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1 Introduction and Main Results

Two-species Vlasov-Maxwell-Boltzmann system (in brief, VMB) describes the evolution
of a gas of two species of oppositely charged particles (the positively charged ions, i.e., cations
of charge q+ > 0 and mass m+ > 0, and the negatively charged ions, i.e. anions of charge
−q− < 0 and mass m− > 0), subject to auto-induced electromagnetic forces. Such a gas
of charged particles, under a global neutrality condition, is called a plasma. The particle
number densities F+(t, x, v) ≥ 0 and F−(t, x, v) ≥ 0 represent the distributions of cations,
and anions at time t ≥ 0, position x ∈ T3, with velocity v ∈ R3, respectively. Precisely,
VMB system consists the following equations:





∂tF
+ + v · ∇xF+ + q+

m+ (E + v ×B) · ∇vF
+ = B(F+, F+) + B(F+, F−) ,

∂tF
− + v · ∇xF− − q−

m− (E + v ×B) · ∇vF
− = B(F−, F−) + B(F−, F+) ,

µ0ε0∂tE −∇x ×B = −µ0

∫
R3(q+F+ − q−F−)v dv ,

∂tB +∇x × E = 0 ,

divxE = 1
ε0

∫
R3(q+F+ − q−F−) dv and divxB = 0 .

(1.1)

The evolutions of the densities F± are governed by the Vlasov-Boltzmann equations,
which are the first two lines in (1.1). They tell that the variations of the densities F± along
the trajectories of the particles are subject to the influence of a Lorentz force and inter-
particel collisions in the gas. The Lorentz force acting on the gas is auto-induced. That
is, the electric field E(t, x) and the magnetic field B(t, x) are generated by the motion of
the particles in the plasma itself. Their motion is governed by the Maxwell’s equations,
which are the remaining equations in (1.1), namely Ampère equation, Faraday’s equation
and Gauss’ laws respectively. In (1.1), the physical constants µ0, ε0 > 0 are, respectively,
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the vacuum permeability (or magnetic constant) and the vacuum permittivity (or electric
constant). Note that their relation to the speed of light is the formula c = 1√

µ0ε0
. For the

sake of mathematical convenience, we make the simplification that both kinds of particles
have the same mass m± = m > 0 and charge q± = q > 0.

The Boltzmann collision operator, presented in the right-hand sides of the Vlasov-
Boltzmann equations in (1.1), is the quadratic form, acting on the velocity variable, associ-
ated to the bilinear operator,

B(F, H)(v) =
∫

R3

∫

S2
(F ′H ′

∗ − FH∗)b(v − v∗, cos θ)dωdv∗ ,

where we have used the standard abbreviations

F = F (v) , F ′ = F (v′) , H∗ = H(v∗) , H ′
∗ = H(v′∗)

with (v′, v′∗) given by

v′ = v − [(v − v∗) · ω]ω , v′∗ = v∗ + [(v − v∗) · ω]ω

for ω ∈ S2. In this paper, we will assume that the Boltzmann collision kernel is of the
following hard sphere form

b(v − v∗, cos θ) = |(v − v∗) · ω| = |v − v∗|| cos θ| . (1.2)

This hypothesis is satisfied for all physical model and is more convenient to work with but
do not impede the generality of our results. Then the collisional frequency can be defined as

ν(v) =
∫

R3

|v − v∗|M(v∗)dv∗ . (1.3)

There have been extensive research on the well-posedness of the VMB. DiPerna-Lions
developed a theory of global-in-time renormalized solutions with large initial data, in par-
ticular to the Boltzmann equation [3] and Vlasov-Maxwell equations [2]. But for VMB
there are severe difficulties, among which the major one is that the a priori bounds coming
from physical laws are not enough to prove the existence of global solutions, even in the
renormalized sense. In a recent remarkable breakthrough [1], Arsènio and Saint-Raymond
not only proved the existence of renormalized solutions of VMB, as mentioned above, more
importantly, also justified various limits (depending on the scalings) towards incompress-
ible viscous electro-magneto-hydrodynamics. Among these limits, the most singular one is
from renormalized solutions of two-species VMB to dissipative solutions of the two-fluid
incompressible Navier-Stokes-Fourier-Maxwell (in brief, NSFM) system with Ohm’s law.

