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Abstract: We study the decomposition of the imprimitive complex reflection group G(m, p, r)
into right coset, where m,p,r are positive integers, and p divides m. By use of the software GAP
to compute some special cases when m, p,r are small integers, we deduce a set of complete right
coset representatives of the parabolic subgroup G(m,p,r — 1) in the group G(m,p,r) for general
cases, which lays a foundation for further study the distinguished right coset representatives of
G(m,p,r — 1) in G(m,p,r).
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1 Introduction

Let N (respectively, Z, R, C) be the set of all positive integers (respectively, integers,
real numbers, complex numbers). Let V be a Hermitian space of dimension n. A reflection in
V is a linear transformation of V' of finite order with exactly n — 1 eigenvalues equal to 1. A
reflection group G on V is a finite group generated by reflections in V. A reflection group G
is called a Coxeter group if there is a G-invariant R-subspace V; of V' such that the canonical
map C ®g Vo — V is bijective, or G is called a complex group. A reflection group G on V is
called imprimitive if V' is a direct sum of nontrivial linear subspaces V =V, Vo @ --- DV,
such that every element w € G is a permutation on the set {V;, Vs, -, V;}.

For any m,p,r € N with p | m (read “p divides m ”), let G(m,p,r) be the group
consisting of all » X » monomial matrices whose non-zero entries ay,as, - - , a, are mth roots
of unity with (IT;_, ai)m/p = 1, where a; is in the i-th row of the monomial matrix. In [1],
Shephard and Todd proved that any irreducible imprimitive reflection group is isomorphic to
some G(m,p,r). We see that G(m,p,r) is a Coxeter group if either m < 2 or (p,r) = (m, 2).

The imprimitive reflection group G(m, p,r) can also be defined by a presentation (.S, P),
where S is a set of generators of G(m,p,r), subject only to the relations in P. In the cases

p=1,p=m,and 1 < p < m, we list their presentations as follows (see [2]).
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(1) When p = 1, S contains r reflections sy and s; for i € {1,2,--- ;r — 1}, and P

consists of the relations s = s? = 1 for i € {1,2,--- ,7 — 1}; 8;8;118; = S;+18:8i41 for i €
{1,2,--- ,r—=2}; s;8; = 558, for i,j € {0,1,2,--- ,r—1} and |i — j| > 1; s9515051 = $1505150-
(2) When p = m, S contains r reflections s} and s; for i € {1,2,--- ,r — 1}, and P
consists of the relations 3’12 =352 =1fori € {1,2,---,r —1}; 88,418 = Si118:8i11 for
i€ {1,2,---,7r =2} s;5; = s;8; for 4,5 € {1,2,--- ,r — 1} and |i — j| > 1; ss; = ;5] for
i > 2; 8828) = 28805 518781 = 87818] ;815152815152 = $28) 51828 57.
m m
(3) When 1 < p < m, S contains r+1 reflections s, s} and s; fori € {1,2,--- ;r—1}, and
P consists of the relations sgL/p =4 = s2=1fori€ {1,2,- - ,r—1}; 8iSi118; = Sit15iSis1
forie {1,2,--- ,r —2}; s;5; = s;s; for i,5 € {0,1,2,--- ,r — 1} and |i — j| > 1; sis; = ;8]
for i > 2; s\ 528 = s08)80; 818781+ = §18518] -+ 1518085150 = 528 51808]51; S08|S08| =
m m
$15081 805 S0818081 = S1505150; S08;81 = $18180; S18087818181 -+ = Sp8) 81878187 - - -
p+1 p+1

Let W be a Coxeter group and (S, P) be its presentation. Let J C S and W, be a
subgroup of W generated by J. Then W is also a Coxeter group, which is called a parabolic
subgroup of W. A set of distinguished right coset representatives of W; in W is defined in
[3] as X := {w € W|l(sw) > l(w)Vs € J}. Then for any w € W, it can be decomposed as
w =vd with v € W; and d € X, and [(w) = I(v) +(d). Assume (S, P) is a presentation of
G(m,p,r), and let S” = S\ {s,_1}. The subgroup of G(m,p,r) generated by S’ is denoted
by G(m,p,r — 1), which can also be thought of as a ”parabolic” subgroup of G(m,p,r). In
[4], Mac gave a set of complete right coset representatives of G(m,1,r — 1) in G(m,1,7),
which is denoted by X,. And she also proved that X, is distinguished, according to which
she can obtain a reduced expression for any element w € G(m,1,7) as w = dydy - - - d,., where
d; € X; and G(m,1,0) is a trivial group.

