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Abstract: In this paper, we study the atomic decompositions of weak and strong dyadic

martingale spaces with variable exponents. By atomic decompositions, we prove that sublinear
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1 Introduction

It’s well known that variable exponent Lebesgue spaces have been got more and more
attention in modern analysis and functional space theory. In particular, Fan and Zhao [1]
investigated various properties of variable exponent Lebesgue spaces and Sobolev spaces.
Diening [2,3] and Cruz-Uribe [4] proved the boundedness of Hardy-Littlewood maximal op-
erator on variable exponent Lebesgue function spaces Lp(·)(Rn) under the conditions that
the exponent p(·) satisfies so called log-Hölder continuity and decay restriction. Many other
authors studied its applications to harmonic analysis and some other subjects.

The situation of martingale spaces is different from function spaces. For example, the
good-λ inequality method used in classical martingale theory can not be used in variable
exponent case. However, recently, variable exponent martingale spaces have been paid more
attention too. Aoyama [5] proved that, if p(·) is F0-measurable, then there exists a positive
constant c such that ‖M(f)‖Lp(·) ≤ c‖f‖Lp(·) for f ∈ Lp(·). Nakai and Sadasue [6] pointed out
that the inverse is not true, namely, there exists a variable exponent p(·) such that p(·) is not
F0-measurable, and the above inequality holds, under the assumption that every σ-algebra
Fn is generated by countable atoms. Zhiwei Hao [7] established an atomic decomposition of
a predictable martingale Hardy space with variable exponents defined on probability spaces.
Motivated by them, we research dyadic martingale Hardy space with variable exponents.

2 Preliminaries and Notations
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In this paper the unit interval [0, 1) and Lebesgue measure P are to be considered.
Throughout this paper, Z, N denote the integer set and nonnegative integer set. By a
dyadic interval we mean one of the form [k2−n, (k + 1)2−n) for some k ∈ N, 0 ≤ k < 2n.
Given n ∈ N and x ∈ [0, 1), let In(x) denote the dyadic interval of length 2−n which contains
x. The σ-algebra generated by the dyadic intervals {In(x) : x ∈ [0, 1)} will be denoted by
Fn, more precisely,

Fn = σ{[k2−n, (k + 1)2−n) : 0 ≤ k < 2n}.
Obviously, (Fn) is regular. Define F = σ(∪nFn) and denote the set of dyadic intervals by
A(Fn) and write A = ∪nA(Fn). The conditional expectation operators relative to Fn are
denoted by En. For a complex valued martingale f = (fn)n≥0, denote dfi = fi − fi−1 (with
convention df−1 = 0) and

Mn(f) = sup
0≤i≤n

|fi|, M(f) = sup
n≥0

|fn|,

sn(f) = (
n∑

i=1

Ei−1|dfi|2)1/2, s(f) = (
∞∑

i=1

Ei−1|dfi|2)1/2.

Remark 2.1 (see [8]) If (Fn) is regular, then for all nonnegative adapted processes
γ = (γn) and λ ≥ ‖γ0‖∞, there exist a constant c > 0 and a stopping time τλ such that

{M(γ) > λ} ⊂ {τλ < ∞}, P (τλ < ∞) ≤ cP (M(γ) > λ),

supn≤tλ
γn = Mτλ

(γ) ≤ λ, λ2 ≥ λ1 ≥ ‖γ0‖∞ ⇒ τλ1 ≤ τλ2 .

Let p(·) : [0, 1) → (0,∞) be an F-measurable function, we define p−B = ess inf{p(x) :
x ∈ B}, p+

B = ess sup{p(x) : x ∈ B}, B ⊂ [0, 1). We use the abbreviations p+ = p+
[0,1) and

p− = p−[0,1).
We say that p is log-Hölder continuous if

|p(x)− p(y)| ≤ c

− log d(x, y)
, (2.1)

when d(x, y) ≤ 1/2.
The Lebesgue space with variable exponent p(·) denoted by Lp(·) is defined as the set

of all F-measurable functions f satisfying

‖f‖p(·) = inf
{

λ > 0 : ρp(·)(|f(x)|/λ) ≤ 1
}

< ∞,

where ρp(·)(f) =
∫ 1

0
|f(x)|p(x)dP.

