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Abstract: We study the decomposition of the imprimitive complex reflection group G(m, p, r)

into right coset, where m, p, r are positive integers, and p divides m. By use of the software GAP

to compute some special cases when m, p, r are small integers, we deduce a set of complete right

coset representatives of the parabolic subgroup G(m, p, r − 1) in the group G(m, p, r) for general

cases, which lays a foundation for further study the distinguished right coset representatives of

G(m, p, r − 1) in G(m, p, r).
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1 Introduction

Let N (respectively, Z, R, C) be the set of all positive integers (respectively, integers,
real numbers, complex numbers). Let V be a Hermitian space of dimension n. A reflection in
V is a linear transformation of V of finite order with exactly n− 1 eigenvalues equal to 1. A
reflection group G on V is a finite group generated by reflections in V . A reflection group G

is called a Coxeter group if there is a G-invariant R-subspace V0 of V such that the canonical
map C⊗R V0 → V is bijective, or G is called a complex group. A reflection group G on V is
called imprimitive if V is a direct sum of nontrivial linear subspaces V = V1 ⊕ V2 ⊕ · · · ⊕ Vt

such that every element w ∈ G is a permutation on the set {V1, V2, · · · , Vt}.
For any m, p, r ∈ N with p | m (read “ p divides m ”), let G(m, p, r) be the group

consisting of all r× r monomial matrices whose non-zero entries a1, a2, · · · , ar are mth roots
of unity with

(∏r

i=1 ai

)m/p
= 1, where ai is in the i-th row of the monomial matrix. In [1],

Shephard and Todd proved that any irreducible imprimitive reflection group is isomorphic to
some G(m, p, r). We see that G(m, p, r) is a Coxeter group if either m ≤ 2 or (p, r) = (m, 2).

The imprimitive reflection group G(m, p, r) can also be defined by a presentation (S, P ),
where S is a set of generators of G(m, p, r), subject only to the relations in P . In the cases
p = 1, p = m, and 1 < p < m, we list their presentations as follows (see [2]).
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(1) When p = 1, S contains r reflections s0 and si for i ∈ {1, 2, · · · , r − 1}, and P

consists of the relations sm
0 = s2

i = 1 for i ∈ {1, 2, · · · , r − 1}; sisi+1si = si+1sisi+1 for i ∈
{1, 2, · · · , r−2}; sisj = sjsi for i, j ∈ {0, 1, 2, · · · , r−1} and |i− j| > 1; s0s1s0s1 = s1s0s1s0.

(2) When p = m, S contains r reflections s′1 and si for i ∈ {1, 2, · · · , r − 1}, and P

consists of the relations s′1
2 = s2

i = 1 for i ∈ {1, 2, · · · , r − 1}; sisi+1si = si+1sisi+1 for
i ∈ {1, 2, · · · , r − 2}; sisj = sjsi for i, j ∈ {1, 2, · · · , r − 1} and |i − j| > 1; s′1si = sis

′
1 for

i > 2; s′1s2s
′
1 = s2s

′
1s2; s1s

′
1s1 · · ·︸ ︷︷ ︸
m

= s′1s1s
′
1 · · ·︸ ︷︷ ︸

m

; s′1s1s2s
′
1s1s2 = s2s

′
1s1s2s

′
1s1.

(3) When 1 < p < m, S contains r+1 reflections s0, s
′
1 and si for i ∈ {1, 2, · · · , r−1}, and

P consists of the relations s
m/p
0 = s′1

2 = s2
i = 1 for i ∈ {1, 2, · · · , r−1}; sisi+1si = si+1sisi+1

for i ∈ {1, 2, · · · , r − 2}; sisj = sjsi for i, j ∈ {0, 1, 2, · · · , r − 1} and |i− j| > 1; s′1si = sis
′
1

for i > 2; s′1s2s
′
1 = s2s

′
1s2; s1s

′
1s1 · · ·︸ ︷︷ ︸
m

= s′1s1s
′
1 · · ·︸ ︷︷ ︸

m

; s′1s1s2s
′
1s1s2 = s2s

′
1s1s2s

′
1s1; s0s

′
1s0s

′
1 =

s′1s0s
′
1s0; s0s1s0s1 = s1s0s1s0; s0s

′
1s1 = s′1s1s0; s1s0s

′
1s1s

′
1s1 · · ·︸ ︷︷ ︸

p+1

= s0s
′
1s1s

′
1s1s

′
1 · · ·︸ ︷︷ ︸

p+1

.

