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Abstract: We study the refinement of arithmetic-harmonic mean inequalities. First, through
the classical analysis method, the scalar inequalities are obtained, and then extended to the operator

cases. Specifically, we have the following main results: for 0 < v,7 < 1, a,b > 0 with (b—a)(7—v) >
aVyb—alyb v(1—v) (aVyb)2—(alyb)? v(l—v)
0, we have (g0 < Za—5 and ¥ < 7a->
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which are generalizations of the results

1 Introduction

Let M, denote the algebra of all n X n complex matrices, M," be the set of all the
positive semidefinite matrices in M,,. For two Hermitian matrices A and B, A > B means
A—Be M}, A> B means A— B € M}, where M is the set of all the strictly positive
matrices in M,,. I stands for the identity matrix. The Hilbert-Schmidt norm of A = [a;;] €

> laij|?. Tt is well-known that the Hilbert-Schmidt norm is
ij=1

M,, is defined by ||Al|s =

unitarily invariant in the sense that [|[UAV|| = ||A]|| for all unitary matrices U,V € M,,.

What’s more, we use the following notions

AV, B = (1 —v)A+vB,
Af,B= A?(A"TBA 2)"A?,
Al,B=(1-v)A™ +vB 1!

for A,B € M+ and 0 < v < 1. Usually we denote by AVB, AfB and A!B for brevity

respectively when v = %
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In this paper, we set a,b > 0. As we all know, the scalar harmonic-geometric-arithmetic
mean inequalities
alyb < aff,b < aV,b (1.1)

hold and the second inequality is called Young inequality. Similarly, we also have the related
operator version
Al,B < Af,B < AV,B (1.2)

for two strictly positive operators A and B.

The first refinements of Young inequality is the squared version proved in [1]
(a'b*7")? + min{v,1 —v}*(a — b)? < (va + (1 — v)b)?. (1.3)
Later, authors in [2] obtained the other interesting refinement
a’b'™" + min{v, 1 - v}(va - Vb)* <va+ (1 —v)b. (1.4)

Then many results about Young inequalities presented in recent years. wa can see [3], [4]

and [5] for some related results. Also, in [3] authors proved that
AV,B > Al,B + 2min{v,1 —v}(AV,B — Al,B) (1.5)

for A,Be M+t and 0 <v < 1.
Alzer [6] proved that

(aV,b)* — (at,b)* 1-v

S (@) (b =

)’ (1.6)

—~
RN
~—

1—17

for 0 <v <7 < 1and X > 1, which is a different form of (1.5). By a similar technique, Liao
[7] presented that
A (al b)Y —
(K)A < (aV,0)* — (al,b) < 1 V)/\
T (aV.b)* — (al;b)* 1—7
for 0 < v <7 < 1and A > 1. Sababheh [8] generalized (1.6) and (1.7) by convexity of
function f,

(1.7)

Vs (=)0 + iD= Pw) _ 1=,
==+ rror—pe == .

where 0 < v <7 <1 and A > 1. In the same paper [8], it is proved that

v (af,b)* — (a!,b)
= Gy = (@b

(1.9)

where 0 < v<7<land A\ >1.
Our main task of this paper is to improve (1.7) for scalar and matrix under some
conditions. The article is organized in the following way: in Section 2, new refinements of

harmonic-arithmetic mean are presented for scalars. In Section 3, similar inequalities for



22 Journal of Mathematics Vol. 40

operators are presented. And the Hilbert-Schmidt norm and determinant inequalities are

presented in Sections 4 and 5, respectively.

2 Inequalities for Scalars

In this part, we first give an improved version of harmonic-arithmetic mean inequality
for scalar. It is also the base of this paper.

