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Abstract: In this paper, a class of generalized cyclotomic binary sequences of period pq is
proposed, where p and q are two distinct odd primes. By using Whiteman’s generalized cyclotomy
of order 4 and classic cyclotomy of order 2, the sequences are almost balanced and the exact value
of their linear complexity is calculated, which shows that the proposed sequences are quite good in
terms of the linear complexity.
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1 Introduction

Pseudo-random sequences were widely used in communication and cryptographic sys-
tems. For the application of stream cipher, the keystream sequences had unpredictability
and randomness [1]. One of the important indexes for measuring these properties is linear
complexity of sequence, which is defined to be the length of the shortest linear feedback shift
register that can generate the given sequence. Generally speaking, a sequence with large
linear complexity (at least a half of its period) is considered to be favorable for cryptography
to resist the well-known Berlekamp-Massey algorithm.

For an integer N > 2, let Zy = {0,1,--- , N — 1} denote the ring of integers modulo
N and Zj denote the set of all invertible elements of Zy. Let {Dy, Dy,--- ,D4-1} be a
partition of Z}. If Dy is a multiplicative subgroup of Z} and there exist elements g; € Z},
such that D; = ¢;D, for all i € {1,2,--- ,d— 1}, then for prime (composite) N, these D, are
called classical (generalized) cyclotomic classes of order d with respect to N.

Using classical cyclotomy or generalized cyclotomy to construct sequences is an effective
method to obtain sequences with large linear complexity. The linear complexity and autocor-

relation property of generalized cyclotomic sequences with various period were extensively
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studied in the literature (see [2-7]). In this paper, we focus on the generalized cyclotomic
binary sequences of period pq.

The generalized cyclotomic binary sequences of period pq are by far constructed on the
basis of Whiteman’s generalized cyclotomic classes or Ding-Helleseth generalized cyclotomic
classes which are proposed in [8] and [9], respectively. Most of these sequences have large
linear complexity. A brief review of these sequences are provided in Section 2. In this paper,
a class of new generalized cyclotomic binary sequences of period pg based on Whiteman’s
generalized cyclotomy of order 4 and classic cyclotomy of order 2 is proposed. By using
the classic method for calculating the linear complexity described in [10], we determine the
exact value of the linear complexity of such sequences. Our results show that the proposed

sequences have large linear complexity.

2 Preliminary

In this section, we first recall the two types of generalized cyclotomy with respect to pq
and the known generalized cyclotomic sequences of period pq, and then define a class of new
generalized cyclotomic sequences of period pq.

Let N = pq, where p and ¢ are distinct odd primes with ged (p — 1, ¢ — 1) = d. Define
Wl)dﬁ. Let g be a fixed primitive root of both p and ¢. Then ordy(g) = lem (p —
1,g—1) = e. Let x be an integer satisfying z = g (mod p), = 1 (mod ¢). Whiteman proved

in [8] that

e =

ZJ*V:{gsxi:s:O,l,--',e—l;z':(),l,---,d—l}.

Whiteman'’s generalized cyclotomic classes of order d with respect to pq are defined by [8]
D; = {gsxi(modpq) :s=0,1,--- ,e—l}, i=0,1,---,d—1. (2.1)

Ding-Helleseth generalized cyclotomic classes of order d with respect to pq are defined by
[9]
€

D;= {gds“xj (modpg) + s =01,

1; j:0’17...7d_1}7 i=0,1,---,d—1.

On the basis of these two generalized cyclotomies of even order d, many generalized cyclo-
tomic sequences of period pq were constructed.

Let P = pZs = {p,2p,--- ,(¢—1)p}, Q@ = qZ; = {q,2¢,--- ,(p—1)q}, R = {0} . It
is easily verified that Zy = Z3 U P U Q U R. Using Whiteman’s generalized cyclotomy of
order 2 with respect to pg, Ding first constructed a class of generalized cyclotomic binary
sequences which admits Dy U P as the characteristic set, i.e., the sequences (s, s1,S2,+*)
are given by s; = 1 if i (modpg) € D; U P and s; = 0 otherwise. The linear complexity and
autocorrelation property of these sequences were investigated in [10] and [11]. This kind of

sequences was extended to the cases of d = 4 and d = 2* in [12] and [13], respectively, where
d—1
the linear complexity of the binary sequences with the characteristic sets |J D; U P was

c__d
=3
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calculated. Based on Ding-Helleseth generalized cyclotomy, the binary sequences with the
d—1
characteristic sets |J D;U P for d = 2 were proposed in [14] and the linear complexity and

—a
=3

autocorrelation values of these sequences were determined.