Let W be a Coxeter group and (S, P ) be its presentation. Let J ⊂ S and WJ be a
subgroup of W generated by J . Then WJ is also a Coxeter group, which is called a parabolic
subgroup of W . A set of distinguished right coset representatives of WJ in W is defined in
[3] as XJ := {w ∈ W |l(sw) > l(w)∀s ∈ J}. Then for any w ∈ W , it can be decomposed as
w = vd with v ∈ WJ and d ∈ XJ , and l(w) = l(v) + l(d). Assume (S, P ) is a presentation of
G(m, p, r), and let S′ = S \ {sr−1}. The subgroup of G(m, p, r) generated by S′ is denoted
by G(m, p, r − 1), which can also be thought of as a ”parabolic” subgroup of G(m, p, r). In
[4], Mac gave a set of complete right coset representatives of G(m, 1, r − 1) in G(m, 1, r),
which is denoted by Xr. And she also proved that Xr is distinguished, according to which
she can obtain a reduced expression for any element w ∈ G(m, 1, r) as w = d1d2 · · · dr, where
di ∈ Xi and G(m, 1, 0) is a trivial group.

We mean to give a set of distinguished right coset representatives of G(m, p, r − 1) in
G(m, p, r) when 1 < p ≤ m, so that we are able to get a reduced expression for any element
w ∈ G(m, p, r), like what Mac did in [4]. Well, it turns out to be not very easy. But as
the first step, we can at least determine a set of complete right coset representatives of
G(m, p, r − 1) in G(m, p, r) (here r > 2), which is the main result of this paper.

Note that from now on, we always assume 1 < p ≤ m when G(m, p, r) is cited except
special explanation.

2 Main Results

Lemma 2.1 We have s1s0 = s0s
′
1(s1s

′
1)

p−1 in G(m, p, r) when 1 < p < m.

Proof By the presentation of G(m, p, r) when 1 < p < m, we have relation

s1s0s
′
1s1s

′
1s1 · · ·︸ ︷︷ ︸

p+1

= s0s
′
1s1s

′
1s1s

′
1 · · ·︸ ︷︷ ︸

p+1

.
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If p is odd, this relation is

s1s0 s′1s1 · · · s′1s1︸ ︷︷ ︸
p−1

= s0s
′
1 s1s

′
1 · · · s1s

′
1︸ ︷︷ ︸

p−1

.

So we have s1s0 = s0s
′
1(s1s

′
1)

p−1.
If p is even, this relation is

s1s0s
′
1 s1s

′
1 · · · s1s

′
1︸ ︷︷ ︸

p−2

= s0 s′1s1 · · · s′1s1︸ ︷︷ ︸
p

.

So we also have s1s0 = s0s
′
1(s1s

′
1)

p−1.
Lemma 2.2 we have s2s1s

′
1s2(s′1s1)k = (s′1s1)ks2s1s

′
1s2 for 1 ≤ k ≤ m in G(m, p, r).

Proof We prove by induction on k. When k = 1, by the presentation of G(m, p, r),
we have relation s2s

′
1s1s2s

′
1s1 = s′1s1s2s

′
1s1s2. So

s2s1s
′
1s2s

′
1s1 = s2s1s

′
1s
′
1s1s2s

′
1s1s2s1s

′
1s2 = s′1s1s2s1s

′
1s2.

Assume the conclusion is true for k = l, i.e., we have s2s1s
′
1s2(s′1s1)l = (s′1s1)ls2s1s

′
1s2. For

k = l + 1, we have

s2s1s
′
1s2(s′1s1)l+1 = s2s1s

′
1s2(s′1s1)ls′1s1 = (s′1s1)ls2s1s

′
1s2s

′
1s1

= (s′1s1)ls′1s1s2s1s
′
1s2 = (s′1s1)l+1s2s1s

′
1s2.

Lemma 2.3 we have s2(s1s
′
1)

ks2s
′
1 = s1(s′1s1)k−1s2(s1s

′
1)

ks2 for 1 ≤ k ≤ m in
G(m, p, r).

Proof We prove by induction on k. When k = 1, since s′1s2s
′
1 = s2s

′
1s2 and s2s1s2 =

s1s2s1, we have s2s1s
′
1s2s

′
1 = s2s1s2s

′
1s2 = s1s2s1s

′
1s2. Assume the conclusion is true for

k = l, i.e., we have s2(s1s
′
1)

ls2s
′
1 = s1(s′1s1)l−1s2(s1s

′
1)

ls2. For k = l + 1, we have

s2(s1s
′
1)

l+1s2s
′
1 = s2s1s

′
1(s1s

′
1)

ls2s
′
1 = s2s1s

′
1s2s1(s′1s1)l−1s2(s1s

′
1)

ls2

= s1s2s1s
′
1s2s

′
1s1(s′1s1)l−1s2(s1s

′
1)

ls2 = s1s2s1s
′
1s2(s′1s1)ls2(s1s

′
1)

ls2.

