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Abstract: We study the refinement of arithmetic-harmonic mean inequalities. First, through

the classical analysis method, the scalar inequalities are obtained, and then extended to the operator

cases. Specifically, we have the following main results: for 0 < ν, τ < 1, a, b > 0 with (b−a)(τ−ν) >

0, we have a∇νb−a!νb
a∇τ b−a!τ b

≤ ν(1−ν)
τ(1−τ)

and (a∇νb)2−(a!νb)2

(a∇τ b)2−(a!τ b)2
≤ ν(1−ν)

τ(1−τ)
, which are generalizations of the results

of W. Liao et al.
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1 Introduction

Let Mn denote the algebra of all n × n complex matrices, M+
n be the set of all the

positive semidefinite matrices in Mn. For two Hermitian matrices A and B, A ≥ B means
A−B ∈ M+

n , A > B means A−B ∈ M++
n , where M++

n is the set of all the strictly positive
matrices in Mn. I stands for the identity matrix. The Hilbert-Schmidt norm of A = [aij ] ∈

Mn is defined by ||A||2 =

√
n∑

i,j=1

|aij |2. It is well-known that the Hilbert-Schmidt norm is

unitarily invariant in the sense that ||UAV || = ||A|| for all unitary matrices U, V ∈ Mn.

What’s more, we use the following notions

A∇vB = (1− v)A + vB,

A]vB = A
1
2 (A−

1
2 BA−

1
2 )vA

1
2 ,

A!vB = ((1− v)A−1 + vB−1)−1

for A,B ∈ M++
n and 0 ≤ v ≤ 1. Usually we denote by A∇B, A]B and A!B for brevity

respectively when v = 1
2
.
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In this paper, we set a, b > 0. As we all know, the scalar harmonic-geometric-arithmetic
mean inequalities

a!vb ≤ a]vb ≤ a∇vb (1.1)

hold and the second inequality is called Young inequality. Similarly, we also have the related
operator version

A!vB ≤ A]vB ≤ A∇vB (1.2)

for two strictly positive operators A and B.
The first refinements of Young inequality is the squared version proved in [1]

(avb1−v)2 + min{v, 1− v}2(a− b)2 ≤ (va + (1− v)b)2. (1.3)

Later, authors in [2] obtained the other interesting refinement

avb1−v + min{v, 1− v}(√a−
√

b)2 ≤ va + (1− v)b. (1.4)

Then many results about Young inequalities presented in recent years. wa can see [3], [4]
and [5] for some related results. Also, in [3] authors proved that

A∇vB ≥ A!vB + 2min{v, 1− v}(A∇vB −A!vB) (1.5)

for A,B ∈ M++
n and 0 ≤ v ≤ 1.

Alzer [6] proved that

(
ν

τ
)λ ≤ (a∇νb)λ − (a]νb)λ

(a∇τb)λ − (a]τb)λ
≤ (

1− ν

1− τ
)λ (1.6)

for 0 < ν ≤ τ < 1 and λ ≥ 1, which is a different form of (1.5). By a similar technique, Liao
[7] presented that

(
ν

τ
)λ ≤ (a∇νb)λ − (a!νb)λ

(a∇τb)λ − (a!τb)λ
≤ (

1− ν

1− τ
)λ (1.7)

for 0 < ν ≤ τ < 1 and λ ≥ 1. Sababheh [8] generalized (1.6) and (1.7) by convexity of
function f ,

(
ν

τ
)λ ≤ ((1− ν)f(0) + νf(1))λ − fλ(ν)

((1− τ)f(0) + τf(1))λ − fλ(τ)
≤ (

1− ν

1− τ
)λ, (1.8)

where 0 < ν ≤ τ < 1 and λ ≥ 1. In the same paper [8], it is proved that

(
ν

τ
)λ ≤ (a]νb)λ − (a!νb)λ

(a]τb)λ − (a!τb)λ
, (1.9)

where 0 < ν ≤ τ < 1 and λ ≥ 1.