We mean to give a set of distinguished right coset representatives of G(m,p,r — 1) in
G(m,p,r) when 1 < p < m, so that we are able to get a reduced expression for any element
w € G(m,p,r), like what Mac did in [4]. Well, it turns out to be not very easy. But as
the first step, we can at least determine a set of complete right coset representatives of
G(m,p,r — 1) in G(m,p,r) (here r > 2), which is the main result of this paper.

Note that from now on, we always assume 1 < p < m when G(m,p,r) is cited except
special explanation.

2 Main Results

Lemma 2.1 We have s159 = s057(s157)?" in G(m,p,r) when 1 < p < m.

Proof By the presentation of G(m,p,r) when 1 < p < m, we have relation

515087518181+ = S081818,818) .

~
p+1 p+1
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If p is odd, this relation is

5180 8181+ 8181 = S8} s187 - s18] .
—_—— —_——

p—1 p—1

— U /\p—1
So we have s159 = sos7(s157)P .

If p is even, this relation is

$18087 8187 -+ $18] = Sso 81818181

p—2 P

So we also have s1s9 = sos)(s187)P %
Lemma 2.2 we have 5,515 55(5151)F = (851)"s2518,55 for 1 <k <m in G(m,p,r).
Proof We prove by induction on k. When k = 1, by the presentation of G(m,p,r),

we have relation sgs)$1528]51 = 8)51528]51582. So
’ r._ . ’ ) ’
525151525151 = $25151515152515152515152 = §151525151S52.

Assume the conclusion is true for k = [, i.e., we have sys;5]89(s)51)! = (s)51)'s2518)52. For
k=141, we have

/ / +1 ! / L./ _ ! l / /
$2818152(8781) = 85518752(8]51)"8181 = (8781)" 825157828151
_ / N / _ ! +1 /
= (8181)'815152818182 = (8]51)" 7 $2818] 2.
I\k /A / k—1 I\k :
Lemma 2.3 we have s5(s15])"s28] = s1(s)81)" 'sa(s15])"s2 for 1 < k < m in

G(m,p,r).
Proof We prove by induction on k. When k = 1, since s|s28] = 528782 and s38155 =
518281, we have $2518]828] = 8281528182 = 5182818]82. Assume the conclusion is true for

k=1, 1i.e., we have s5(s,5,) s98) = 51(5"51) "'s2(518))'s2. For k =1+ 1, we have

+1

59(5187) T sa8] = 89515, (515,) 508] = 52518 5951(5751) " Lsa(s518]) 50

= 51595155257 51(8)51) 7 s5(515]) 80 = 51859515)52(8)51) s2(515)) 59

By Lemma 2.2, the last relation equals s;(s]51)!s2518]5282(8187) 52 = 51(8)51)'s2(818;)!Lss.
Lemma 2.4 we have s5(518))"s081 = 51(8,51)"s2(515,)%sy for for 1 < k < m in
G(m,p,r).
Proof We prove by induction on k. When k = 1, since s9515]52518] = $1552815] 52

and ss28] = $25] 52, we have

$281818281 = 8181528185281 51528281 = 51552515528

= 515)5251528] 82 = $18]5152515] 2.
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Assume the conclusion is true for k = [, i.e., we have s5(s15})!s281 = s1(8451) s2(518)) s0.
For k =1+ 1, we have

59(5187) T sas1 = 89518, (518)) 5081 = 52518 5951(5)51) 52(515]) 59

= 51515150518, 55(5"51) 55(515]) 50 = 518" 51 (5} 51) 59515)5252(515]) 52

)lJr l+18

= s1(shs1) Hsa(s15)) 9.

Note that the fourth equation holds by Lemma 2.2.

Theorem 2.5 Assumer > 2. Let DT = {5, 15,2 52(515])%, 8, 15,2 $2(515])"s1,
Sr_18r_9° - 82(8187)82, 8, 18,0 S2(5181)"8283, ..., Sr_15,_2 - S2(818])"5283...5,_1}. Let
D" = U",' Dy, then D7 is a set of complete right coset representatives of G(m,p,r — 1) in
G(m,p,r) when 1 < p < m.

Proof Let W = G(m,p,r) and L = G(m,p,r —1). We want to show W = J,. . Ld.
It’s obvious that | J,. . Ld C W and |L||D"| = [W], so we only need to show that Vs € S =
{s0,87,81,---,8_1}, and Vd € D", there exists d’ € D" such that Lds = Ld'. We discuss in
the following cases.

(a) Assume s = sg, note that this case happens only when 1 < p < m. We have the
relation s}s159 = sps)s1 and sgs; = s;50 for j > 1.

(a.l) Ifd = 5,18, _9...52(s18})",

/ m—1i / m—1i /\1
dso = Sp—1Sr—2...52(8151)™ 'S0 = S0Sr—15r—2 ... S2(8751) = S0Sr—1Sr—2...S2(s157)" € Ld.

