filtered R-algebra and the
associated graded algebra gr(A) is a graded commutative algebra. Similar to equation (3.1),
we will write

H; = Hompg(H,R) ®r k 2 Homy(H ®r k, k)
for simplicity.
Lemma 4.8 Let B= By® B; ®--- be a graded R-algebra which is a commutative
domain and is projective over R. Let p: B — B ®r H be a right H-coaction on B which

preserves the gradings. If B/B®# is a Hopf dense Galois extension, then H; is isomorphic

to a group algebra.

Proof We write By = B®g k and H, = H ®r k. Applying — ®r k to the right
coaction p : B — B ®pr H, we obtain a coaction py : By — By Qi Hi. Consider the
canonical map fy : By ® georr, By — By ®y Hy. Since B is commutative, i is indeed an
algebra homomorphism, where we view By ®) Hi as the algebra by the usual multiplication
of tensor products of algebras. The same proof of Proposition 3.2 shows that By /(B )«
is a Hopf dense Galois extension, then the cokernel of fy is finite dimensional over k. Then
there is an integer n > 0 such that (®;>,B;)x ®x Hix C im . Since by assumption B is
commutative, which implies By ® georr, By is commutative, and thus im ) is commutative.
For g,h € H, taking nonzero elements a,b € (®;>,B;)x, then (a ®x g), (b ®x h) € im [,
which impies (a ®y ¢)(b @ h) = (b ®x h)(a ®y g). Then ab @y gh = ba ®y hg = ab &y hg.
Since B is a domain and B is projective over R, ab # 0. Hence we have gh = hg, that is,
Hy, is commutative. Since H is finitely generated as an R-module, Hy, is finite dimensional.
Therefore the dual Hopf algebra H; is cocommutative. Since k is algebraic closed with
characteristic zero, Hj is isomorphic to a group algebra.

Let B be a filtered R-algebra. Let M be a filtered right B-module and let NV be a
left filtered B-module. The tensor product M ®pg N has an induced filtration defined by
F,.(M ®p N) to be the abelian subgroup of M ®p N generated by elements z ® y for all
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x € F;M and y € F;N such that i + j = n. There is a graded epimorphism (cf. [8, §6,
Chapter I])

omN : gr(M) @grp) gr(N) — gr(M @ N), TRQF — XY, (4.1)

where z € F;M \ F,_4M, y € F;N \ F;_1N and 7,y are corresponding elements in the
associated graded modules, similarly x ® y is the corresponding element in the graded abelian
group associated to M ®p V.

Suppose that there is a right H-coaction p : B — B®pg H which preserves the filtration,
where the filtration of B ®zp H is induced by the filtration of B. Then the induced map

gr(p) : gr(B) — gr(B) ®g H

is a right H-coaction on the associated graded algebra gr(B). Then the filtration of B
induces a filtration on B, Associated to this filtration, there is a graded algebra gr(B<).
Then gr(B®) is a graded subalgebra of (gr(B))*°H. In general, gr(B®#) is not equal to
(gr(B))H.

Let X and Y be filtered R-modules. An R-module homomorphism f : X — Y is called
a strict filtered map [8] if f preserves the filtration and F,,Y Nim f = f(F,X) for all n.

Lemma 4.9 Keep the notations as above. If B/B“H is a Hopf dense Galois exten-
sion and the canonical map 8 : B ®geon B — B ®p H is strict, then gr(B)/(gr(B))°H is a

Hopf dense Galois extension.

Proof Let gr(p) : gr(B) — gr(B) ®g H be the induced H-coaction on gr(B). Let
ﬁgr : gT<B) ®(gr(B))C°H g’I“(B) - gT(B) ®r H7 a®b— (a’ ® 1)(97"(,0)(()))

be the canonical map associated to gr(p). Denote K = coker 3. Then K has a natural
filtration inherits from B ® g H. Since [ is strict, by [8, Theorem 4.2.4, Chapter I], we have

an exact sequence

(B
gr(B @geon B) 5 gr(B @ H) —> gr(K) — 0.
By equation (4.1), the map ¢p g : gr(B) ®gp(peor) gr(B) — gr(B Q@pen B) is an epimor-
phism. Note that gr(B @ H) = gr(B) ®g H, we have the following commutative diagram

gr(B) @ gr(peory g1(B) —2> gr(B @ peort B) (4.2)

Pi lm‘(ﬂ)

gr(B) @ (gr(B))eor gr(B) T gr(B) ®r H,

where p is an epimorphism induced by the fact that gr(B®#) is a graded subalgebra of
(gr(B))=H. Since ¢p p and p are both epic, we have coker 3, = coker gr(3) = gr(K). By
assumption, B/BH is a Hopf dense Galois extension, thus K¢ is finite dimensional over
Q. Then (gr(K))g = gr(Kp) is also finite dimensional over Q. Therefore gr(B)/(gr(B))®?
is a Hopf dense Galois extension.



182 Journal of Mathematics Vol. 40

Theorem 4.10 Let A be an almost commutative R-algebra such that gr(A) is a
domain. Assume that A is a right H-comodule algebra such that the right H-coaction
preserves the filtration. If A/A is a Hopf dense Galois extension and the canonical map

B:A®apcon A — A®p H is strict, then H} is isomorphic to a group algebra over k.