Our main task of this paper is to improve (1.7) for scalar and matrix under some
conditions. The article is organized in the following way: in Section 2, new refinements of
harmonic-arithmetic mean are presented for scalars. In Section 3, similar inequalities for
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operators are presented. And the Hilbert-Schmidt norm and determinant inequalities are
presented in Sections 4 and 5, respectively.

2 Inequalities for Scalars

In this part, we first give an improved version of harmonic-arithmetic mean inequality
for scalar. It is also the base of this paper.

Theorem 2.1 Let ν, τ a and b be real positive numbers with 0 < ν, τ < 1, then we
have

a∇νb− a!νb

a∇τb− a!τb
≤ ν(1− ν)

τ(1− τ)
for (b− a)(τ − ν) > 0 (2.1)

and

a∇νb− a!νb

a∇τb− a!τb
≥ ν(1− ν)

τ(1− τ)
for (b− a)(τ − ν) < 0. (2.2)

Proof Put f(v) = 1−v+vx−(1−v+vx−1)−1

v(1−v)
, then we have f ′(v) = 1

v2(1−v)2
h(x), where

h(x) = v(1− v)[x− 1 + (1− v + vx−1)−2(
1
x
− 1)]− (1− 2v)[1− v + vx− (1− v + vx−1)−1].

By a carefully and directly computation, we have h′(x) = v2

((1−v)x+v)3
g(x), where g(x) =

2(1−v)(1−x)−(1−v)x−v+((1−v)x+v)3, so we can get g′(x) = 3(1−v)2(x−1)((1−v)x+v+1)
easily.

Now if 0 < x ≤ 1, then g′(x) ≤ 0, which means g(x) ≥ g(1) = 0, and then h′(x) ≥ 0;
and if 1 ≤ x < ∞, then g′(x) ≥ 0, which means g(x) ≥ g(1) = 0, and then h′(x) ≥ 0.

That is to say that h′(x) ≥ 0 for all x ∈ (0,∞). Hence when 0 < x ≤ 1, we have
h(x) ≤ h(1) = 0, and so f ′(v) ≤ 0, which means that f(v) is decreasing on (0, 1); and when
1 ≤ x < ∞, h(x) ≥ h(1) = 0, and so f ′(v) ≥ 0, which means that f(v) is increasing on (0, 1).
Put x = b

a
, we can get our desired results easily.

Remark 2.2 Let 0 < ν ≤ τ < 1, then we have the following inequalities from (2.1)，

a∇νb− a!νb

a∇τb− a!τb
≤ ν(1− ν)

τ(1− τ)
≤ 1− ν

1− τ
for (b− a) > 0. (2.3)

On the other hand, when 0 < ν ≤ τ < 1 and b− a < 0, we also have by (2.1),

a−1∇νb−1 − a−1!νb−1

a−1∇τb−1 − a−1!τb−1
≤ ν(1− ν)

τ(1− τ)
, (2.4)

which implies

ν

τ
≤ ν(1− ν)

τ(1− τ)
≤ a∇νb− a!νb

a∇τb− a!τb

≤ (a∇νb)(a!νb)
(a∇τb)(a!τb)

ν(1− ν)
τ(1− τ)

for (b− a) < 0, (2.5)
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by (2.2). Therefore, it is clear that (2.3) and (2.5) are sharper than (1.7) under some
conditions for λ = 1. Next, we give a quadratic refinement of Theorem 2.1, which is better
than (1.7) when λ = 2.

Theorem 2.3 Let ν, τ, a and b are real numbers with 0 < ν, τ < 1, then we have

(a∇νb)2 − (a!νb)2

(a∇τb)2 − (a!τb)2
≤ ν(1− ν)

τ(1− τ)
for (b− a)(τ − ν) > 0 (2.6)

and

(a∇νb)2 − (a!νb)2

(a∇τb)2 − (a!τb)2
≥ ν(1− ν)

τ(1− τ)
for (b− a)(τ − ν) < 0. (2.7)