Theorem 2.1 Let v,7 a and b be real positive numbers with 0 < v,7 < 1, then we

have
avl’b - a’!l/b V(]. — l/)
= for (b= a)(r =v)>0 2.1
avV,b—al;b — 7(1—7) or (b—a)(r—v)> (2.1)
and
avl’b B a’!l/b V(l -V
- for (b—a)(r = : 2.2
avVib—alb = r(1—71) O (b—a)(r—v)<0 (2.2)
Proof Put f(v) = 1_M_w_1;((11__11];—;_%71)71, then we have f'(v) = Wl—v)zh(m), where

hz)=v(l—v)z—14+(1—-v+ vxil)*z(é D] -(1-2v)1—v+ovz—(1—v+vz ).
By a carefully and directly computation, we have h'(z) = ((l_v”)ﬁg(x), where g(z) =
2(1=v)(1—2)—(1—v)z—v+((1—v)z+v)3, so we can get ¢'(z) = 3(1—v)*(z—1)((1—v)z+v+1)
easily.

Now if 0 < & < 1, then ¢'(z) < 0, which means g(z) > ¢g(1) = 0, and then h'(z) > 0;
and if 1 < z < oo, then ¢'(x) > 0, which means g(x) > g(1) = 0, and then h'(z) > 0.

That is to say that h'(z) > 0 for all x € (0,00). Hence when 0 < x < 1, we have
h(z) < h(1) =0, and so f'(v) <0, which means that f(v) is decreasing on (0,1); and when
1<z <o0,h(x) >h(1) =0, and so f'(v) > 0, which means that f(v) is increasing on (0, 1).
Put x = g, we can get our desired results easily.

Remark 2.2 Let 0 < v < 7 < 1, then we have the following inequalities from (2.1),

aV,b—al,b v(l—v) 1-v
< <

f a : 2.
aV,b—al,b —7(1—7) — 1—71 or (b—a)>0 (2.3)

On the other hand, when 0 < v <7 <1 and b —a < 0, we also have by (2.1),

a'V,b7t—a bt v(1—v)

eIV bl —a bl T (1= 1) (2.4)
which implies
v _ v(l-v) _aV,b—alb
T = t(l—7) 7 aV:b—alsb
(aV,b)(al,b) v(1 —v)
for (b— 2,
@V ) (b s =g -9 <0 (2:5)
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by (2.2). Therefore, it is clear that (2.3) and (2.5) are sharper than (1.7) under some
conditions for A = 1. Next, we give a quadratic refinement of Theorem 2.1, which is better
than (1.7) when A = 2.

Theorem 2.3 Let v,7,a and b are real numbers with 0 < v, 7 < 1, then we have

(aV,b)2 — (al,b)? _ v(l—v)
= - - .
@V, 0 —(aL b = 717y orbmalr=) >0 (2.6)
and
(aV,b)2 — (al,b)? _ v(l—v)
> _ _ . .
@V = (b = r(i—r) AT <0 (2.7)
Proof Put f(v> — (17v+vz)2vzl(izg;+vm*1)’27 then we have f’(U) _ mh(l‘), where
hz) = 2v(1—-v)[(l—v4vz)(z—1)+(1—-v+ m:fl)fzs(% N
—(1-20)[(1—v+vz)® = (1—v+vz™")7?
by a direct computation, we have h'(x) = %g(v), where g(v) = 3(1—v)(1—z)—(1—

v)z—v+((1—v)z+v)t By ¢'(v) = —4(1 —2)2(1 —0)[(1 —v)z +v)? + 1+ (1 —v)z+v] <0,
so we have g(v) > g(1) = 0, which means h'(z) > 0. Now if 0 < x < 1, then h(z) < h(1) =0,
and so f’'(v) < 0, which means that f(v) is decreasing on (0,1). On the other hand, if
1 <z < o0, then h(z) > h(1) =0, and so f/(v) > 0, which means that f(v) is increasing on

(0,1). Put z = £, we can get our desired results directly.

3 Inequalities for Operators

In this section, we give some refinements of harmonic-arithmetic mean for operators,
which are based on inequalities (2.1) and (2.2).

Lemma 3.1 Let X € M, be self-adjoint and let f and g be continuous real functions
such that f(t) > g(t) for all t € Sp(X) (the spectrum of X). Then f(X) > g(X).