If f = (fn) is a martingale, we define ‖f‖p(·) = sup
n≥1

‖fn‖p(·).

Remark 2.2 (see [7]) If p is log-Hölder continuous, then we have

P (B)1/p−B ≈ P (B)1/p+
B ≈ P (B)1/p(x) ≈ ‖χB‖p(·), x ∈ B ⊂ [0, 1).
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The weak Lebesgue space with variable exponent p(·) denoted by wLp(·) is defined as
the set of all F-measurable functions f satisfying

‖f‖wLp(·) := sup
λ>0

λ‖χ{|f |>λ}‖p(·) < ∞.

Then we define the strong and weak variable exponent dyadic martingale Hardy spaces
as follows

Hp(·) =
{

f = (fn) : M(f) ∈ Lp(·)

}
, ‖f‖Hp(·) = ‖M(f)‖p(·),

wHs
p(·) =

{
f = (fn) : s(f) ∈ wLp(·)

}
, ‖f‖wHs

p(·)
= ‖s(f)‖wLp(·).

We always denote by c some positive constant, but its value may be different in each
appearance.

3 Weak Atomic Decompositions

Definition 3.1 A measurable a is called a weak- atom if there exists a stopping time
ν such that

(1) En(a) = 0, n ≥ ν,
(2) ‖s(a)‖∞ < ∞.
Theorem 3.2 Suppose that p is log-Hölder continuous and 0 < p− < p+ ≤ 1. For any

f = (fn) ∈ wHs
p(·), there exist (ak) of weak atoms with the corresponding stopping times νk

and (uk) of nonnegative real numbers such that

fn =
∑
k∈Z

ukEnak a.e., (3.1)

s(ak) ≤ 3 · 2k, (3.2)

‖f‖wHs
p(x)

∼ inf sup
k∈Z

2k‖χ{νk 6=∞}‖p(·), (3.3)

where the infimum is taken over all preceding decompositions of f.

Proof Assume that f = (fn) ∈ wHs
p(·). Let us define the stopping times νk := inf{n ∈

N : sn+1(f) > 2k}. Consequently, fn can be written as

fν
n =

n∑
m=0

χ{ν≥m}(fm − fm−1). (3.4)

Now let ak
n := f

νk+1
n − fνk

n . Thus s(ak) ≤ s(fνk+1) + s(fνk) ≤ 3 · 2k < ∞. Then there exists
ak such that ak

n = En(ak). It is clear that ak is really a weak atoms for k ∈ Z.

Since {νk 6= ∞} = {s(f) > 2k}, by the definition we have

2k‖χ{νk 6=∞}‖p(·) = 2k‖χ{s(f)>2k}‖p(·) ≤ ‖s(f)‖wLp(·) . (3.5)
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Thus
sup
k∈Z

2k‖χ{νk 6=∞}‖p(·) ≤ ‖s(f)‖wLp(·) . (3.6)

Conversely, let D := sup
k∈Z

2k‖χ{νk 6=∞}‖p(·). For a fixed y > 0 choose j ∈ Z such that 2j ≤ y <

2j+1. Then

fn =
j−1∑

k=−∞
ak

n +
∞∑

k=j

:= gn + hn

and p(·)/p− ≥ 1 implies that s(f) ≤ s(g) + s(h) and

‖χ{s(f)>6y}‖p(·) ≤ c(‖χ{s(g)>3y}‖p(·)/p− + ‖χ{s(h)>3y}‖p(·)/p−)1/p− . (3.7)

Since s(ak) ≤ 3 · 2k, thus we get

s(g) ≤
j−1∑

k=−∞
s(ak) ≤ 3

j−1∑
k=−∞

2k ≤ 3 · 2j (3.8)

and so {s(g) > 3y} ⊂ {s(g) > 3 · 2j} = ∅.
The inequality s(h) ≤

∞∑
k=j

s(ak) implies that {s(h) 6= 0} ⊂ ∪∞k=j{νk 6= ∞}. Conse-

quently,

‖χ{s(f)>6y}‖p(·) ≤ c(‖χ{s(g)>3y}‖p(·)/p− + ‖χ{s(h)>3y}‖p(·)/p−)1/p−

≤ c‖χ{s(h)>0}‖p−

p(·)/p− ≤ c

∞∑
k=j

‖χ{νk 6=∞}‖p(·)

