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Abstract: In this paper, we study the atomic decompositions of weak and strong dyadic
martingale spaces with variable exponents. By atomic decompositions, we prove that sublinear
operator 1" is bounded from wH .y to wLy.); Cesaro operator is bounded from H,(.) to Ly.) and
from L.y to L.y, which generalize the boundedness of operators in constant exponent case.
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1 Introduction

It’s well known that variable exponent Lebesgue spaces have been got more and more
attention in modern analysis and functional space theory. In particular, Fan and Zhao [1]
investigated various properties of variable exponent Lebesgue spaces and Sobolev spaces.
Diening [2,3] and Cruz-Uribe [4] proved the boundedness of Hardy-Littlewood maximal op-
erator on variable exponent Lebesgue function spaces LP()(R™) under the conditions that
the exponent p(-) satisfies so called log-Holder continuity and decay restriction. Many other
authors studied its applications to harmonic analysis and some other subjects.

The situation of martingale spaces is different from function spaces. For example, the
good-A inequality method used in classical martingale theory can not be used in variable
exponent case. However, recently, variable exponent martingale spaces have been paid more
attention too. Aoyama [5] proved that, if p(-) is Fo-measurable, then there exists a positive
constant ¢ such that [|[M(f)||z,., <c|flz,., for f € Ly). Nakai and Sadasue [6] pointed out
that the inverse is not true, namely, there exists a variable exponent p(-) such that p(+) is not
Fo-measurable, and the above inequality holds, under the assumption that every o-algebra
F, is generated by countable atoms. Zhiwei Hao [7] established an atomic decomposition of
a predictable martingale Hardy space with variable exponents defined on probability spaces.

Motivated by them, we research dyadic martingale Hardy space with variable exponents.

2 Preliminaries and Notations
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In this paper the unit interval [0,1) and Lebesgue measure P are to be considered.
Throughout this paper, Z, N denote the integer set and nonnegative integer set. By a
dyadic interval we mean one of the form [k27", (k + 1)27") for some k € N,0 < k < 2.
Givenn € N and z € [0,1), let I,,(x) denote the dyadic interval of length 2= which contains
x. The o-algebra generated by the dyadic intervals {I,,(z) : = € [0,1)} will be denoted by
Fn, more precisely,

Fo=cf{[k27",(k+1)27"): 0 < k < 2"}.

Obviously, (F,) is regular. Define F = o(U,F,,) and denote the set of dyadic intervals by
A(F,) and write A = U, A(F,). The conditional expectation operators relative to F,, are
denoted by E,,. For a complex valued martingale f = (f,,)n>0, denote df; = f; — fi—1 (with

convention df_; = 0) and

My(f)

sup ‘fi|7 M(f)zsgl(ﬂfn'a

0<i<n

su(f) = OQ_Eialdfi)?,s(f) = QO Eialdfi?).
i=1 i=1

Remark 2.1 (see [8]) If (F,) is regular, then for all nonnegative adapted processes

v = (7n) and A > |70/, there exist a constant ¢ > 0 and a stopping time 7, such that

{M(7) > A} C {7y < o0}, P(7a <00) <cP(M(7) > ),
Supngtk Tn = MT)\ (’Y) < /\7 /\2 > /\1 > ||’70||oo = Tx < Thg-

Let p(-) : [0,1) — (0,00) be an F-measurable function, we define p; = essinf{p(z) :
x € B},p}, = esssup{p(x) : * € B}, B C [0,1). We use the abbreviations p* = pfg’l) and
p = p[?)J)~
We say that p is log-Holder continuous if
c

—logd(x,y)’ @1)

Ip(z) — p(y)| <

when d(z,y) < 1/2.
The Lebesgue space with variable exponent p(-) denoted by L,.) is defined as the set

of all F-measurable functions f satisfying

1l = inf{A S0 poy (F @I/ < 1}< .

1
where p,y(f) = fo |f(z)|P@)dP.
If f=(fn) is a martingale, we define || f||,) = sup || fullpc)-
n>1

Remark 2.2 (see [7]) If p is log-Holder continuous, then we have

P(B)l/pg ~ p(B)l/zﬁ; ~ P(B)l/P(z) ~|Ixslp), =€ BCI0,1).
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The weak Lebesgue space with variable exponent p(-) denoted by wL,. is defined as

the set of all F-measurable functions f satisfying
[z, = sup Allxgisisayllpe) < oo
A>0

Then we define the strong and weak variable exponent dyadic martingale Hardy spaces

as follows
Hy) = {fz(fn):M(f)GLp<~)}7|f|Hp<.> = IM()llpe,
wHy, = {f = (fa) :s()) € wLp<->}’ 1 oz, = (D lhwr-

We always denote by ¢ some positive constant, but its value may be different in each

appearance.