Proof Put f(v) = (1−v+vx)2−(1−v+vx−1)−2

v(1−v)
, then we have f ′(v) = 1

v2(1−v)2
h(x), where

h(x) = 2v(1− v)[(1− v + vx)(x− 1) + (1− v + vx−1)−3(
1
x
− 1)]

−(1− 2v)[(1− v + vx)2 − (1− v + vx−1)−2]

by a direct computation, we have h′(x) = 2xv2

((1−v)x+v)4
g(v), where g(v) = 3(1−v)(1−x)−(1−

v)x− v +((1− v)x+ v)4. By g′(v) = −4(1−x)2(1− v)[((1− v)x+ v)2 +1+(1− v)x+ v] ≤ 0,

so we have g(v) ≥ g(1) = 0, which means h′(x) ≥ 0. Now if 0 < x ≤ 1, then h(x) ≤ h(1) = 0,

and so f ′(v) ≤ 0, which means that f(v) is decreasing on (0, 1). On the other hand, if
1 ≤ x < ∞, then h(x) ≥ h(1) = 0, and so f ′(v) ≥ 0, which means that f(v) is increasing on
(0, 1). Put x = b

a
, we can get our desired results directly.

3 Inequalities for Operators

In this section, we give some refinements of harmonic-arithmetic mean for operators,
which are based on inequalities (2.1) and (2.2).

Lemma 3.1 Let X ∈ Mn be self-adjoint and let f and g be continuous real functions
such that f(t) ≥ g(t) for all t ∈ Sp(X) (the spectrum of X). Then f(X) ≥ g(X).

For more details about this property, readers can refer to [9].
Theorem 3.2 Let A,B ∈ M++

n and 0 < ν, τ < 1, then

τ(1− τ)(A∇νB −A!νB) ≤ ν(1− ν)(A∇τB −A!τB) (3.1)

for (B −A)(τ − ν) ≥ 0; and

τ(1− τ)(A∇νB −A!νB) ≥ ν(1− ν)(A∇τB −A!τB) (3.2)

for (B −A)(τ − ν) ≤ 0.

Proof Let a = 1 in (2.1), for (b− 1)(τ − v) ≥ 0, then we have

τ(1− τ)[1− ν + νb− (1− ν + νb−1)−1]

≤ ν(1− ν)[1− τ + τb− (1− τ + τb−1)−1]. (3.3)
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We may assume 0 < τ < v < 1 and 0 < b ≤ 1. For (B − A)(τ − ν) ≥ 0, we have
A−

1
2 BA−

1
2 ≤ I. The operator X = A−

1
2 BA−

1
2 has a positive spectrum. By Lemma 3.1 and

(3.3), we have

τ(1− τ)[1− ν + νX − (1− ν + νX−1)−1]

≤ ν(1− ν)[1− τ + τX − (1− τ + τX−1)−1]. (3.4)

Multiplying (3.4) by A
1
2 on the both sides, we can get the desired inequality (3.1).

Using the same technique, we can get (3.2) by (2.2). Notice that the inequalities of
Theorem 3.2 provide a refinement and a reverse of (1.2).

4 Inequalities for Hilbert-Schmidt Norm

In this section, we present inequalities of Theorem 2.2 for Hilbert-Schmidt norm.

Theorem 4.1 Let X ∈ Mn and B ∈ M++
n for 0 < v, τ < 1, then we have

||(1− v)X + vXB||22 − ||[(1− v)X−1 + vB−1X−1]−1||22
v(1− v)

≤ ||(1− τ)X + τXB||22 − ||[(1− τ)X−1 + τB−1X−1]−1||22
τ(1− τ)

(4.1)

for (B − I)(τ − v) ≥ 0; and

||(1− v)X + νXB||22 − ||[(1− v)X−1 + vB−1X−1]−1||22
v(1− v)

≥ ||(1− τ)X + τXB||22 − ||[(1− τ)X−1 + τB−1X−1]−1||22
τ(1− τ)

(4.2)

for (B − I)(τ − v) ≤ 0.