≤ c

∞∑
k=j

D2−k = 2−jD ≤ cD/y, (3.9)

which implies

‖f‖wHs
p(·)

= sup
y>0

6y‖χ{s(f)>6y}‖p(·) ≤ cD = c sup
k∈Z

2k‖χ{νk 6=∞}‖p(·). (3.10)

Thus we complete the proof.
Theorem 3.3 Suppose that p is log-Hölder continuous, 1/2 < p− ≤ p+ ≤ 1 and

suppose that sublinear T is bounded from L2 to L2. If

P (Ta > 0) ≤ cP (I) (3.11)

for all weak atom a supported on the interval I, then

‖Tf‖wLp(·) ≤ c‖f‖wHs
p(·)

(f ∈ wHs
p(·)). (3.12)

Proof We may suppose ‖f‖wHs
p(·)

= 1. Taking the atomic decomposition and the
martingales g and h given in the proof of Theorem 3.2 we get that for any given y > 0,

Tf ≤ Tg + Th and χ{Tf>2y} ≤ χ{Tg>y} + χ{Th>y}.
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(I) If 0 < y ≤ 1, we choose integer j such that 2j ≤ y < 2j+1. We know that

‖g‖2 ≤
j−1∑

k=−∞
‖ak‖2 ≤

j−1∑
k=−∞

‖M(ak)‖2 =
j−1∑

k=−∞
‖M(ak)χ{νk 6=∞}‖2

≤
j−1∑

k=−∞
2kP (νk 6= ∞)1/2. (3.13)

Since

‖χB‖p(·) ≈ P (B)1/p+
B ≈ P (B)1/p−B ≈ P (B)1/p(ω), ω ∈ B

for B = {νk 6= ∞}, we have

‖g‖2 ≤
j−1∑

k=−∞
2kP (B)1/2 =

j−1∑
k=−∞

2k(P (νk 6= ∞)1/p+
B )p+

B/2

≤ c

j−1∑
k=−∞

2k(‖χB‖p(·))p+
B/2 ≤ c

j−1∑
k=−∞

2k(1−p+
B/2)‖f‖p+

B/2

wHp(·)

≤ cy(1−p+
B/2)‖f‖p+

B/2

wHp(·) ≤ cy1/2. (3.14)

Define B1 = {Tg > y}, thus we have

‖χ{Tg>y}‖p(·) ≤ cP (Tg > y)1/p−B1 ≤ c
(
y−1E(Tg)

)1/p−B1≤ c
(
y−1‖Tg‖2

)1/p−B1

≤ c
(
y−1‖g‖2

)1/p−B1≤ c
(
y−1/2

)1/p−B1≤ cy−1.

(II) If y > 1. Thus

‖g‖2 ≤
j−1∑

k=−∞
2kP (B)1/2 =

j−1∑
k=−∞

2k(P (νk 6= ∞)1/p−B )p−B/2

≤ c

j−1∑
k=−∞

2k(‖χB‖p(·))p−B/2 ≤ c

j−1∑
k=−∞

2k(1−p−B/2)‖f‖p−B/2

wHp(·)

≤ cy(1−p−B/2)‖f‖p−B/2

wHp(·) ≤ cy3/4. (3.15)

We also have

‖χ{Tg>y}‖p(·) ≤ cP (Tg > y)1/p−B1 ≤ c
(
y−2E(Tg)2

)1/p−B1≤ c
(
y−2‖g‖2

2

)1/p−B1

≤ c
(
y−2y3/2

)1/p−B1≤ c
(
y−1/2

)1/p−B1≤ cy−1.