3 Weak Atomic Decompositions

Definition 3.1 A measurable a is called a weak- atom if there exists a stopping time
v such that

(1) En(a) =0,n>v,

(2) [[s(a)llec < o0

Theorem 3.2 Suppose that p is log-Holder continuous and 0 < p~ < p* < 1. For any
f=(fn) € wH o) there exist (a*) of weak atoms with the corresponding stopping times v,

and (uy) of nonnegative real numbers such that

fn= ZukEnak a.e., (3.1)
keZ
s(a¥) < 3-2%, (3.2)
| fllwrrs,,, ~ inf sup 25| X g 00 ) (3.3)
keZ

where the infimum is taken over all preceding decompositions of f.
Proof Assume that f = (f,) € wH ). Let us define the stopping times v}, := inf{n €
N : s,,1(f) > 2*}. Consequently, f,, can be written as

TIL/ = Z X{v>m} (fm - fm—l)- (34)
m=0

Now let a¥ = f**' — frr. Thus s(a®) < s(f7=+1) + s(f**) < 3-2% < co. Then there exists
a® such that af = E, (a"). It is clear that a” is really a weak atoms for k € Z.
Since {v;, # oo} = {s(f) > 2*}, by the definition we have

2% X {00t () = 28X (s> 251 () < N8P lwry, - (3.5)
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Thus
sup 2° || X fuood o) < N8(F)lfwr,e - (3.6)
kEZ

Conversely, let D := sup 2¥ || x{,, 2001 | p()- For a fixed y > 0 choose j € Z such that 2/ <y <
keZ

271 Then -
j— o
o= D ait ) = gnth
k=—oc0 k=j

and p(-)/p~ > 1 implies that s(f) < s(g) + s(h) and

Ixtshsoulloey < cllixXqsor>su lpym— + IXtsty>3uy o) P - (3.7)

Since s(a*) < 3- 2%, thus we get

j—1 Jj—1
s(g)< Y s(a*)<3 > 2k <32 (3.8)
k=—o00 k=—o0

and so {s(g) > 3y} C {s(g) >3-27} = 0.
The inequality s(h) < 3 s(a*) implies that {s(h) # 0} C U2 {v # oco}. Conse-
k=j

quently,
Ixtser>onlloey < elllxisssu oy m + Ixtsmssuloerym-)"
o0
< elxgsmsor ey - <€ ) IXquroorllne)
o
< Y D27 =27D <cD/y, (3.9)
k=i
which implies
1wz, = sup 6ylIx(stry>ou o) < €D = c5up 2||x (v 200} o) - (3.10)
y>0 keZ

Thus we complete the proof.
Theorem 3.3 Suppose that p is log-Holder continuous, 1/2 < p~ < p* < 1 and
suppose that sublinear T is bounded from L, to Lo. If

P(Ta>0) <cP(I) (3.11)
for all weak atom a supported on the interval I, then
1Tty < el fllus,,  (F € wH). (3.12)

Proof We may suppose ||f||sz(.) = 1. Taking the atomic decomposition and the

martingales g and h given in the proof of Theorem 3.2 we get that for any given y > 0,

Tf<Tg+Th and Xx{rfs2y} < X{Tg>y} + X{Th>y}-
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(I) If 0 < y < 1, we choose integer j such that 27 <y < 29+1. We know that
j—1 j—1 j—1
gl < >0 dfla< D0 IM(@@)lla= D IM(a")x(u, 200 12
k=—00 k=—o00 k=—o00
Jj—1
< ) 2Py # 00) 2 (3.13)
k=—oc0
Since
Ixlly ~ P(B)l/pg ~ p(B)l/pg ~ P(B)l/;ﬂ(w)7w B
for B = {v}, # oo}, we have
j—1 j—1
lgle < D" 2°P(B)'2 = 3" 2Py # 00)/PE )5/
k=—o0 k=—o00
j—1 j—1 .
+ ot /2
< o > sl < e Y 2R fER
k=—o0 k=—o0
_pt /2
< R f T < el (3.14)
Define By = {T'g > y}, thus we have
- _ 1/p5 _ 1/p5
IXtrosilloe) < eP(Tg>y) "o <e(y ' B(Tg)) "™ < c(y " Tgll.) "™
_ 1/p5 1N 1/p5 _
< c(y 1”9”2) /pBlgc(y 1/2) pslg cy 1
(II) If y > 1. Thus
j—1 j—1
gl < D 2*P(B)2= ) 28(P(ny # o0)!/Pe)re/?
k=—o0 k=—00
j—1 j—1
. - (1—p= 5/2
< e sl <e Yo 2R p|Ra
k=—00 k=—00
e =/2
< TR PR < ey, (3.15)
We also have
- - 1/pp _ 1/prg
IX{rg>ut oy < cP(Tg>y)/"m < c(y2E(Tg)?) """ < c(y2|lgll3) "
< C(y—zyzs/Q)l/pE1S C(y—1/2)1/p§1§ Cy—l.
Combining (3.15) and (3.17) we get
Tl = sp sl < el o, (3.16)
y
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On the other hand, let By = {Ta* > 0}, I, is support of a*, we have