It is easily seen that the difference between the numbers of ones and zeros is ¢ —p — 1
in all the above sequences, i.e., they are not balanced unless ¢ = p + 2 (note that in the
case where the difference is equal to +1 the sequences are called almost balanced). In [9]
Ding and Helleseth introduced a new method to construct almost balanced sequences, that
is, using the classic cyclotomy to divide the sets P and ). Let d; be a divisor of d, and
p—1=difi,q—1=dify. Fori=0,1,---  dy — 1, define

D" = {g"** (modp) : s =0,1,---, fi — 1},

(2

DY = {g+i (modq) : s=0,1,-++, fo — 1} (2.2)

Then Dl(p ) and ng) with ¢ € {0,1,--- ,d; — 1} are the classic cyclotomic classes of order d;
dy—1
with respect to p and ¢, respectively. Let P; = pDEq)7 Q; = qup). Then P= (J P, Q =
i=0
di—1
U Q:. The binary sequences based on Ding-Helleseth generalized cyclotomy and classic
i=0

cyclotomy corresponding to d = d; = 2, 4 and 6 were considered in [15-17], respectively,

d—1
where the linear complexity of the binary sequences with the characteristic set |J (D;U P;U
_d

ZZE

Q;) was determined. The general case of d = d; = 2k was discussed in [18] and a lower bound
on the linear complexity of the sequences was given. Almost balanced binary sequences based
on Whiteman’s generalized cyclotomy with the characteristic set D;UP,UQ; for d = d; = 2
were investigated in [19-21], where the lower bound of the linear complexity of the sequences
was given in [19] and the exact values of the linear complexity and autocorrelation of these
sequences were calculated respectively in [20, 21]. In [22], the linear complexity of the
sequences with the characteristic set Dy U D3 U P, U P3 U Qo U Q3 was determined.

In the following, we define a family of generalized cyclotomic binary sequences of period
N = pq, where p and ¢ are distinct odd primes with ged (p — 1, ¢ — 1) = 4. Let D; with
i €{0,1,2,3} be Whiteman’s generalized cyclotomic classes of order 4 defined in (2.1), Dgp )
and DZ@ with i € {0,1} be the classical cyclotomic classes of order 2 defined in (2.2). Let
P = pDEq)v Qi = qup), R ={0}. Then

3 1 1
Zy =23 UPUQUR=|JD:| P JQiUR

=0 =0 =0

Define two sets
COZDG+2UDG+3UPQUQ0UR and Cl :DaUDa_HUPlUQl,

where a is an arbitrary integer with 0 < a < 3, and the subscripts ¢ in D; are assumed to

be taken modulo 4. For simplicity, the modulo operation is omitted in this paper. It is easy
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to see that {Cy, Cy} forms a partition of Zy and |Cy| — |C1| = 1. Now we define a family

of almost balanced binary sequences of period pq which admits C; as the characteristic set,

i.e., the sequences s> = (s, $1, 2, -+ ) are given by
0, 1 d € Cy,
s; = z‘(mo Pq) 0 (2.3)
1, i(modpq) € C;.
3 Linear Complexity
Let s = (so,S1,52, +) be a periodic infinite sequence over a field F. The linear

complexity of s> is defined to be the least positive integer L such that there are constants
co =1, ¢, -+ ,cp € F satisfying —s; = ¢18;_1 + €28;_2 + -+ + cps;_r foralli > L. The
polynomial ¢(x) = ¢o + c1x + - - - cp ol is called the minimal polynomial of s°. Let N be the
period of s*°. It is well known that

- N -1
-~ ged(aeN — 1, 5(x))’

N-1

c(x)

where s(z) = sp + s1x + -+ + Sy_1% is the generating polynomial of the sequence s*.