By Lemma 2.2, the last relation equals s1(s′1s1)ls2s1s
′
1s2s2(s1s

′
1)

ls2 = s1(s′1s1)ls2(s1s
′
1)

l+1s2.
Lemma 2.4 we have s2(s1s

′
1)

ks2s1 = s1(s′1s1)ks2(s1s
′
1)

ks2 for for 1 ≤ k ≤ m in
G(m, p, r).

Proof We prove by induction on k. When k = 1, since s2s1s
′
1s2s1s

′
1 = s1s

′
1s2s1s

′
1s2

and s′1s2s
′
1 = s2s

′
1s2, we have

s2s1s
′
1s2s1 = s1s

′
1s2s1s

′
1s2s

′
1s1s2s2s1 = s1s

′
1s2s1s

′
1s2s

′
1

= s1s
′
1s2s1s2s

′
1s2 = s1s

′
1s1s2s1s

′
1s2.
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Assume the conclusion is true for k = l, i.e., we have s2(s1s
′
1)

ls2s1 = s1(s′1s1)ls2(s1s
′
1)

ls2.
For k = l + 1, we have

s2(s1s
′
1)

l+1s2s1 = s2s1s
′
1(s1s

′
1)

ls2s1 = s2s1s
′
1s2s1(s′1s1)ls2(s1s

′
1)

ls2

= s1s
′
1s1s2s1s

′
1s2(s′1s1)ls2(s1s

′
1)

ls2 = s1s
′
1s1(s′1s1)ls2s1s

′
1s2s2(s1s

′
1)

ls2

= s1(s′1s1)l+1s2(s1s
′
1)

l+1s2.

Note that the fourth equation holds by Lemma 2.2.
Theorem 2.5 Assume r > 2. Let Dr

i = {sr−1sr−2 · · · s2(s1s
′
1)

i, sr−1sr−2 · · · s2(s1s
′
1)

is1,

sr−1sr−2 · · · s2(s1s
′
1)

is2, sr−1sr−2 · · · s2(s1s
′
1)

is2s3, . . . , sr−1sr−2 · · · s2(s1s
′
1)

is2s3 . . . sr−1}. Let
Dr = ∪m−1

i=0 Dr
i , then Dr is a set of complete right coset representatives of G(m, p, r − 1) in

G(m, p, r) when 1 < p ≤ m.
Proof Let W = G(m, p, r) and L = G(m, p, r − 1). We want to show W =

⋃
d∈Dr Ld.

It’s obvious that
⋃

d∈Dr Ld ⊂ W and |L||Dr| = |W |, so we only need to show that ∀s ∈ S =
{s0, s

′
1, s1, . . . , sr−1}, and ∀d ∈ Dr, there exists d′ ∈ Dr such that Lds = Ld′. We discuss in

the following cases.
(a) Assume s = s0, note that this case happens only when 1 < p < m. We have the

relation s′1s1s0 = s0s
′
1s1 and s0sj = sjs0 for j > 1.

(a.1) If d = sr−1sr−2 . . . s2(s1s
′
1)

i,

ds0 = sr−1sr−2 . . . s2(s′1s1)m−is0 = s0sr−1sr−2 . . . s2(s′1s1)m−i = s0sr−1sr−2 . . . s2(s1s
′
1)

i ∈ Ld.

(a.2) If d = sr−1sr−2 . . . s2(s1s
′
1)

is1, by lemma 2.1 we have s1s0 = s0s
′
1(s1s

′
1)

p−1, then

ds0 = sr−1sr−2 . . . s2s1(s′1s1)is0 = sr−1sr−2 . . . s2s1s0(s′1s1)i

= sr−1sr−2 . . . s2s0s
′
1(s1s

′
1)

p−1(s′1s1)i = s0sr−1sr−2 . . . s2(s′1s1)p−1s′1(s
′
1s1)i

= s0sr−1sr−2 . . . s2(s′1s1)p−1(s1s
′
1)

i−1s1.

The last relation equals

s0sr−1sr−2 . . . s2(s1s
′
1)

i−ps1 ∈ Ld′

with d′ = sr−1sr−2 . . . s2(s1s
′
1)

i−ps1 when p ≤ i; or equals

s0sr−1sr−2 . . . s2(s1s
′
1)

m−(p−i)s1 ∈ Ld′

with d′ = sr−1sr−2 . . . s2(s1s
′
1)

m−(p−i)s1 when i < p.
(a.3) If d = sr−1sr−2 . . . s2(s1s

′
1)

is2 . . . sj (j ≥ 2), then

ds0 = sr−1sr−2 . . . s2(s′1s1)m−is0s2 . . . sj = s0sr−1sr−2 . . . s2(s′1s1)m−is2 . . . sj

= s0sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sj ∈ Ld.

