ON COSET DECOMPOSITIONS OF THE COMPLEX REFLECTION GROUPS $G(M, P, R)$

XU Jing－lei ${ }^{1,2}$ ，WANG Yan－jie ${ }^{1,3}$ ，WANG Li 1
（1．School of Mathematics and Science，Shanghai Normal University，Shanghai 200234，China）
（2．The Affiliated High School of Shanghai University，Shanghai 200444，China ）
（3．Changshu High School，Changshu 215516，China）

Abstract

We study the decomposition of the imprimitive complex reflection group $G(m, p, r)$ into right coset，where m, p, r are positive integers，and p divides m ．By use of the software GAP to compute some special cases when m, p, r are small integers，we deduce a set of complete right coset representatives of the parabolic subgroup $G(m, p, r-1)$ in the group $G(m, p, r)$ for general cases，which lays a foundation for further study the distinguished right coset representatives of $G(m, p, r-1)$ in $G(m, p, r)$ ．

Keywords：right coset representatives；imprimitive complex reflection groups
2010 MR Subject Classification：20F05；20F55
Document code：A Article ID：0255－7797（2020）02－0149－06

1 Introduction

Let \mathbb{N}（respectively， $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ ）be the set of all positive integers（respectively，integers， real numbers，complex numbers）．Let V be a Hermitian space of dimension n ．A reflection in V is a linear transformation of V of finite order with exactly $n-1$ eigenvalues equal to 1 ．A reflection group G on V is a finite group generated by reflections in V ．A reflection group G is called a Coxeter group if there is a G－invariant \mathbb{R}－subspace V_{0} of V such that the canonical map $\mathbb{C} \otimes_{\mathbb{R}} V_{0} \rightarrow V$ is bijective，or G is called a complex group．A reflection group G on V is called imprimitive if V is a direct sum of nontrivial linear subspaces $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{t}$ such that every element $w \in G$ is a permutation on the set $\left\{V_{1}, V_{2}, \cdots, V_{t}\right\}$ ．

For any $m, p, r \in \mathbb{N}$ with $p \mid m(\operatorname{read}$＂$p$ divides m＂），let $G(m, p, r)$ be the group consisting of all $r \times r$ monomial matrices whose non－zero entries $a_{1}, a_{2}, \cdots, a_{r}$ are m th roots of unity with $\left(\prod_{i=1}^{r} a_{i}\right)^{m / p}=1$ ，where a_{i} is in the i－th row of the monomial matrix．In［1］， Shephard and Todd proved that any irreducible imprimitive reflection group is isomorphic to some $G(m, p, r)$ ．We see that $G(m, p, r)$ is a Coxeter group if either $m \leq 2$ or $(p, r)=(m, 2)$ ．

The imprimitive reflection group $G(m, p, r)$ can also be defined by a presentation (S, P) ， where S is a set of generators of $G(m, p, r)$ ，subject only to the relations in P ．In the cases $p=1, p=m$ ，and $1<p<m$ ，we list their presentations as follows（see［2］）．

