IMPROVE INEQUALITIES OF ARITHMETIC－HARMONIC MEAN

YANG Chang－sen，REN Yong－hui，ZHANG Hai－xia
（College of Mathematics and Information Science，Henan Normal University， Xinxiang 453007，China．）

Abstract

We study the refinement of arithmetic－harmonic mean inequalities．First，through the classical analysis method，the scalar inequalities are obtained，and then extended to the operator cases．Specifically，we have the following main results：for $0<\nu, \tau<1, a, b>0$ with $(b-a)(\tau-\nu)>$ 0 ，we have $\frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!\tau b} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)}$ and $\frac{\left(a \nabla_{\nu} b\right)^{2}-\left(a!!^{2} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-(a!\tau b)^{2}} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)}$ ，which are generalizations of the results of W．Liao et al．

Keywords：arithmetic－harmonic mean；operator inequality；Hilbert－Schmidt norm
2010 MR Subject Classification：15A15；15A42；15A60；47A30
Document code：A Article ID：0255－7797（2020）01－0020－09

1 Introduction

Let M_{n} denote the algebra of all $n \times n$ complex matrices，M_{n}^{+}be the set of all the positive semidefinite matrices in M_{n} ．For two Hermitian matrices A and $B, A \geq B$ means $A-B \in M_{n}^{+}, A>B$ means $A-B \in M_{n}^{++}$，where M_{n}^{++}is the set of all the strictly positive matrices in $M_{n} . I$ stands for the identity matrix．The Hilbert－Schmidt norm of $A=\left[a_{i j}\right] \in$ M_{n} is defined by $\|A\|_{2}=\sqrt{\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}}$ ．It is well－known that the Hilbert－Schmidt norm is unitarily invariant in the sense that $\|U A V\|=\|A\|$ for all unitary matrices $U, V \in M_{n}$ ． What＇s more，we use the following notions

$$
\begin{aligned}
& A \nabla_{v} B=(1-v) A+v B \\
& A \not{ }_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}, \\
& A!_{v} B=\left((1-v) A^{-1}+v B^{-1}\right)^{-1}
\end{aligned}
$$

for $A, B \in M_{n}^{++}$and $0 \leq v \leq 1$ ．Usually we denote by $A \nabla B, A \sharp B$ and $A!B$ for brevity respectively when $v=\frac{1}{2}$ ．

[^0]In this paper, we set $a, b>0$. As we all know, the scalar harmonic-geometric-arithmetic mean inequalities

$$
\begin{equation*}
a!_{v} b \leq a \sharp_{v} b \leq a \nabla_{v} b \tag{1.1}
\end{equation*}
$$

hold and the second inequality is called Young inequality. Similarly, we also have the related operator version

$$
\begin{equation*}
A!_{v} B \leq A \not \sharp_{v} B \leq A \nabla_{v} B \tag{1.2}
\end{equation*}
$$

for two strictly positive operators A and B.
The first refinements of Young inequality is the squared version proved in [1]

$$
\begin{equation*}
\left(a^{v} b^{1-v}\right)^{2}+\min \{v, 1-v\}^{2}(a-b)^{2} \leq(v a+(1-v) b)^{2} \tag{1.3}
\end{equation*}
$$

Later, authors in [2] obtained the other interesting refinement

$$
\begin{equation*}
a^{v} b^{1-v}+\min \{v, 1-v\}(\sqrt{a}-\sqrt{b})^{2} \leq v a+(1-v) b \tag{1.4}
\end{equation*}
$$

Then many results about Young inequalities presented in recent years. wa can see [3], [4] and [5] for some related results. Also, in [3] authors proved that

$$
\begin{equation*}
A \nabla_{v} B \geq A!_{v} B+2 \min \{v, 1-v\}\left(A \nabla_{v} B-A!_{v} B\right) \tag{1.5}
\end{equation*}
$$

for $A, B \in M_{n}^{++}$and $0 \leq v \leq 1$.
Alzer [6] proved that

$$
\begin{equation*}
\left(\frac{\nu}{\tau}\right)^{\lambda} \leq \frac{\left(a \nabla_{\nu} b\right)^{\lambda}-\left(a \not \sharp_{\nu} b\right)^{\lambda}}{\left(a \nabla_{\tau} b\right)^{\lambda}-\left(a \sharp_{\tau} b\right)^{\lambda}} \leq\left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \tag{1.6}
\end{equation*}
$$