Proof Since B is positive definite, it follows by spectral theorem that there exist
unitary matrices V ∈ Mn such that B = V ΛV ∗, where Λ = diag(ν1, ν2, · · · , νn) and νi are
eigenvalues of B, so νl > 0, l = 1, 2, · · · , n. Let Y = V ∗XV = [yil], then

(1− v)X + vXB = V [(1− v)Y + vY Λ]V ∗ = V [(1− v + vνl)yil]V ∗

and

[(1− v)X−1 + vB−1X−1]−1 = V [(1− v)Y −1 + vΛ−1Y −1]−1V ∗ = V [(1− v + vν−1
l )−1yil]V ∗.
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Now, by (2.6) and the unitarily invariant of the Hilbert-Schmidt norm, we have

||(1− v)X + vXB||22 − ||[(1− v)X−1 + vB−1X−1]−1||22
=

n∑
i,l=1

(1− v + vνl)2|yil|2 −
n∑

i,l=1

(1− v + vν−1
l )−2|yil|2

=
n∑

i,l=1

[(1− v + vνl)2 − ((1− v) + vν−1
l )−2]|yil|2

≤ v(1− v)
τ(1− τ)

n∑
i,l=1

[((1− τ) + τνl)2 − ((1− τ) + τν−1
l )−2]|yil|2

=
v(1− v)
τ(1− τ)

[
n∑

i,l=1

((1− τ) + τνl)2|yil|2 −
n∑

i,l=1

((1− τ) + τν−1
l )−2|yil|2]

=
v(1− v)
τ(1− τ)

[||(1− τ)X + τXB||22 − ||[(1− τ)X−1 + τB−1X−1]−1||22].

Here we completed the proof of (4.1). Using the same method in (2.7), we can get (4.2)
easily. So we omit it.

It is clear that Theorem 4.1 provids a refinement of Corollary 4.2 in [7].
Remark 4.2 Theorem 4.1 is not true in general when we exchange I for A, where A

is a positive definite matrix. That is: let X ∈ Mn and A,B ∈ M++
n for 0 < ν, τ < 1, then

we can not have results as below

||(1− ν)AX + νXB||22 − ||[(1− ν)X−1A−1 + νB−1X−1]−1||22
ν(1− ν)

≤ ||(1− τ)AX + τXB||22 − ||[(1− τ)X−1A−1 + τB−1X−1]−1||22
τ(1− τ)

(4.3)

for (B −A)(τ − ν) ≥ 0 and

||(1− ν)AX + νXB||22 − ||[(1− ν)X−1A−1 + νB−1X−1]−1||22
ν(1− ν)

≥ ||(1− τ)AX + τXB||22 − ||[(1− τ)X−1A−1 + τB−1X−1]−1||22
τ(1− τ)

(4.4)

for (B −A)(τ − ν) ≤ 0.

Now we give the following example to state it.

Example 4.3 Let B =

(
1
2

0
0 1

)
, A =

(
1
3

0
0 1

2

)
and X =

(
1 −1
−1 2

)
, then

(4.3) and (4.4) are not true for ν = 1
2

and τ = 2
3
.

Proof we can compute that

||(1− ν)AX + νXB||22 =
53
36

+
23
9

ν +
53
36

ν2
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and
||((1− ν)X−1A−1 + νB−1X−1)−1||22 =

1
(6− 6ν + 2ν2)2

[53 + 9ν2 − 40ν].

A careful calculation shows that

||(1− ν)AX + νXB||22 − ||[(1− ν)X−1A−1 + νB−1X−1]−1||22
ν(1− ν)

=
1

(6− 6ν + 2ν2)2
[−53

9
ν4 +

173
9

ν3 − 123
9

ν2 − 231
9

ν + 26]. (4.5)

Let ν = 1
2

and τ = 2
3
, then (4.5) implies

||(1− ν)AX + νXB||22 − ||[(1− ν)X−1A−1 + νB−1X−1]−1||22
ν(1− ν)

= 0.96 · · · ,

and
||(1− τ)AX + τXB||22 − ||[(1− τ)X−1A−1 + τB−1X−1]−1||22

τ(1− τ)
= 0.88 · · · ,

which implies that (4.3) is not true clearly. Similarly, we can also prove that (4.4) is not
true by exchanging ν and τ .