[^0](1) When $p=1, S$ contains r reflections s_{0} and s_{i} for $i \in\{1,2, \cdots, r-1\}$, and P consists of the relations $s_{0}^{m}=s_{i}^{2}=1$ for $i \in\{1,2, \cdots, r-1\} ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for $i \in$ $\{1,2, \cdots, r-2\} ; s_{i} s_{j}=s_{j} s_{i}$ for $i, j \in\{0,1,2, \cdots, r-1\}$ and $|i-j|>1 ; s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}$.
(2) When $p=m, S$ contains r reflections s_{1}^{\prime} and s_{i} for $i \in\{1,2, \cdots, r-1\}$, and P consists of the relations $s_{1}^{\prime 2}=s_{i}^{2}=1$ for $i \in\{1,2, \cdots, r-1\} ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for $i \in\{1,2, \cdots, r-2\} ; s_{i} s_{j}=s_{j} s_{i}$ for $i, j \in\{1,2, \cdots, r-1\}$ and $|i-j|>1 ; s_{1}^{\prime} s_{i}=s_{i} s_{1}^{\prime}$ for $i>2 ; s_{1}^{\prime} s_{2} s_{1}^{\prime}=s_{2} s_{1}^{\prime} s_{2} ; \underbrace{s_{1} s_{1}^{\prime} s_{1} \cdots}_{m}=\underbrace{s_{1}^{\prime} s_{1} s_{1}^{\prime} \cdots}_{m} ; s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1} s_{2}=s_{2} s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1}$.
(3) When $1<p<m, S$ contains $r+1$ reflections s_{0}, s_{1}^{\prime} and s_{i} for $i \in\{1,2, \cdots, r-1\}$, and P consists of the relations $s_{0}^{m / p}=s_{1}^{\prime 2}=s_{i}^{2}=1$ for $i \in\{1,2, \cdots, r-1\} ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for $i \in\{1,2, \cdots, r-2\} ; s_{i} s_{j}=s_{j} s_{i}$ for $i, j \in\{0,1,2, \cdots, r-1\}$ and $|i-j|>1 ; s_{1}^{\prime} s_{i}=s_{i} s_{1}^{\prime}$ for $i>2 ; s_{1}^{\prime} s_{2} s_{1}^{\prime}=s_{2} s_{1}^{\prime} s_{2} ; \underbrace{s_{1} s_{1}^{\prime} s_{1} \cdots}_{m}=\underbrace{s_{1}^{\prime} s_{1} s_{1}^{\prime} \cdots}_{m} ; s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1} s_{2}=s_{2} s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1} ; s_{0} s_{1}^{\prime} s_{0} s_{1}^{\prime}=$ $s_{1}^{\prime} s_{0} s_{1}^{\prime} s_{0} ; s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0} ; s_{0} s_{1}^{\prime} s_{1}=s_{1}^{\prime} s_{1} s_{0} ; \underbrace{s_{1} s_{0} s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1} \cdots}_{p+1}=\underbrace{s_{0} s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1} s_{1}^{\prime} \cdots}_{p+1}$.

Let W be a Coxeter group and (S, P) be its presentation. Let $J \subset S$ and W_{J} be a subgroup of W generated by J. Then W_{J} is also a Coxeter group, which is called a parabolic subgroup of W. A set of distinguished right coset representatives of W_{J} in W is defined in [3] as $X_{J}:=\{w \in W \mid l(s w)>l(w) \forall s \in J\}$. Then for any $w \in W$, it can be decomposed as $w=v d$ with $v \in W_{J}$ and $d \in X_{J}$, and $l(w)=l(v)+l(d)$. Assume (S, P) is a presentation of $G(m, p, r)$, and let $S^{\prime}=S \backslash\left\{s_{r-1}\right\}$. The subgroup of $G(m, p, r)$ generated by S^{\prime} is denoted by $G(m, p, r-1)$, which can also be thought of as a "parabolic" subgroup of $G(m, p, r)$. In [4], Mac gave a set of complete right coset representatives of $G(m, 1, r-1)$ in $G(m, 1, r)$, which is denoted by X_{r}. And she also proved that X_{r} is distinguished, according to which she can obtain a reduced expression for any element $w \in G(m, 1, r)$ as $w=d_{1} d_{2} \cdots d_{r}$, where $d_{i} \in X_{i}$ and $G(m, 1,0)$ is a trivial group.

We mean to give a set of distinguished right coset representatives of $G(m, p, r-1)$ in $G(m, p, r)$ when $1<p \leq m$, so that we are able to get a reduced expression for any element $w \in G(m, p, r)$, like what Mac did in [4]. Well, it turns out to be not very easy. But as the first step, we can at least determine a set of complete right coset representatives of $G(m, p, r-1)$ in $G(m, p, r)$ (here $r>2)$, which is the main result of this paper.

Note that from now on, we always assume $1<p \leq m$ when $G(m, p, r)$ is cited except special explanation.

2 Main Results

Lemma 2.1 We have $s_{1} s_{0}=s_{0} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{p-1}$ in $G(m, p, r)$ when $1<p<m$.
Proof By the presentation of $G(m, p, r)$ when $1<p<m$, we have relation

$$
\underbrace{s_{1} s_{0} s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1} \cdots}_{p+1}=\underbrace{s_{0} s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1} s_{1}^{\prime} \cdots}_{p+1} .
$$

If p is odd, this relation is

$$
s_{1} s_{0} \underbrace{s_{1}^{\prime} s_{1} \cdots s_{1}^{\prime} s_{1}}_{p-1}=s_{0} s_{1}^{\prime} \underbrace{s_{1} s_{1}^{\prime} \cdots s_{1} s_{1}^{\prime}}_{p-1} .
$$