Proof As before, we write Ay, = A®r k and Hy, = H ®r k. Since A is a filtered
R-algebra, Ay is also a filtered k-algebra with the obvious induced filtration. Since the right
H-coaction preserves the filtration, it induces a right H-coaction on the associated graded
algebra gr(A). Applying the functor — ®g k to the right H-coaction p : A — A ®g H,
we obtain that Ay is a right Hy-comodule algebra and Ay /(Ay)°#x is a Hopf dense Galois
extension. Moreover, since (3 is strict, the induced canonical map Jy is also a strict filtered
map. By Lemma 4.9, gr(Ay)/(gr(Ax))°"« is a Hopf dense Galois extension. Since A is
almost commutative, gr(A4) is a commutative domain. Then gr(4y) = gr(A) @z k is a
commutative domain over k. By Lemma 4.8, H is a group algebra.

For a filtered algebra A and a filtration preserving right H-coaction, the canonical map
ﬂlA@AcoH A—>A®RH

may be not a strict map. Hence the associated graded algebra gr(A) may not be a Hopf
dense Galois extension over (gr(A))°#. Some further discussions will be given in the next

section.

5 Some Corollaries

In this section, k is an algebraically closed field of characteristic zero. All the algebras
and modules in this section are over k. Let H be a finite dimensional Hopf algebra.
The next result is a direct consequence of [2, Proposition 3.6] if A is noetherian and H

is semisimple. We give a direct proof and drop the assumptions in [2, Proposition 3.6].

Proposition 5.3 Let A be a filtered algebra with an ascending filtration

0CFRACFRAC---CFAC---,i€eN

such that F; A is finite dimensional for all ¢ > 0. Assume that A is a right H-comodule algebra
and the coaction preserving the filtration. If the associated graded algebra gr(A) is a Hopf

dense Galois extension over (gr(A4))®H, then A/AH is a Hopf dense Galois extension.

Proof Let 0: A®pcon A — A Qy H be the canonical map. Similar to the diagram

(4.2), we have the following commutative diagram

Gr(A) @ o pcorry gr{A) —2o grH(A @ geon A) (5.1)

Pl J{gr(ﬁ)

gr(A) @(griayeen gr(A) ——> gr(A) @1 H.
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Since gr(A)/(gr(A))*# is a Hopf dense Galois extension, which is to say that coker 3,, is
finite dimensional. It follows that there is a positive number n such that for all £ > n, we
have

Byr(gr(A) @(griayyeorn gr(A)) = (FrA/Fr_1A) @y H.

We claim that S(Fj (AR gcorr A))+F,,_1 AR H = F, A®y H for all k > n. By the commutative
diagram (5.1), for every = € F,,A ® H, there is an element y € F,,(A ® gcor A) such that
B(y)+ 2z = x for some z € F,, 1A®y H. Hence B(F,(A® pcon A))+ F,_1 & H=F,A®y H.
Now assume that B(F;(A® gcon A))+F,, _1AQy H = F;A®y H for i > n. By the commutative
diagram (5.1), we have B(F;11(A @pcon A)) + F; ARy H = F; 1A ®y H. Then

FiiiA®cH = B(Fir1(A®pcon A)) + B(Fi(A®pconr A)) + F,_1 A @y H
B(Fii1(A®@pcon A)) + F,_1 ARy H.

Hence we have dim((A®y H)/im 8) < dim(F,,_1A®y H) < oo. Therefore, A/A is a Hopf
dense Galois extension.

Combined with Lemma 4.9, we have the following corollary.

Corollary 5.11 With the same conditions in Proposition 5.3, if in addition the
canonical map 3 : A ®eon A — A ®y H is strict, then A/A°H is a Hopf dense Galois
extension if and only if gr(A)/(gr(A))°# is a Hopf dense Galois extension.

Let g be a finite dimensional Lie algebra, and let f : g x g — k be a 2-cocycle, that is,
for every z,y,z € g, f(z,x) =0, f(z,[y,z])+ f(z [z,y]) + f(y, [z, 2]) = 0. Then a Sridharan
enveloping algebra [9] of g is defined to be the associative algebra

where T'(g) is the tensor algebra of g over k and I is the ideal of T'(g) generated by elements
TRy -y —[r,y] - f(v,y) forall z,yeg.

Assume that {z;,...,2,} is an R-basis of g. Then U(g) is a free R-module and it has a
basis {@!'a5? - xir|iy, i, ... i, > 0} (cf. [9, Theorem 2.6]). And U;(g) is a filtered algebra
with an ascending filtration defined by

F.Us(g) = spabn{attlfatté2 . -xiﬂil +ig+ - +i, <k}

for all & > 0. The associated graded algebra of Uy(g) is the commutative polynomial ring
kizy, ..., zp).

Suppose that there is a right H-coaction pg : Ur(g) — Us(g) @k H which preserves the
filtration defined as above. Then the associated graded map gr(pq) : grUs(g) — grUs(g) ®x
H is a right H-coaction on grUs(g).

Corollary 5.12  With the notions as above, if grUy(g) is a Hopf dense Galois exten-
sion over (grUs(g))*H, then U;(g) is a Hopf dense Galois extension over U;(g)*# and H*

is isomorphic to a group algebra.
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Proof The first part follows from Proposition 5.3. The second part follows from
Lemma 4.8 since grU;(g) = klzy, ..., x,].

As we know, a right H-coaction on an algebra A is equivalent to a left H-action on A.
Moreover, we have A" = A" where A¥ = {a € Alha = ¢(h)a, for all h € H}. Hence we

may rewrite Corollary 5.12 in the Hopf action version.

Corollary 5.13 Suppose that H acts on a Sridharan enveloping algebra Uy(g). If
the H-action preserves the filtration of Us(g) and ¢grUs(g) is a right H*-Hopf dense Ga-
lois extension over (grU;(g))¥, then Uy (g) is a right H*-Hopf dense Galois extension over
Us(g)™, and H is isomorphic to a group algebra.
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