Combining (3.15) and (3.17) we get

‖Tg‖wLp(·) = sup
y>0

y‖χ{Tg>y}‖p(·) ≤ c‖f‖wHs
p(·)

. (3.16)
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On the other hand, let B2 = {Tak > 0}, Ik is support of ak, we have

‖χ{Th>y}‖p(·) ≤ ‖χ{Th>0}‖p(·) = ‖χ{Th>0}‖p−

p(·)/p−

≤ c(
∞∑

k=j

‖χ{Tak>0}‖p(·)/p−)p− ≤ c

∞∑
k=j

‖χ{Tak>0}‖p(·)

≤ c

∞∑
k=j

P (Tak > 0)1/p−B2 ≤ c

∞∑
k=j

P (Ik)
1/p−B2 ≤ c

∞∑
k=j

(P (Ik)1/p+
I )p+

I /p−B2

≤ c

∞∑
k=j

(P (Ik)1/p+
I )2 ≤ c

∞∑
k=j

P (Ik)1/p+
I ≤ c

∞∑
k=j

‖χIk
‖p(·)

≤
∞∑

k=j

‖χ{νk 6=∞}‖p(·) ≤
∞∑

k=j

D2−k = 2−jD

≤ cD/y,

which implies
‖Tg‖wLp(·) ≤ cD ≤ c‖f‖wHs

p(·)
. (3.17)

By (3.18) and (3.19), we have

‖Tf‖wLp(·) ≤ c(‖Tg‖wLp(·) + ‖Th‖wLp(·)) ≤ c‖f‖wHs
p(·)

.

Thus we complete the proof of Theorem 3.3.

4 Boundedness of Cesàro Operator

First we introduce the Walsh system. Every point x ∈ [0, 1) can be written in the
following way

x =
∞∑

k=0

xk

2k+1
, 0 ≤ xk < 2, xk ∈ N.

In case there are two different forms, we choose the one for which lim
k→∞

xk = 0.

For x, y ∈ [0, 1) we definex ⊕ y =
∞∑

k=0

|xk−yk|
2k+1 := d(x, y), which is also called dyadic

distance.
The functions rn(x) := exp(πxn

√−1) (n ∈ N) are called Rademacher functions.
The product system generated by these functions is the Walsh system: ωn(x) :=

∞∏
k=0

rk(x)xR , where n =
∞∑

k=0

nk2k, 0 ≤ nk < 2 and nk ∈ N.

If f ∈ L1[0, 1), then the number f̂(n) := E(fωn) is said to be the n-th Walsh-Fourier
coefficient of f .

Denote by snf the n-th partial sum of the Walsh-Fourier series of a martingale f ,
namely,

snf :=
n−1∑
k=0

f̂(k)ωk.
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Recall that the Walsh-Dirichlet kernels Dn :=
n−1∑
k=0

ωk satisfy

D2n(x) =

{
0 if x ∈ [2−n, 1) ,

2n if x ∈ [0, 2−n).
(4.1)

Moreover, for any measurable function f , the sequence {f ∗D2n = s2nf = fn} is a martingale
sequence.

The Walsh-Fejér kernels are defined with Kn := 1
n

n∑
k=1

Dk and can be estimated by

|Kn(x)| ≤
N−1∑
j=0

2j−N

N−1∑
i=j

(D2i(x) + D2i(x⊕ 2−j−1)), (4.2)

where x ∈ [0, 1), n, N ∈ N, 2N−1 ≤ n < 2N (see [9]).
Moreover,

K2n(x) =
1
2

(
2−nD2n(x) +

n−1∑
j=0

2j−nD2n(x⊕ 2−j−1)
)

.

For n ∈ N and a martingale f , the Cesàro mean of order n of the Walsh-Fourier series

of f is given by σnf := 1
n

n∑
k=1

snf.

It is simple to show that in case f ∈ L1[0, 1) we have

σnf(x) = f ∗Kn =
∫

f(t)Kn(x⊕ t)dt.

Define the maximal operator σ∗f = sup
n
|σnf |.

Definition 4.1 A pair (a,B) of measurable function a and B ∈ A(Fn) is called a p(·)-
atom if (1) En(a) = 0, (2) ‖M(a)‖∞ ≤ ‖χB‖−1

p(·) , (3) {a 6= 0} ⊂ B.
Lemma 4.2 (see [10]) Suppose that p is log-Hölder continuous and 0 < p− < p+ ≤ 1.

For any f = (fn) ∈ Hp(·), there exist (aB, B)B∈A of p(·)-atoms and (uB)B∈A of nonnegative
real numbers such that

fn =
∑
B∈A

uBEnaB a.e., and inf
∥∥∥∥
∑
B∈A

(
uBχB

‖χB‖p(·)
)
∥∥∥∥

p(·)
≤ c‖f‖Hp(·) .