So we have $s_{1} s_{0}=s_{0} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{p-1}$.
If p is even, this relation is

$$
s_{1} s_{0} s_{1}^{\prime} \underbrace{s_{1} s_{1}^{\prime} \cdots s_{1} s_{1}^{\prime}}_{p-2}=s_{0} \underbrace{s_{1}^{\prime} s_{1} \cdots s_{1}^{\prime} s_{1}}_{p} .
$$

So we also have $s_{1} s_{0}=s_{0} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{p-1}$.
Lemma 2.2 we have $s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{k}=\left(s_{1}^{\prime} s_{1}\right)^{k} s_{2} s_{1} s_{1}^{\prime} s_{2}$ for $1 \leq k \leq m$ in $G(m, p, r)$.
Proof We prove by induction on k. When $k=1$, by the presentation of $G(m, p, r)$, we have relation $s_{2} s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1}=s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1} s_{2}$. So

$$
s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime} s_{1}=s_{2} s_{1} s_{1}^{\prime} s_{1}^{\prime} s_{1} s_{2} s_{1}^{\prime} s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}=s_{1}^{\prime} s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}
$$

Assume the conclusion is true for $k=l$, i.e., we have $s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{l}=\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2} s_{1} s_{1}^{\prime} s_{2}$. For $k=l+1$, we have

$$
\begin{aligned}
s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{l+1} & =s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{1}^{\prime} s_{1}=\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime} s_{1} \\
& =\left(s_{1}^{\prime} s_{1}\right)^{l} s_{1}^{\prime} s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}=\left(s_{1}^{\prime} s_{1}\right)^{l+1} s_{2} s_{1} s_{1}^{\prime} s_{2} .
\end{aligned}
$$

Lemma 2.3 we have $s_{2}\left(s_{1} s_{1}^{\prime}\right)^{k} s_{2} s_{1}^{\prime}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{k-1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{k} s_{2}$ for $1 \leq k \leq m$ in $G(m, p, r)$.

Proof We prove by induction on k. When $k=1$, since $s_{1}^{\prime} s_{2} s_{1}^{\prime}=s_{2} s_{1}^{\prime} s_{2}$ and $s_{2} s_{1} s_{2}=$ $s_{1} s_{2} s_{1}$, we have $s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime}=s_{2} s_{1} s_{2} s_{1}^{\prime} s_{2}=s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}$. Assume the conclusion is true for $k=l$, i.e., we have $s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} s_{1}^{\prime}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l-1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2}$. For $k=l+1$, we have

$$
\begin{aligned}
s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l+1} s_{2} s_{1}^{\prime} & =s_{2} s_{1} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} s_{1}^{\prime}=s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l-1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} \\
& =s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime} s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l-1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2}=s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} .
\end{aligned}
$$

By Lemma 2.2, the last relation equals $s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l+1} s_{2}$.
Lemma 2.4 we have $s_{2}\left(s_{1} s_{1}^{\prime}\right)^{k} s_{2} s_{1}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{k} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{k} s_{2}$ for for $1 \leq k \leq m$ in $G(m, p, r)$.

Proof We prove by induction on k. When $k=1$, since $s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1} s_{1}^{\prime}=s_{1} s_{1}^{\prime} s_{2} s_{1} s_{1}^{\prime} s_{2}$ and $s_{1}^{\prime} s_{2} s_{1}^{\prime}=s_{2} s_{1}^{\prime} s_{2}$, we have

$$
\begin{aligned}
s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1} & =s_{1} s_{1}^{\prime} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime} s_{1} s_{2} s_{2} s_{1}=s_{1} s_{1}^{\prime} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}^{\prime} \\
& =s_{1} s_{1}^{\prime} s_{2} s_{1} s_{2} s_{1}^{\prime} s_{2}=s_{1} s_{1}^{\prime} s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2} .
\end{aligned}
$$

Assume the conclusion is true for $k=l$, i.e., we have $s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} s_{1}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2}$. For $k=l+1$, we have

$$
\begin{aligned}
s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l+1} s_{2} s_{1} & =s_{2} s_{1} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} s_{1}=s_{2} s_{1} s_{1}^{\prime} s_{2} s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} \\
& =s_{1} s_{1}^{\prime} s_{1} s_{2} s_{1} s_{1}^{\prime} s_{2}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2}=s_{1} s_{1}^{\prime} s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l} s_{2} s_{1} s_{1}^{\prime} s_{2} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l} s_{2} \\
& =s_{1}\left(s_{1}^{\prime} s_{1}\right)^{l+1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{l+1} s_{2}
\end{aligned}
$$

Note that the fourth equation holds by Lemma 2.2.
Theorem 2.5 Assume $r>2$. Let $D_{i}^{r}=\left\{s_{r-1} s_{r-2} \cdots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i}, s_{r-1} s_{r-2} \cdots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}\right.$, $\left.s_{r-1} s_{r-2} \cdots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2}, s_{r-1} s_{r-2} \cdots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{3}, \ldots, s_{r-1} s_{r-2} \cdots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{3} \ldots s_{r-1}\right\}$. Let $D^{r}=\cup_{i=0}^{m-1} D_{i}^{r}$, then D^{r} is a set of complete right coset representatives of $G(m, p, r-1)$ in $G(m, p, r)$ when $1<p \leq m$.