Our result [4] is about the same limit as in [1], but in the context of classical solutions.
We prove the uniform estimates with respect to Knudsen number ε for the fluctuations. As
consequences, the existence of the global in time classical solutions of VMB with all ε ∈ (0, 1]
is established. Furthermore, the convergence of the fluctuations of the solutions of VMB to
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the classical solutions of NSFM with Ohm’s law is rigorously justified. The key of our proof
is using the hidden damping effect of the Ohm’s law and macro-micro decomposition in a
novel way.

We denote the Knudsen number by ε, and the global Maxwellian M(v) = (2π)−
3
2 exp(− |v|2

2
).

Let F±
ε (t, x, v) = M(v) + ε

√
M(v)G±

ε (t, x, v), then VMB (1.1) can be written as




∂tGε + 1
ε
v · ∇xGε + 1

ε
q(εEε + v ×Bε) · ∇vGε + 1

ε2 L Gε − 1
ε
(Eε · v)

√
Mq1

= 1
2
q(Eε · v)Gε + 1

ε
Γ(Gε, Gε) ,

∂tEε −∇x ×Bε = − 1
ε

∫
R3 Gε · q1v

√
Mdv ,

∂tBε +∇x × Eε = 0 ,

divxEε =
∫
R3 Gε · q1

√
Mdv , divxBε = 0 ,

(1.4)

where Gε = [G+
ε , G−

ε ] represents the column vector in R2 with the components G±
ε , the 2×2

diagonal matrix q = diag(1,−1), the column vector q1 = [1,−1], the two species linearized
collision operator L is given as

L Gε =
[LG+

ε + L(G+
ε , G−

ε ) , LG−
ε + L(G−

ε , G+
ε )

]
, (1.5)

where
Lg =

√
M

∫

R3

(
g√
M

+ g∗√
M∗

− g′√
M ′ − g′∗√

M ′∗

)
|v − v∗|M∗dv∗ (1.6)

is the usual linearized Boltzmann collision operator, and

L(g, h) =
√

M

∫

R3

(
g√
M

+ h∗√
M∗

− g′√
M ′ − h′∗√

M ′∗

)
|v − v∗|M∗dv∗ . (1.7)

Here we denote by

Q(g, h) =
∫

R3

∫

S2
(g′h′∗−gh∗)b(|v−v∗|, cos θ)dσdv∗ =

∫

R3

(g′h′∗−gh∗)|v−v∗|
√

M∗dv∗ . (1.8)

We then define a bilinear symmetric operator Γ(G,H) as

Γ(G,H) = 1
2
[Q(G+,H+) +Q(H+, G+) +Q(G+,H−) +Q(H+, G−) ,

Q(G−,H−) +Q(H−, G−) +Q(G−,H+) +Q(H−, G+)]
(1.9)

for vector-valued functions G(v) = [G+(v), G−(v)] and H(v) = [H+(v),H−(v)]. Without
loss of generality, the initial conditions of (1.4) shall be imposed on

Gε(0, x, v) = Gin
ε (x, v) ∈ R2 , Eε(0, x) = Ein

ε (x) ∈ R3 , Bε(0, x) = Bin
ε (x) ∈ R3 , (1.10)

which satisfy the conservation laws.
To state our main theorems, we introduce the following energy functional and dissipation

rate functional respectively

Es(G,E,B) =‖G‖2
Hs

x,v
+ ‖E‖2

Hs
x

+ ‖B‖2
Hs

x
,

Ds(G,E,B) = 1
ε2 ‖P⊥G‖2

Hs
x,v(ν) + ‖∇xPG‖2

Hs−1
x L2

v
+ ‖E‖2

Hs−1
x

+ ‖∇xB‖2
Hs−2

x
.