The linear complexity of {s;} is given by
L(s*®) = N — deg(ged(z™ — 1, s(x))). (3.1)

In this section, we use (3.1) to determine the linear complexity of the new generalized
cyclotomic binary sequences of period pg defined by (2.3).
For a with 0 < a < 3, denote

sal@)=> 2= +> +> + Y )2t €GPl (3.2)

1€Cq 1€P; 1€EQ1 1€D, 1€Dg 41

Then the generating polynomial of a sequence defined by (2.3) for a given integer a is s, ().
Let m be the order of 2 modulo N. Then there exists a primitive Nth root of unity « over

the splitting field GF(2™) of 2V — 1. Thus the linear complexity of the sequence is given by

L(s*) =N —[{j : sa(a?) =0}, (3.3)

That is to say, the problem of determining the linear complexity of the sequence defined by
(2.3) is reduced to that of counting the number of roots in the set {a? : j =0,1,--- ,pg—1}
of the generating polynomial given in (3.2).

To determine the linear complexity of the sequences defined by (2.3), we need the
following lemmas.

Lemma 2.1 (see [23]) Let the symbols be the same as before. Then

(i) if @ € D;, then aD; = D(;4j)(moas), Where 7,7 € {0,1,2,3};

(i) for any odd prime p, if t (modp) € D), then tD](p) = Dgflj)(mo(m), where i, j €
{0,1}.
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Lemma 2.2 (see [15]) Let the symbols be the same as before. Then

g—1 p—1
i) Soat=>ari=1; (i) Yal=> at=1; (i) Y o' =1.
ieP i=1 i€Q i=1 i€zy,

Lemma 2.3 (see [12]) Let the symbols be the same as before. Then

S {P—l(modz), ifteP,
« =

4
= 1 (mod?2), ifte Q.

Lemma 2.4 Let the symbols be the same as before. Then
(i) if t (modp) € DI, then T ot = 3 aof;

i€Q1 1€Q1
(i) if t (modp) € D), then Y at' =1+ ¥ aof;
i€Q1 1€Q1
(iii) if £ (modq) € D{?, then 3 ot = 3 af;
ieP, ieP
(iv) if t (modq) € D\”, then Y ot =1+ ¥ o'
iePy iePy

Proof (i) If t(modp) € DI, then by Lemma 2.1 (ii), we have tQ, = tgD" =

qup) = @4, thus
St =Y

1€Q1 1€Q1
(i) If t (modp) € D™, then tQ; = tgD\ = ¢D{"’ = Qq, it follows from Lemma 2.2

(ii) that
Za”: Zai:1+2ai.
1€Q1 1€Qo 1€Q1
The assertions in (iii) and (iv) can be similarly proved, so we omit them here.

Lemma 2.5 Let the symbols be the same as before. For ¢t € Z; , let t (modp) € Dgp)
and ¢ (modq) € D\, where i,j € {0,1}. Then t € Dy U Dy if and only if i = j, and
t € Dy U D3 if and only if ¢ # j.

Proof Lett € Dy with k € {0,1,2,3}. Then there exists a uniquely determined integer
up with 0 < ug < e —1 such that t = g“oz* (mod pq). Since x = g (mod p) and z = 1 (mod q),
we have t = g0tk = gluotk) (medp=1) (mod p) and t = g0 = g0 (Meda=1) (mod g). Tt is easily
verified that k is even if and only if ug + k and uy have the same parity, or equivalently, if
and only if (ug + k) (modp — 1) and uy (mod g — 1) have the same parity since p — 1 and
g — 1 are both even. Therefore, ¢t (mod p) and ¢t (mod ¢) are either quadratic residues of both
p and g or quadratic nonresidues of both p and ¢, and the desired result for even k follows
immediately from the definition of the classical cyclotomic classes of order 2. The case of
odd k can be proved in the similar way.