Proof Let $W=G(m, p, r)$ and $L=G(m, p, r-1)$. We want to show $W=\bigcup_{d \in D^{r}} L d$. It's obvious that $\bigcup_{d \in D^{r}} L d \subset W$ and $|L|\left|D^{r}\right|=|W|$, so we only need to show that $\forall s \in S=$ $\left\{s_{0}, s_{1}^{\prime}, s_{1}, \ldots, s_{r-1}\right\}$, and $\forall d \in D^{r}$, there exists $d^{\prime} \in D^{r}$ such that $L d s=L d^{\prime}$. We discuss in the following cases.
(a) Assume $s=s_{0}$, note that this case happens only when $1<p<m$. We have the relation $s_{1}^{\prime} s_{1} s_{0}=s_{0} s_{1}^{\prime} s_{1}$ and $s_{0} s_{j}=s_{j} s_{0}$ for $j>1$.
(a.1) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i}$,
$d s_{0}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{m-i} s_{0}=s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{m-i}=s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} \in L d$.
(a.2) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}$, by lemma 2.1 we have $s_{1} s_{0}=s_{0} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{p-1}$, then

$$
\begin{aligned}
d s_{0} & =s_{r-1} s_{r-2} \ldots s_{2} s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i} s_{0}=s_{r-1} s_{r-2} \ldots s_{2} s_{1} s_{0}\left(s_{1}^{\prime} s_{1}\right)^{i} \\
& =s_{r-1} s_{r-2} \ldots s_{2} s_{0} s_{1}^{\prime}\left(s_{1} s_{1}^{\prime}\right)^{p-1}\left(s_{1}^{\prime} s_{1}\right)^{i}=s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{p-1} s_{1}^{\prime}\left(s_{1}^{\prime} s_{1}\right)^{i} \\
& =s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{p-1}\left(s_{1} s_{1}^{\prime}\right)^{i-1} s_{1} .
\end{aligned}
$$

The last relation equals

$$
s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i-p} s_{1} \in L d^{\prime}
$$

with $d^{\prime}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i-p} s_{1}$ when $p \leq i$; or equals

$$
s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{m-(p-i)} s_{1} \in L d^{\prime}
$$

with $d^{\prime}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{m-(p-i)} s_{1}$ when $i<p$.
(a.3) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j}(j \geq 2)$, then

$$
\begin{aligned}
d s_{0} & =s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{m-i} s_{0} s_{2} \ldots s_{j}=s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1}^{\prime} s_{1}\right)^{m-i} s_{2} \ldots s_{j} \\
& =s_{0} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j} \in L d
\end{aligned}
$$

(b) Assume $s=s_{1}^{\prime}$,
(b.1) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i}$, then

$$
d s_{1}^{\prime}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}^{\prime}=\left\{\begin{array}{l}
s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i-1} s_{1} \in D_{i-1}^{r}, \text { for } i>0 \\
s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{m-1} s_{1} \in D_{m-1}^{r}, \text { for } i=0
\end{array}\right.
$$

(b.2) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}$, then
$d s_{1}^{\prime}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} s_{1}^{\prime}=\left\{\begin{array}{l}s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i+1} \in D_{i+1}^{r}, \text { for } i<m-1, \\ s_{r-1} s_{r-2} \ldots s_{2} \in D_{0}^{r}, \text { for } i=m-1 .\end{array}\right.$
(b.3) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j}(j \geq 2)$, then

$$
d s_{1}^{\prime}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{1}^{\prime} s_{3} \ldots s_{j}
$$

When $i=0, d s_{1}^{\prime}=s_{1}^{\prime} d \in L d$; when $i>0$, by Lemma 2.3, we have $s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{1}^{\prime}=$ $s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i-1} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2}$. Then

$$
d s_{1}^{\prime}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i-1} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{3} \ldots s_{j} \in L d
$$