(a.2) If d = s, 18, 2...52(s18])"s1, by lemma 2.1 we have s;59 = s¢s(s15])P~1, then

— / 7 _ / i
dsg = Sp_1S4_2...58281(8151)"S0 = Sr_18r_2...825180(8151)
/ I\Np—1/_/ 7 / -1/ / 7
= Sp_1Sr—2...828087(5157)P 7 (8181)" = S0Sr_18r—2...S2(8151)7 " s1(s]s1)
_ / —1 ryie1
= 508r_18r_2...82(8781)P 7 (5187)" " s1-
The last relation equals
I \i— !
S08r—18r—2...52(8181)" Ps1 € Ld
with d’ = s,_18,_5...52(818})"Ps; when p < i; or equals
I\ym—(p—i /!
S08r—18r—2 ... S2(8181) (=g e Ld
. / / _ —3 .
with d' = $,_18,_2...52(s18))" (P=0) g, when i < p.
(a.3) If d = s,_18,_2...52(5187)"S2...5; (j > 2), then
/ m—i / m—1i
ds) = Sp_18r—2...52(8181)" "S0S2...8; = S0Sp_18r—2...52(s751)" 's2...5;

7\
= S0Sr_1Sr—2...52(5151)"s2...5; € Ld.

(b) Assume s = s/,
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(b.1) Ifd = 8,_18,_2...82(518))", then

Sp—18r—2...52(s18})" sy € DI_y,fori >0,

fori = 0.

r I\t
ds| = S$p_18r_2...82(8187)"s] =

1
Sp—1Sp—2...52(5181)" 's1 € DI, 4,

(b.2) Ifd = 8,_18,_2...82(518})%s1, then

/\i+1 T ; _
Gs — i Sp_15p—2...52(s187)" e DI, fori <m —1,
$] = Sr_18r_2...82(8187)'s18] = '
Sp—18p—2...82 € D{,fori =m — 1.
(b.3) If d = 8,_18,—2...52(5187)"s2...5; (j > 2), then
! 1 \1% /
ds] = Sp_15,_2...52(5157)"s25153 ... 5;.

When i = 0, ds} = s/d € Ld; when i > 0, by Lemma 2.3, we have sy(s15])"s28] =
51(8)81) " tso(s18) ) so. Then
ds) = s1(8181)" " Sp_18,_2...89(518]) 8283 ...8; € Ld.
c) Assume s =s5;,1 <j<r—1.
cl) Ifd=s,_18_2...5(s18))".
cll) When j =1or2,ds; € Dj.
c.1.2) When j > 3, ds; = $,_15,-2...52(5151)"S; = $j_18r—18,—2 ... S2(s18})" € Ld.
c2) Ifd=s8,_18_2...59(518))"s1.
021) When j =1, ds; € Dj.
c.2.2) When j =2, ds; = $,_1S,_3...52(518])"s152. By Lemma 2.4, we have
59(518)) 5159 = 51(8)51)"s2(515))"51.
Then
ds;j = 51(5151)"8,_18,_9...52(s18})"s1 € Ld.
(c.2.3) When j > 3, ds; = $,_15,—2...52(5151)"818; = $j_18,-15,—2...52(s18])"s1 €
Ld.
(3) Ifd=8,_18._2...52(518))"82...8, (2<k <r—1).
(c.3.1) When j =1, ds; = $,_18,_2...82(515])" 8281 ... S;. By Lemma 2.4, we have
52(518)) 5152 = 51(8)51)"s2(515)) 1.
Then ds; = s1(8}51)"Sr—18,—2...82(s18])"s2... 51, € Ld.

(c.3.2) When 2 < j <k—1,

AV
de = ST._187-_2...82(8181> §2...85j-15;8j41-..S5kSj
IAY
= Sr,18r72...82(81$1) §2...85-15;8j415;5...5k
AV
= Syr_1Sr—2... 82(8181> §2...85j-15j415;Sj+41---Sk
AV
= S,_1Sp_2...5j415;5j+15j—1..-52(5157)"82... 5k
— AV
= Sr_lsr_g...Sij_i_lSij_l...82(8181) S92 ...8k

'\
= S;Syr_1Sy_2...52(5157)"S2... 5 € Ld.
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(c.3.3) When j =kork+1,ds; € D;.
(c.3.4) When k+2<j<r-—1,

IAY
ds; = Sp_1Sr—2...52(5151)"s2...5,S;
— AY
= Sr_lsr_g...8j+18j8j_18j...82(8181) S9...8k
— 7\
= Sr—18r—2...5j415j-155Sj-1... 82(8181) S92...85k

_ I
= 5;S,_18—2...52(8187)'s2...5; € Ld

Up to now, we have discussed all the cases, so the theorem follows.
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