Lemma 2.6 Let the symbols be the same as before. Then

Sq(a), t € Dy,
1+ sq41(a), t€ Dy,
1+ s.(a), te€ Dy,
Sat1(@), t € Ds.

sq(at) =
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Proof For t € Do U D,, it follows from Lemma 2.5 that ¢ (mod p) € D(()p) and
t(mod ¢) € DY or t (mod p) € D'?) and t (mod ¢) € D{”. Then by Lemma 2.4, we always

have
3 D (5 Y

i€ Py 1€Q1 1€EP 1€EQ1

For t € Dy U Ds, it follows from Lemma 2.5 that ¢ (modp) € DI and ¢ (modq) € D{¥ or
t (modp) € DI and ¢ (mod q) € D{”. Then by Lemma 2.4, we always have

O +Y et =140+ e
1€Py 1€Q1 1€P; 1€Q1

Moreover, by Lemma 2.1 we have tD, = Dy, tDoy1 = Dgipsq for t € Dy with k €

{0,1,2,3}, so that
Qo+ D e =(> + Y el

€D, 1€Dg 41 1€Dg 4k 1€Dg kt1

Thus, when t € Dy,
sal@) = (Q_+D_ D+ D )t = sala)
i€Py  i€Q1 i€D, i€Dg41
when t € Dy,
NICEERIIIED DRI DRED SRR B
i€Py  i€Q1 i€Day1  i€Da42
When t € Dy, by Lemma 2.2 (iii), we have
SITD IR S SRS o
€D, 1€Dg 41 1€Dg 12 1€Dg43 iGZ;q
It follows then that
sa(at):(z—l—z—l— Z + Z )aizl—l-(z—kz—kz—!— Z Jal =1+ s,(a).
i€ Py 1€Q1 1€Dg 42 1€Dg 43 1€P; 1€Q1 1€Dg, 1€Dg 41

By the same arguments, for the case t € D3, we have

sq(a') = 1+(Z—|—Z)ai+( Z —l—Z)ai

i€ePy  i€Qy i€Duss €D,
= 1+ _ 4D )i +1+( >+ > e
1€EP; 1€Q1 1€Dg 41 1€Dg 42
= Sar1(@).

The proof is completed.
Lemma 2.7 Let the symbols be the same as before. Then

o', teP,
t\ i€ P;
Sa(a ) - Zl ol te Q

1€Q1



No. 2 Linear complexity of generalized Cyclotomic binary sequences of period pq 145

Proof When t € P, for any i € @4, ti (mod pq) = 0, so that
ti p—1
Z o =@ = 5 (mod 2).
1€EQ1
Then by Lemma 2.3, we get

)=+ D+ D et = Za“—i—(p;l—kp;l—i—p;l)(mod% =Y ot

i€Py i€Q1  1€D,  i€Dg41 i€Py i€Py

When t € Q, for any ¢ € Py, ti (mod pq) = 0, it follows that
—1
D ol =P = 2 (mod 2).
1€P;
Again by Lemma 2.3, we obtain

)= (A et = Yt (T T  (mod2) = 3 ot

1€EPy 1€Q1 €Dy i€D3 1€EQ1 1€Q1

Lemma 2.8 For any a € {0,1,2,3}, s,(«) € {0,1} if and only if 2 € Dj.

Proof If 2 € Dy, then by Lemma 2.6, s,(a?) = s,(a) for any a € {0,1,2,3}. Since
the characteristic of the field GF(2™) is 2, it follows that s,(a?) = [s.(a)]?. Thus we get
[s4()]? = [s4()], and so sq () € {0,1}.

To prove the necessity, we suppose, by way of contradiction, that 2 ¢ Dj.

If 2 € Dy, then it follows from Lemma 2.6 that s,(a?) = 1+s,,1(a). On the other hand,
since s,(a) € {0,1}, s.(a) = [sa(@)]? = s.(a?). Thus sq(a) = 1 + s411(), which implies
Sar1(a) € {0,1}. By the same argument, s,41() = [Sqr1()]? = s441(a?) = 1 + s440(),
and so s,(a) = sg12(cr). But from (3.2) and Lemma 2.2 (iii), it follows that

a+3
Sq(@) + Sqyo(a g E al g o' =1,
j=a i€D; €25,

and so we arrive at a contradiction.