(c) Assume $s=s_{j}, 1 \leq j \leq r-1$.
(c.1) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i}$.
(c.1.1) When $j=1$ or $2, d s_{j} \in D_{i}^{r}$.
(c.1.2) When $j \geq 3, d s_{j}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{j}=s_{j-1} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} \in L d$.
(c.2) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}$.
(c.2.1) When $j=1, d s_{j} \in D_{i}^{r}$.
(c.2.2) When $j=2, d s_{j}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} s_{2}$. By Lemma 2.4, we have

$$
s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} s_{2}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}
$$

Then

$$
d s_{j}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} \in L d
$$

(c.2.3) When $j \geq 3, d s_{j}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} s_{j}=s_{j-1} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} \in$ Ld.
(c.3) If $d=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k}(2 \leq k \leq r-1)$.
(c.3.1) When $j=1, d s_{j}=s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} s_{1} \ldots s_{k}$. By Lemma 2.4, we have

$$
s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1} s_{2}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i} s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{1}
$$

Then $d s_{j}=s_{1}\left(s_{1}^{\prime} s_{1}\right)^{i} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \in L d$.
(c.3.2) When $2 \leq j \leq k-1$,

$$
\begin{aligned}
d s_{j} & =s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{k} s_{j} \\
& =s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j-1} s_{j} s_{j+1} s_{j} \ldots s_{k} \\
& =s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{j-1} s_{j+1} s_{j} s_{j+1} \ldots s_{k} \\
& =s_{r-1} s_{r-2} \ldots s_{j+1} s_{j} s_{j+1} s_{j-1} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \\
& =s_{r-1} s_{r-2} \ldots s_{j} s_{j+1} s_{j} s_{j-1} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \\
& =s_{j} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \in L d
\end{aligned}
$$

（c．3．3）When $j=k$ or $k+1, d s_{j} \in D_{i}^{r}$ ．
（c．3．4）When $k+2 \leq j \leq r-1$ ，

$$
\begin{aligned}
d s_{j} & =s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} s_{j} \\
& =s_{r-1} s_{r-2} \ldots s_{j+1} s_{j} s_{j-1} s_{j} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \\
& =s_{r-1} s_{r-2} \ldots s_{j+1} s_{j-1} s_{j} s_{j-1} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \\
& =s_{j} s_{r-1} s_{r-2} \ldots s_{2}\left(s_{1} s_{1}^{\prime}\right)^{i} s_{2} \ldots s_{k} \in L d
\end{aligned}
$$

Up to now，we have discussed all the cases，so the theorem follows．

References

［1］Shephard G C，Todd J A．Finite unitary reflection groups［J］．Canadian Journal of Mathematics， 1954，6：274－304．
［2］Broue M，Malle G，Rouquier R．Complex reflection groups，braid groups，Hecke algebras［J］．Journal Für Die Reine Und Angewandte Mathematik，1998，500：127－190．
［3］Geck M，Pfeiffer G．Characters of finite Coxeter groups and Iwahori－Hecke algebras［M］．Oxford： Oxford University Press， 2000.
［4］Mac C K．On complex reflection groups $G(m, 1, r)$ and their Hecke algebras［D］．Sydney：University of New South Wales， 2004.

复反射群 $G(m, p, r)$ 的陪集分解

徐静蕾 ${ }^{1,2}$ ，王彦杰 ${ }^{1,3}$ ，王 丽 ${ }^{1}$
（1．上海师范大学数理学院，上海 200234）
（2．上海大学附属中学，上海 200444）
（3．常熟中学，江苏常熟 215516）
摘要：本文研究了非本原复反射群 $G(m, p, r)$ 的右陪集分解，其中 m, p, r 是正整数，且 p 整除 m 。通过使用GAP软件计算一些当 m, p, r 取较小自然数时的特例，推导出了一般情形下，非本原复反射群 $G(m, p, r)$ 的抛物型子群 $G(m, p, r-1)$ 的一个完全的右陪集代表元集，这个结果为进一步研究 $G(m, p, r-1)$在 $G(m, p, r)$ 中的特异右陪集代表元集打下基础．

关键词：右陪集代表；非本原复反射群
MR（2010）主题分类号：20F05；20F55 中图分类号：O152．3

[^0]: ＊Received date：2018－10－29 Accepted date：2019－03－05
 Biography：Xu Jinglei（1992－），female，born at Xinyang，Henan，postguaduate，major in reflection groups and its associated combinatorics．

 Corresponding author：Wang Li