(b) Assume s = s′1,
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(b.1) If d = sr−1sr−2 . . . s2(s1s
′
1)

i, then

ds′1 = sr−1sr−2 . . . s2(s1s
′
1)

is′1 =

{
sr−1sr−2 . . . s2(s1s

′
1)

i−1s1 ∈ Dr
i−1, for i > 0,

sr−1sr−2 . . . s2(s1s
′
1)

m−1s1 ∈ Dr
m−1, for i = 0.

(b.2) If d = sr−1sr−2 . . . s2(s1s
′
1)

is1, then

ds′1 = sr−1sr−2 . . . s2(s1s
′
1)

is1s
′
1 =

{
sr−1sr−2 . . . s2(s1s

′
1)

i+1 ∈ Dr
i+1, for i < m− 1,

sr−1sr−2 . . . s2 ∈ Dr
0, for i = m− 1.

(b.3) If d = sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sj (j ≥ 2), then

ds′1 = sr−1sr−2 . . . s2(s1s
′
1)

is2s
′
1s3 . . . sj .

When i = 0, ds′1 = s′1d ∈ Ld; when i > 0, by Lemma 2.3, we have s2(s1s
′
1)

is2s
′
1 =

s1(s′1s1)i−1s2(s1s
′
1)

is2. Then

ds′1 = s1(s′1s1)i−1sr−1sr−2 . . . s2(s1s
′
1)

is2s3 . . . sj ∈ Ld.

(c) Assume s = sj , 1 ≤ j ≤ r − 1.
(c.1) If d = sr−1sr−2 . . . s2(s1s

′
1)

i.
(c.1.1) When j = 1 or 2, dsj ∈ Dr

i .
(c.1.2) When j ≥ 3, dsj = sr−1sr−2 . . . s2(s1s

′
1)

isj = sj−1sr−1sr−2 . . . s2(s1s
′
1)

i ∈ Ld.
(c.2) If d = sr−1sr−2 . . . s2(s1s

′
1)

is1.
(c.2.1) When j = 1, dsj ∈ Dr

i .
(c.2.2) When j = 2, dsj = sr−1sr−2 . . . s2(s1s

′
1)

is1s2. By Lemma 2.4, we have

s2(s1s
′
1)

is1s2 = s1(s′1s1)is2(s1s
′
1)

is1.

Then
dsj = s1(s′1s1)isr−1sr−2 . . . s2(s1s

′
1)

is1 ∈ Ld.

(c.2.3) When j ≥ 3, dsj = sr−1sr−2 . . . s2(s1s
′
1)

is1sj = sj−1sr−1sr−2 . . . s2(s1s
′
1)

is1 ∈
Ld.

(c.3) If d = sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sk (2 ≤ k ≤ r − 1).
(c.3.1) When j = 1, dsj = sr−1sr−2 . . . s2(s1s

′
1)

is2s1 . . . sk. By Lemma 2.4, we have

s2(s1s
′
1)

is1s2 = s1(s′1s1)is2(s1s
′
1)

is1.

Then dsj = s1(s′1s1)isr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sk ∈ Ld.
(c.3.2) When 2 ≤ j ≤ k − 1,

dsj = sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sj−1sjsj+1 . . . sksj

= sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sj−1sjsj+1sj . . . sk

= sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sj−1sj+1sjsj+1 . . . sk

= sr−1sr−2 . . . sj+1sjsj+1sj−1 . . . s2(s1s
′
1)

is2 . . . sk

= sr−1sr−2 . . . sjsj+1sjsj−1 . . . s2(s1s
′
1)

is2 . . . sk

= sjsr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sk ∈ Ld.
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(c.3.3) When j = k or k + 1, dsj ∈ Dr
i .

(c.3.4) When k + 2 ≤ j ≤ r − 1,

dsj = sr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sksj

= sr−1sr−2 . . . sj+1sjsj−1sj . . . s2(s1s
′
1)

is2 . . . sk

= sr−1sr−2 . . . sj+1sj−1sjsj−1 . . . s2(s1s
′
1)

is2 . . . sk

= sjsr−1sr−2 . . . s2(s1s
′
1)

is2 . . . sk ∈ Ld

Up to now, we have discussed all the cases, so the theorem follows.
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复反射群G(m, p, r) 的陪集分解

徐静蕾1,2, 王彦杰1,3, 王 丽1
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摘要: 本文研究了非本原复反射群 G(m, p, r) 的右陪集分解, 其中 m, p, r 是正整数, 且 p 整除

m. 通过使用GAP软件计算一些当 m, p, r 取较小自然数时的特例, 推导出了一般情形下, 非本原复反射群

G(m, p, r)的抛物型子群G(m, p, r−1)的一个完全的右陪集代表元集,这个结果为进一步研究G(m, p, r−1)

在 G(m, p, r) 中的特异右陪集代表元集打下基础.
关键词: 右陪集代表; 非本原复反射群
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