5 Inequalities for determinant

In this section, we present inequalities of Theorem 2.1 and Theorem 2.2 for determinant.
Before it, we should recall some basic signs. The singular values of a matrix A are defined
by sj(A), j = 1, 2, · · · , n. And we denote the values of {sj(A)} as a non-increasing order.
Besides, det(A) is the determinant of A. To obtain our results, we need a following lemma.

Lemma 5.1 [10] (Minkowski inequality) Let a = [ai], b = [bi], i = 1, 2, · · · , n such
that ai, bi are positive real numbers. Then

(
n∏

i=1

ai)
1
n + (

n∏
i=1

bi)
1
n ≤ (

n∏
i=1

(ai + bi))
1
n .

Equality hold if and only if a = b.

Theorem 5.2 Let X ∈ Mn and A,B ∈ M++
n for 0 < v, τ < 1, then we have for

(B −A)(τ − v) ≤ 0,

det(A!vB)
1
n +

v(1− ν)
τ(1− τ)

det(A∇τB −A!τB)
1
n ≤ det(A∇vB)

1
n . (5.1)

Proof We may assume 0 < v < τ < 1, then 0 < sj(A−
1
2 BA−

1
2 ) ≤ 1 for (B−A)(τ −v)

≤ 0, so we have A−
1
2 BA−

1
2 ≤ I. By inequality (2.2) and we denote the positive definite

matrix T = A−
1
2 BA−

1
2 , then we have

((1− v) + vsj(T ))− ((1− v) + vsj(T )−1)−1

((1− τ) + τsj(T ))− ((1− τ) + τsj(T )−1)−1
≥ v(1− v)

τ(1− τ)
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for j = 1, 2, · · · , n. It is a fact that the determinant of a positive definite matrix is product
of its singular values, by Lemma 5.1, we have

det(I∇vT )
1
n = det[(1− v)I + vT ]

1
n

= [
n∏

i=1

(1− v + vsi(T ))]
1
n

≥ [
n∏

i=1

(1− v + vsi(T )− (1− v + vsi(T )−1)−1)]
1
n + [

n∏
i=1

(1− v + vsi(T )−1)−1]
1
n

≥ [
n∏

i=1

v(1− v)
τ(1− τ)

(1− τ + τsi(T )− (1− τ + τsi(T )−1)−1)]
1
n

+[
n∏

i=1

(1− v + vsi(T )−1)−1]
1
n

=
v(1− v)
τ(1− τ)

det[(I∇τT )− (I!τT )]
1
n + det(I!vT )

1
n .

Multiplying (detA
1
2 )

1
n on the both sides of the inequalities above, we can get (5.1).

Theorem 5.3 Let X ∈ Mn and A,B ∈ M++
n for 0 < ν, τ < 1, then we have

for (B −A)(τ − ν) ≤ 0,

det(A!νB)
2
n +

ν(1− ν)
τ(1− τ)

det(A∇τB −A!τB)
2
n ≤ det(A∇νB)

2
n . (5.2)

Proof Using the same technique above to (2.4), we can easily get the proof of Theorem
5.3.
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算术-调和平均不等式的改进

杨长森, 任永辉, 张海霞

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文研究了算术-调和平均不等式的加细. 首先利用经典分析的方法给出了关于标量情

形的不等式，进而推广到算子的情形, 得出了若0 < ν, τ < 1, a, b > 0 且使(b − a)(τ − ν) > 0, 则

有 a∇νb−a!νb
a∇τ b−a!τ b

≤ ν(1−ν)
τ(1−τ)

及 (a∇νb)2−(a!νb)2

(a∇τ b)2−(a!τ b)2
≤ ν(1−ν)

τ(1−τ)
. 推广了W.Liao等人的结果.

关键词: 算术-调和平均; 算子不等式; Hilbert-Schmidt范数
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