Lemma 4.3 (see [10]) Suppose that the operator T is sublinear and for each p0 < p(·) ≤
1, there exists a constant c > 0 such that

∫

[0,1)\B
|Ta|p(·)dµ ≤ c (4.3)

for every p(·)-atom (a,B). If T is bounded from L∞ to L∞, then ‖Tf‖p(·) ≤ c‖f‖Hp(·) (f ∈
Hp(·))
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Theorem 4.4 Suppose that p is log–Hölder continuous and 1/2 < p− ≤ p+ ≤ 1. Then
for any f ∈ Hp(·), we have ‖σ∗f‖p(·) ≤ c‖f‖Hp(·) .

Proof By Lemma 4.3, Theorem 4.4 will be complete if we show that the operator σ∗

satisfies (4.3) and is bounded from L∞ to L∞.

Obviously,

|σnf(x)| = |
∫ 1

0

f(t)Kn(x⊕ t)dt| ≤
∫ 1

0

|f(t)(Kn(x⊕ t))|dt

≤ ‖f‖∞
∫ 1

0

|Kn(x⊕ t)|dt. (4.4)

Since ‖D2n‖1 = 1 and (4.2), we can show that ‖Kn‖1 ≤ c for all n ∈ N, which verifies
that σ∗ is bounded on L∞.

Let a 6= 1 be an arbitrary p(·)-atom with support B and P (B) = 2−τ . Without loss of
generality, we may suppose that B = [0, 2−τ ).

For k < 2τ , ωk is constant on B and so σna(x) =
∫ 1

0
a(t)dµ = 0. Therefore, we may

suppose that n > 2τ .
If j ≥ τ and x /∈ B, then x⊕2−j−1 /∈ B. Consequently, for x /∈ B and i ≥ j ≥ τ we have

∫

B

|a(t)|D2i(x⊕ t)dt =
∫

B

|a(t)|D2i(x⊕ t⊕ 2−j−1)dt = 0. (4.5)

Moreover for 2N−1 ≤ n < 2N and n > 2τ (which implies N − 1 ≥ τ),

|σna(x)| ≤
∫

B

|a(t)Kn(x⊕ t)|dt ≤ |a| ∗ |Kn|(x) (4.6)

≤
τ−1∑
j=0

2j−N

N−1∑
i=j

∫ 1

0

|a(t)|(D2i(x⊕ t) + D2i(x⊕ t⊕ 2−j−1))dt. (4.7)

Since x ∈ [0, 1)\B, we have
∫

B

D2i(x⊕ t⊕ 2−j−1)dt = 2i−τχ[2−j−1,2−j−1⊕2−i)(x) if j ≤ i ≤ τ − 1,

∫

B

D2i(x⊕ t)dt = 2i−τχ[2−τ ,2−i)(x) if i ∈ N,

∫

B

D2i(x⊕ t⊕ 2−j−1)dt = χ[2−j−1,2−j−1⊕2−τ )(x) if i ≥ τ.

By the definition of an atom, for n ≥ 2τ , 2N−1 ≤ n < 2N , we have

sup |a| ∗ |Kn|(x) ≤
τ−1∑
j=0

2j−N

N−1∑
i=j

∫

B

|a(t)|(D2i(x⊕ t) + D2i(x⊕ t⊕ 2−j−1))dt

≤ ‖a‖∞
τ−1∑
j=0

2j−τ

τ−1∑
i=j

(2i−τχ[2−τ ,2−i)(x) + 2i−τχ[2−j−1,2−j−1⊕2−i)(x))

+‖a‖∞
τ−1∑
j=0

2j−N

N−1∑
i=τ

2i−τχ[2−τ ,2−i)(x) + χ[2−j−1,2−j−1⊕2−i)(x).
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To verify (4.3) we have to investigate the integral of (supn |a|∗ |Kn|(x))p(·) over [0, 1)\B.
Integrating over [0, 1)\B, we obtain