IXtrasuilloey < IIxqrnsopllpe) = ‘|X{Th>0}||£(_.)/p—

< C(Z IX(rar>0ylpey =) < CZ X (Tar >0} ()

k=j k=3

oo o0 o

k 1/pp 1/pp 1/p7\pf /P

< Y P(Ta* > 0)/Pe <Y P(I)7 < e (P(I)V/7r )P /e

k=j k=j k=j

+ +

< ey (PP < ey PP < e xallo

k=j k=j k=j
< D Xtmotlpy £ Y D27F=27D

k=j k=j
< Dy,
which implies
ITglut,, < eD < el fllums, . (3.17)

By (3.18) and (3.19), we have

1T fllwr,, < Tglwr,, +1TPwL,) < ellfllwm; -

Thus we complete the proof of Theorem 3.3.

4 Boundedness of Cesaro Operator

First we introduce the Walsh system. Every point z € [0,1) can be written in the

following way

Lk

k=0
In case there are two different forms, we choose the one for which lim z; = 0.

k—o0

For z,y € [0,1) we definex ®y = > ‘xzkk?z{kl := d(x,y), which is also called dyadic
k=0

distance.
The functions r,(z) := exp(mz,v/—1) (n € N) are called Rademacher functions.
The product system generated by these functions is the Walsh system: w,(z) :=

oo

[T rr(z)*=, where n = 3 ng2%,0 < nj < 2 and ny € N.
k=0 k=0

If f € L1[0,1), then the number f(n) := E(fw,) is said to be the n-th Walsh-Fourier
coefficient of f.
Denote by s, f the n-th partial sum of the Walsh-Fourier series of a martingale f,

namely,
n

snf = f(k)wk.
0

e
I
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n—1

Recall that the Walsh-Dirichlet kernels D,, := wy, satisfy
k=0

Dy (z) = (4.1)

2m ifx e [0,277).

{0 if 2 € [277,1)

Moreover, for any measurable function f, the sequence { f * Don = son f = f,,} is a martingale

sequence.

The Walsh-Fejér kernels are defined with K, := % >~ Dy and can be estimated by
k=1

|K,(2)] < Z 9I-N Z(Dzi () + Dai(z ®27771)), (4.2)

where z € [0,1),n, N € N,2N~-1 <n < 2N(see [9]).

Moreover,

Kon(z) = 1 (2"D2n (z) + z_: 217" Dan (x ® 2j1)> :

J=0

For n € N and a martingale f, the Cesaro mean of order n of the Walsh-Fourier series
n

of f is given by o, f := = 3 s, f.
k=1
It is simple to show that in case f € L1[0,1) we have

onf(x)=f*K, = /f(t)Kn(;E @ t)dt.

Define the maximal operator o* f = sup |0, f].
n

Definition 4.1 A pair (a, B) of measurable function a and B € A(F,,) is called a p(+)-
atom if (1) E,(a) =0, (2) [IM(a)]x < lIxsly), (3) {a#0}CB.

Lemma 4.2 (see [10]) Suppose that p is log-Holder continuous and 0 < p~ < p* < 1.
For any f = (f.) € Hp(.), there exist (a®, B)gea of p(-)-atoms and (up)pea of nonnegative
real numbers such that

fn:E upE,a® a.e., and inf
BeEA

3o (e

<c|flla,.-
BeA x5l p()

p()

Lemma 4.3 (see [10]) Suppose that the operator 7" is sublinear and for each py < p(-) <

1, there exists a constant ¢ > 0 such that

/ | TalPWdp < ¢ (4.3)
[0,)\B

for every p(-)-atom (a, B). If T' is bounded from Ly, to Lo, then ||Tf|,) < ¢l fllw,., (f €
Hy())
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Theorem 4.4 Suppose that p is log-Holder continuous and 1/2 < p~ < p™ < 1. Then
for any f € Hy(-), we have [[o* f|l,) < ¢l flm,,-

Proof By Lemma 4.3, Theorem 4.4 will be complete if we show that the operator o*
satisfies (4.3) and is bounded from L., to L.

Obviously,

ouf(@)] = | / (Ko @ )] < / PO E (@ 1))t

IN

T / K (2 )dt. (4.4)

Since ||Dan]||; = 1 and (4.2), we can show that ||K,|; < ¢ for all n € N, which verifies
that o* is bounded on L.