For more details about this property, readers can refer to [9].

Theorem 3.2 Let A,B € Mt and 0 < v,7 < 1, then

7(1-7)(AV,B — Al,B) <v(l —v)(AV.B — Al.B) (3.1)
for (B— A)(t —v) > 0; and
7(1—-7)(AV,B - Al,B) > v(1 —v)(AV,.B — Al.B) (3.2)

for (B—A)(t —v) <0.
Proof Let a =11in (2.1), for (b—1)(7 —v) > 0, then we have

Tl—7)l—v+vb—(1—v+vb )
< vl-v)l—-74+7b—(1—-74+70"H71. (3.3)
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We may assume 0 < 7 < v < 1l and 0 < b < 1. For (B — A)(t —v) > 0, we have
A= 2BA~2 <. The operator X = A2 BA~= has a positive spectrum. By Lemma 3.1 and
(3.3), we have

rl-mTl-v+vX—-(1-v+vX H
< vl-vl-74+7X-(1—-7+7XH7. (3.4)

Multiplying (3.4) by Az on the both sides, we can get the desired inequality (3.1).

Using the same technique, we can get (3.2) by (2.2). Notice that the inequalities of
Theorem 3.2 provide a refinement and a reverse of (1.2).

4 Inequalities for Hilbert-Schmidt Norm

In this section, we present inequalities of Theorem 2.2 for Hilbert-Schmidt norm.

Theorem 4.1 Let X € M,, and B € M;I* for 0 < v,7 < 1, then we have

1—0)X +vXB|2-||[(1 =) X' +vB X112
2 2

[
v(l —v)
11 = )X + X B — [[[(1 = )X~ 4 rB- X1 W
- T(1—7) ’
for (B—1I)(t —v) > 0; and
(1 =) X + vXBJj5 - [[[(1 - o)X~ + vB7 X173
v(l —wv)
11— )X + X BIE — [[[(1 = P)X "+ 7B X1 )
- T(1—7) '

for (B—1I)(t —v) <0.

Proof Since B is positive definite, it follows by spectral theorem that there exist
unitary matrices V' € M,, such that B = VAV*, where A = diag(vy,vs,- -+ ,v,) and v; are
eigenvalues of B, sov; >0, [ =1,2,--- ,n. Let Y = V*XV = [y;], then

(1-v)X+vXB=V[(1-0v)Y +0YAV*"=V[(1—-v+ov)y,]V"
and

(1-0)X '+ oB ' X' =V[([1-0)Y T+ oA Y 'V = V][ —v+oy )y Ve



No. 1 Improve inequalities of arithmetic-harmonic mean 25

Now, by (2.6) and the unitarily invariant of the Hilbert-Schmidt norm, we have

(1= 0)X +oXB|l; - [|[(1 =o)X +vB' X713

n n

Z(l —v+ UV1)2|Z/¢1|2 - Z(l — v+ UVfl)_2|yil|2

il=1 il=1

)2 = (1= v) +or ) ?lyal?

I
]
=
|
<
_|_
<
N

< BEUY =)+ = (=) + 7o)l

il=1
= S (= ol = (=) + )
= S 20 - DX + X BB (1= )X BB

Here we completed the proof of (4.1). Using the same method in (2.7), we can get (4.2)
easily. So we omit it.

It is clear that Theorem 4.1 provids a refinement of Corollary 4.2 in [7].

Remark 4.2 Theorem 4.1 is not true in general when we exchange I for A, where A
is a positive definite matrix. That is: let X € M,, and A,B € M for 0 < v,7 < 1, then
we can not have results as below