∫

[0,1)\B
( sup
n≥2τ

|a| ∗Kn(x))p(·)dx

≤ c

∫

[0,1)\B
(‖a‖∞

τ−1∑
j=0

2j−τ

τ−1∑
i=j

(2i−τχ[2−τ ,2−i)(x) + 2i−τχ[2−j−1,2−j−1⊕2−i)(x)))p(·)dx

+c

∫

[0,1)\B
(‖a‖∞

τ−1∑
j=0

2j−N

N−1∑
i=τ

2i−τχ[2−τ ,2−i)(x) + χ[2−j−1,2−j−1⊕2−i)(x)))p(·)dx

≤ c(1 ∨ ‖a‖∞)p+
(
τ−1∑
j=0

2(j−τ)p−
τ−1∑
i=j

2(i−τ)p−
(
‖χ[2−τ ,2−i)(x)‖p(·) + ‖χ[2−j−1,2−j−1⊕2−i)(x)‖p(·)

)

+c(1 ∨ ‖a‖∞)p+
τ−1∑
j=0

2(j−N)p−
N−1∑
i=τ

(
2(i−τ)p+‖χ[2−τ ,2−i)(x)‖p(·) + ‖χ[2−j−1,2−j−1⊕2−i)(x)‖p(·)

)

≤ c‖χB‖−p+

p(·) (
τ−1∑
j=0

2(j−τ)p−
τ−1∑
i=j

2(i−τ)p−2−i + cP (B)−p+
τ−1∑
j=0

2(j−N)p−
N−1∑
i=τ

(2(i−τ)p+
2−i + 2−i)

≤ c‖χB‖−p+

p(·) (
τ−1∑
j=0

2j(2p−−1)2−2τp− + cP (B)−p+
τ−1∑
j=0

2(j−N)p−
N−1∑
i=τ

(2(i−τ)p+
2−i + 2−i)

≤ c2τ(p+−2p−)

τ∑
j=0

2j(2p−−1) + c

τ−1∑
j=0

2(j−N)p−
N−1∑
i=τ

2i(p+−1) + c2τp+
τ−1∑
j=0

2(j−N)p−
N−1∑
i=τ

2−i

≤ c1 + c2 + c3 = c.

By Lemma 4.3 , the proof is completed.

Theorem 4.5 Suppose that p is log-Hölder continuous and 1 < p− ≤ p+ < ∞. Then
for any f ∈ Lp(·), we have ‖σ∗f‖p(·) ≤ c‖f‖p(·).

Proof We assume ‖f‖p(·) = 1/2. If else, we let f replaced by f
2‖f‖p(·)

. Since

|Kn(x)| ≤
N−1∑
j=0

2j−N

N−1∑
i=j

(D2i(x) + D2i(x⊕ 2−j−1)),

where x ∈ [0, 1), n, N ∈ N, 2N−1 ≤ n < 2N . Thus we have

|σnf(x)| ≤ |f | ∗ |Kn|(x)

≤
N−1∑
j=0

2j−N

N−1∑
i=j

(|f | ∗D2i(x) + |f | ∗D2i(x⊕ 2−j−1))

≤
N−1∑
j=0

2j−N

N−1∑
i=j

(|fn(x)|+ |fn(x⊕ 2−j−1)|). (4.8)
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Thus by Doob’s inequality of variable exponents martingale spaces , we have

‖σ∗f‖p(·) = ‖ sup
n≥1

|σnf(x)|‖p(·) ≤ sup
N≥1

N−1∑
j=0

2(j−N)

N−1∑
i=j

(‖ sup
n≥1

|fn|‖p(·) + ‖ sup
n≥1

|fn|‖p(·))

≤ c sup
N≥1

N−1∑
j=0

2(j−N)

N−1∑
i=j

‖f‖p(·) ≤ c sup
N≥1

N−1∑
j=0

2(j−N)(N − j)

≤
∞∑

k=0

2−kk ≤ c‖f‖p(·).

Thus we complete the proof.
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弱型和强型二进制变指数鞅空间

张传洲,王久凤,张学英

(武汉科技大学理学院, 湖北武汉 430065 )

摘要: 本文研究了二进制变指数强型和弱型鞅空间的原子分解理论. 利用原子分解的方法, 给出次线

性算子T 是wHs
p(·) 到wLp(·) 有界; Cesàro 算子是Hp(·) 到Lp(·) 有界以及是Lp(·) 到Lp(·) 有界. 上述结论推

广了常指数情况下算子有界性的结果.
关键词: 原子分解; 变指数; Cesàro 算子
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