Let a # 1 be an arbitrary p(-)-atom with support B and P(B) = 277. Without loss of
generality, we may suppose that B = [0,277).

For k < 27, wy, is constant on B and so o,a(x) = fol a(t)dp = 0. Therefore, we may
suppose that n > 27.

If j >7and z ¢ B, then x®277~! ¢ B. Consequently, for z ¢ B and i > j > 7 we have

/ |a(t)|Dqyi(x @ t)dt = / la(t)|Dyi(z @t ® 2777 1)dt = 0. (4.5)
B B
Moreover for 2V~ <n < 2¥ and n > 27 (which implies N — 1 > 7),

ona(z)] < /Bla(t)Kn(év@t)dtSaI*IKnI(x) (4.6)

IN

7—1 N—-1 1
d Ny / la(t)|(Dyi(z ®t) + Dys(z @t ® 2797 ))dt.  (4.7)
=0 i=j 70
Since x € [0, 1)\ B, we have
/ Do (:I,‘ Dtd 2_j_1)dt = 21;_TX[2*J'71,2*J'71@277L)(x) if j<i<7t-1,
B
/ Dy (:17 ©® t)dt = 21.77)([2—772—1')(‘%) if 7€ N,
B
/ Dyi(xptd 2_j_1)dt = X[Z—j—172—j—1@2—r)(x) if i>71
B

By the definition of an atom, for n > 27,2V~ < n < 2V we have

T—1 N-1
sup |a| * | K,|(z) < Z2jNZ/|a(t)|(D21:(:c63t)—I—Dgi(x@t@Zj1))dt
§=0 i=j B

T—1 T—1
< lalloo D277 Y (27 Xm0 (@) + 27 X1 21020 (@)
=0 i=j

T—1 N—-1
Hlalloo D 2NN 2T X o 20 (@) + Xppi-1 2i 1w ()
=0

1=T
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To verify (4.3) we have to investigate the integral of (sup,, |a|* |K,|(z))?") over [0,1)\B.
Integrating over [0, 1)\ B, we obtain

/ (sup |a| *Kn(ac))p(')dx
[0,1)

J\B n227
T—1 T—1
< C/ (lalloso D277 (27 X720 (®) + 27 X251 251021 ()P Vda
[0,1\B = =
T—1 N—-1
+0/ (lalloe D 27N> 7 27 Xjar 21y (@) + Xjp-i-1 2-s-102-1) (2))" dae
[0,1)\B =0 i
< 1V allw) ZQ(] v ZQ(Z v (IX[zT,zf>($)||p(->+||><[2f1,2j1@2'i>(50)||p<->)
— i—T)pT
+c(1V [|allo)” 22 —en Z<2( » ||X[zr,zi)(ﬂf)llp(-)JrHX[zj1,211@2i)(2v>||p<-)>
7=0 =T
. T—1 T—1 T—1 N—-1
- j—T)p~ i—T)p " o—i —p* j—N)p~ i—T)pT o—i —i
< C”XBHP(Z.)) (ZQ(J )P ZQ( P 9~ 4 cP(B)7? 22(1 N)p 2(2( LA )
=0 i=j =0 imr
T—1 T—1 N-1
—pt i(2p~ —1)g—27p~ —pt j—N)p~ i—T)pT o—i —i
< C”XBHP(I_)) (Z2J(2p Ho—27p +cP(B)7" ZQ(J N)p Z(Q( wro—i 49 )
=0 §=0 i=r
T—1
< 27 (P t—2p” )ZQJ@P - 220’ 221 2727 22 —N)p~ 22 i
=0
< 01-1-02—1—03—0.

By Lemma 4.3 , the proof is completed.
Theorem 4.5 Suppose that p is log-Holder continuous and 1 < p~ < p™ < co. Then
for any f € Ly(-), we have [[o" fllp() < ¢l fllpe)-

Proof We assume || f||,.) = 1/2. If else, we let f replaced by W Since
N-1 N-1
[Kn(@)] <27 > (Do) + Das(w@2771),
i=0 i=j
where z € [0,1),n, N € N,2V¥~1 <n < 2¥. Thus we have
lonf(@)] < |f]* |Kn|(l‘)
N-1
< Z 2 Z [l Dos(a) + |f  Dys( 92771
j=0 =]

—1

2/ NZ (@) + | fal@ @ 2777)). (4.8)

IN

Q
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Thus by Doob’s inequality of variable exponents martingale spaces , we have

N-1 N—

Z [ sup | fallloey + [l sup [ falllpc))
n>1 n>1

IA
w0
=

M
[\3

lo" Fllpey = Tsup lon f(@)lllac)

j=0 i=j

N—-1 N—-1
< g 2703 Wiy <csup22 O =)
<

22”% < el fllee)-
k=0

Thus we complete the proof.
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