If 2 € Dy, then by Lemma 2.6, s,(a) = [s,(a)]?* = s.(a?) = 1 + s4(c), an obvious
contradiction.

Similarly, if 2 € Ds, then s,(a) = [s.(a)]? = s.(a?) = s.11(a) and s.41(a) =
[Sar1(a)]? = s441(a?) = s442(). It follows that s,(a) = s4.2(), a contradiction.

Lemma 2.9 (see [15]) Let the symbols be the same as before. Then

(i) Foranyte P, Y a' €{0,1} if and only if ¢ = +1 (mod 8).
i€ Py
(i) Foranyte @, > o' €{0,1} if and only if p = +1 (mod 8).
1€Q1
Lemma 2.10 (sce [24]) 2 € D if and only if p = £1 (mod 8).
Now the results on the linear complexity of the sequences defined by (2.3) are summa-

rized in the following three theorems.
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Theorem 2.11 Let p =1 (mod8) and ¢ = —3 (mod8). Then L(s) = 224-2=1,
Proof By eq.(3.3), it suffices to count the number of roots in {a’ : j =0,1,--- ,pg—1}
of sq(x). For t € R = {0}, it is easily verified that

-1
sq(at) = pq2 (mod 2) = 0.

Since p = 1(mod8) and ¢ = —3(mod8), it follows from Lemma 2.10 that 2 € D(()p) and
2 € ng), and so 2 € D; U D3 by Lemma 2.5. Thus s,(a') # 0 for any ¢ € Zy, by Lemma 2.6
and Lemma 2.8. In addition, for any ¢ € P we have s,(af) # 0 by Lemma 2.7 and Lemma
2.9 (i), but for any ¢t € Q we have s,(a) = > o' € {0,1} by Lemma 2.7 and Lemma 2.9

1€Q)
(ii). We now distinguish the cases t € Qp and ¢ € Qy. It is obvious 3. af' = 3 (a?)’
1€EQ1 ’iGD(p)
1
when t € Qp and Y of'= (ozq2)i when t € Q,. Since
1€EQ1 iED(()p)
p—1
2., 2 2 .
S )+ Y (o) = Yy = 1,
ien® iep® i=1

it follows that s,(a') = 0 either for all t € @ or for all ¢ € Q. In conclusion, the size of
the set {s,(a!) =0 : t € Z,,} is 5% + 1, then by (3.3) we get that L(s®) = pg— 25+ — 1=
2qu2p71.

Theorem 2.12 Let p = —3(mod8) and ¢ = 1 (mod8). Then L(s>) = 2291,

Proof When p = —3(mod8) and ¢ = 1 (mod 8), we have 2 € D; U D3 by Lemma 2.5,
and hence s, (at) # 0 for any t € Ly, by Lemma 2.6 and Lemma 2.8. By the same arguments
as in Theorem 2.11, s,(a') # 0 for any ¢t € Q and s,(a') = 0 for half of t € P. Therefore,
by (3.3) we have L(s*) = pq — q—;l —1= %.

Theorem 2.13 Let p = —3 (mod8) and ¢ = —3 (mod8). Then

pg+p+q—3 2¢ D
L(SOO)—{ 2 ? e O’

pg—1,  2¢ Dy
Proof Since p = —3(mod8) and ¢ = —3 (mod 8), it follows from Lemmas 2.7 and 2.9
that s,(a') #0 for any t € P and t € Q.
If 2 € Dy, then s,(a’) = 0 for half of t € Z by Lemma 2.6. If 2 ¢ Dy, then s,(a") # 0
for any ¢ € Zy,, by Lemma 2.6. So the desired result follows immediately from (3.3).

4 Conclusion

In this paper, new class of almost balanced binary sequences of period pgq is constructed
via Whiteman’s generalized cyclotomy of order 4 and classic cyclotomy of order 2. The linear
complexity of these sequences is determined. The results show that the proposed sequences

have large linear complexity. In addition, since the parameter a in the characteristic set
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could be any integers in the range of 0 to 3, our construction can generate a number of

binary sequences with large linear complexity.
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