(1.11)



134 Journal of Mathematics Vol. 40

Theorem 1.1 For the integer s ≥ 3 and 0 < ε ≤ 1, there are constants `0 > 0,
c0 > 0 and c1 > 0, independent of ε such that if Es(Gin

ε , Ein
ε , Bin

ε ) ≤ `0, then the Cauchy
problem (1.4)–(1.10) admits a global solution

Gε(t, x, v) ∈ L∞t (R+;Hs
x,v) ,P⊥Gε(t, x, v) ∈ L2

t (R+;Hs
x,v(ν)) ,

Eε(t, x), Bε(t, x) ∈ L∞t (R+;Hs
x)

(1.12)

with the global uniform energy estimate

sup
t≥0
Es(Gε, Eε, Bε)(t) + c0

∫ ∞

0

Ds(Gε, Eε, Bε)(t)dt ≤ c1Es(Gin
ε , Ein

ε , Bin
ε ) . (1.13)

The next theorem is about the limit to the two fluid incompressible Navier-Stokes-
Fourier-Maxwell system with Ohm’s law





∂tu + u · ∇xu− µ∆xu +∇xp = 1
2
(nE + j ×B) , divx u = 0 ,

∂tθ + u · ∇xθ − κ∆xθ = 0 , ρ + θ = 0 ,

∂tE −∇x ×B = −j , divx E = n ,

∂tB +∇x × E = 0 , divx B = 0 ,

j − nu = σ
(− 1

2
∇xn + E + u×B

)
, w = 3

2
nθ ,

(1.14)

where the viscosity µ, the heat conductivity κ and the electrical conductivity σ are given by

µ = 1
10

∫

R3

A : ÂMdv , κ = 2
15

∫

R3

B · B̂Mdv and σ = 2
3

∫

R3

Φ · Φ̃Mdv . (1.15)

For the derivation of (1.15), i.e. the relation of µ, κ, σ with A, Â, B, B̂, Φ and Φ̃, see [1].

Theorem 1.2 Let 0 < ε ≤ 1, s ≥ 3 and `0 > 0 be as in Theorem 1.1. Assume that
the initial data (Gin

ε , Ein
ε , Bin

ε ) in (1.10) satisfy
1. Gin

ε ∈ Hs
x,v, Ein

ε , Bin
ε ∈ Hs

x;
2. Es(Gin

ε , Ein
ε , Bin

ε ) ≤ `0;
3. there exist scalar functions ρin(x), θin(x), nin(x) ∈ Hs

x and vector-valued functions
uin(x), Ein(x), Bin(x) ∈ Hs

x such that

Gin
ε → Gin strongly in Hs

x,v ,

Ein
ε → Ein strongly in Hs

x ,

Bin
ε → Bin strongly in Hs

x

(1.16)

as ε → 0, where Gin(x, v) is of the form

Gin(x, v) =(ρin(x) + 1
2
nin(x)) q1+q2

2

√
M + (ρin(x)− 1

2
nin(x)) q2−q1

2

√
M

+ uin · vq2

√
M + θin( |v|

2

2
− 3

2
)q2

√
M .

(1.17)
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Let (Gε, Eε, Bε) be the family of solutions to the perturbed two-species Vlasov-Maxwell-
Boltzmann (1.4) with the initial conditions (1.10) constructed in Theorem 1.1. Then, as
ε → 0,

Gε → (ρ + 1
2
n) q1+q2

2

√
M + (ρ− 1

2
n) q2−q1

2

√
M + u · vq2

√
M + θ( |v|

2

2
− 3

2
)
√

M (1.18)

weakly-? in t ≥ 0, strongly in Hs−1
x,v and weakly in Hs

x,v, and

Eε → E and Bε → B (1.19)

strongly in C(R+;Hs−1
x ), weakly-? in t ≥ 0 and weakly in Hs

x. Here

(u, θ, n,E, B) ∈ C(R+;Hs−1
x ) ∩ L∞(R+;Hs

x)

is the solution to the incompressible Navier-Stokes-Fourier-Maxwell equations (1.14) with
Ohm’s law, which has the initial data

u|t=0 = Puin(x) , θ|t=0 = 3
5
θin(x)− 2

5
ρin(x) , E|t=0 = Ein(x) , B|t=0 = Bin(x) , (1.20)

where P is the Leray projection. Moreover, the convergence of the moments holds:

P〈Gε,
1
2
q2v

√
M〉L2

v
→ u ,

〈Gε,
1
2
q2(

|v|2
5
− 1)

√
M〉L2

v
→ θ

(1.21)

strongly in C(R+;Hs−1
x ), weakly-? in t ≥ 0 and weakly in Hs

x as ε → 0.
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