(1 = ) AX +vXBJ[5 - [I[(1 - v

~—

X—lA—l + Z/B_lX_l]_lH%

v(l—v)
< [|(1-7)AX +7XB|)3 - ||[1 —7) XA + 7B X713 (4.3)
- T(1—7) '
for (B—A)(tr —v) >0 and
1—-v)AX +vXB|]2 - ||[1-v)X 1A +vB 1 X172
2 2
v(l—v)
|(1-7)AX +7XBJ|Z - ||[(1 =) XA~ + 7B 1X17Y|3 (4.4)
- T(1—71) '
for (B—A)(t —v) <0.
Now we give the following example to state it.
10 10 1 -1
Example 4.3 Let B = | 2 A= 2 | Jand X = , then
0 1 0 1 1 2
(4.3) and (4.4) are not true for v = 3 and 7 = 2.
Proof we can compute that
1-v)AX +vXB 2:§+§I/+§V2
(1 =v) 12

36 9 36
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and

(1 =) XA +uvB ' X Y3 = [53 + 9% — 40v].

1
(6 — 6v + 212)?2
A careful calculation shows that

(1 = )AX +vXB|)3 - [[[1 - )X A +vB ' X173
v(l—v)
1 53 4 173 5 123 , 231

- - = 2l 4 26]. 4.
GG romE o/ TV ~ 9V ~g vt (45)

Let v = 3 and 7 = 2, then (4.5) implies

(1 = )AX + vXBJ3 — [[[(1 - XA 4 vBIX 1713

—0.96- -
v(l—v) ’

and
(1-7)AX +7XB|Z - ||[1 - 1) XA + 7B~ 1 X172

T(1—7)

=0.88---,

which implies that (4.3) is not true clearly. Similarly, we can also prove that (4.4) is not

true by exchanging v and 7.

5 Inequalities for determinant

In this section, we present inequalities of Theorem 2.1 and Theorem 2.2 for determinant.
Before it, we should recall some basic signs. The singular values of a matrix A are defined
by s;(A),j = 1,2,--- ,n. And we denote the values of {s;(A)} as a non-increasing order.
Besides, det(A) is the determinant of A. To obtain our results, we need a following lemma.

Lemma 5.1 [10] (Minkowski inequality) Let a = [a;], b = [b;], i = 1,2,--- ,n such

that a;, b; are positive real numbers. Then

n n n

(JJe™ + (o™ < ([ J(ai+ ).

i=1 i=1 i=1

3=

Equality hold if and only if a = b.
Theorem 5.2 Let X € M, and A,B € M,;* for 0 < v,7 < 1, then we have for
(B—A)(t—v) <0,

v(l —v)

— " et(AV.B — Al_B)* < det(AV,B)~. 1
7_(1_7_)det( V. +B)» <det(AV,B) (5.1)

det(Al,B)* +

Proof We may assume 0 < v <7 <1, then 0 < sj(A_%BA_%) < 1for (B—A)(T—v)

< 0, so we have A"2 BA~% < I. By inequality (2.2) and we denote the positive definite
matrix T = A~2 BA~2, then we have

(1 —v) +vs;(T)) = (L —v) +vs;(T)"H ™" v(1 —v)
(L=7)+78;(T) = (L =7) +75;(T)~1) " — 7(1-7)
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for j =1,2,--- ,n. It is a fact that the determinant of a positive definite matrix is product
of its singular values, by Lemma 5.1, we have
det(IV,T)* = det[(1 — v)I + vT]"
= [[I—v+vsi(m))]*
i=1
> [[Ja—v+osi(T) =0 —vtos(D) )N+ [[JO—v+os(m) )
i=1 i=1
> [ﬁ M(l —74+75(T)— (1 -7+ TS‘(T)_I)_l)]%
= a 7_(1 — 7_) % i
H]J = v+osi(T)™H) 7Y
i=1
= Mdet[(fv T) — (I',T)]* + det(I!,T)=
(1 —71) T T v '
Multiplying (det A2)= on the both sides of the inequalities above, we can get (5.1).
Theorem 5.3 Let X € M,, and A,B € M,}* for 0 < v,7 < 1, then we have
for (B— A)(t —v) <0,
2 V(l - V) 2 2
det(Al,B)» + ﬁ det(AV,.B — Al,B)» < det(AV,B)~. (5.2)
T(1—71

Proof Using the same technique above to (2.4), we can easily get the proof of Theorem

5.3.
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