for $0<\nu \leq \tau<1$ and $\lambda \geq 1$, which is a different form of (1.5). By a similar technique, Liao [7] presented that

$$
\begin{equation*}
\left(\frac{\nu}{\tau}\right)^{\lambda} \leq \frac{\left(a \nabla_{\nu} b\right)^{\lambda}-\left(a!_{\nu} b\right)^{\lambda}}{\left(a \nabla_{\tau} b\right)^{\lambda}-\left(a!_{\tau} b\right)^{\lambda}} \leq\left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \tag{1.7}
\end{equation*}
$$

for $0<\nu \leq \tau<1$ and $\lambda \geq 1$. Sababheh [8] generalized (1.6) and (1.7) by convexity of function f,

$$
\begin{equation*}
\left(\frac{\nu}{\tau}\right)^{\lambda} \leq \frac{((1-\nu) f(0)+\nu f(1))^{\lambda}-f^{\lambda}(\nu)}{((1-\tau) f(0)+\tau f(1))^{\lambda}-f^{\lambda}(\tau)} \leq\left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \tag{1.8}
\end{equation*}
$$

where $0<\nu \leq \tau<1$ and $\lambda \geq 1$. In the same paper [8], it is proved that

$$
\begin{equation*}
\left(\frac{\nu}{\tau}\right)^{\lambda} \leq \frac{\left(a \not \sharp_{\nu} b\right)^{\lambda}-\left(a!_{\nu} b\right)^{\lambda}}{\left(a \not \sharp_{\tau} b\right)^{\lambda}-\left(a!_{\tau} b\right)^{\lambda}}, \tag{1.9}
\end{equation*}
$$

where $0<\nu \leq \tau<1$ and $\lambda \geq 1$.
Our main task of this paper is to improve (1.7) for scalar and matrix under some conditions. The article is organized in the following way: in Section 2, new refinements of harmonic-arithmetic mean are presented for scalars. In Section 3, similar inequalities for
operators are presented. And the Hilbert-Schmidt norm and determinant inequalities are presented in Sections 4 and 5, respectively.

2 Inequalities for Scalars

In this part, we first give an improved version of harmonic-arithmetic mean inequality for scalar. It is also the base of this paper.

Theorem 2.1 Let ν, τ a and b be real positive numbers with $0<\nu, \tau<1$, then we have

$$
\begin{equation*}
\frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!_{\tau} b} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)} \text { for }(b-a)(\tau-\nu)>0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!_{\tau} b} \geq \frac{\nu(1-\nu)}{\tau(1-\tau)} \text { for }(b-a)(\tau-\nu)<0 \tag{2.2}
\end{equation*}
$$

Proof Put $f(v)=\frac{1-v+v x-\left(1-v+v x^{-1}\right)^{-1}}{v(1-v)}$, then we have $f^{\prime}(v)=\frac{1}{v^{2}(1-v)^{2}} h(x)$, where
$h(x)=v(1-v)\left[x-1+\left(1-v+v x^{-1}\right)^{-2}\left(\frac{1}{x}-1\right)\right]-(1-2 v)\left[1-v+v x-\left(1-v+v x^{-1}\right)^{-1}\right]$.
By a carefully and directly computation, we have $h^{\prime}(x)=\frac{v^{2}}{((1-v) x+v)^{3}} g(x)$, where $g(x)=$ $2(1-v)(1-x)-(1-v) x-v+((1-v) x+v)^{3}$, so we can get $g^{\prime}(x)=3(1-v)^{2}(x-1)((1-v) x+v+1)$ easily.

Now if $0<x \leq 1$, then $g^{\prime}(x) \leq 0$, which means $g(x) \geq g(1)=0$, and then $h^{\prime}(x) \geq 0 ;$ and if $1 \leq x<\infty$, then $g^{\prime}(x) \geq 0$, which means $g(x) \geq g(1)=0$, and then $h^{\prime}(x) \geq 0$.

That is to say that $h^{\prime}(x) \geq 0$ for all $x \in(0, \infty)$. Hence when $0<x \leq 1$, we have $h(x) \leq h(1)=0$, and so $f^{\prime}(v) \leq 0$, which means that $f(v)$ is decreasing on $(0,1)$; and when $1 \leq x<\infty, h(x) \geq h(1)=0$, and so $f^{\prime}(v) \geq 0$, which means that $f(v)$ is increasing on $(0,1)$. Put $x=\frac{b}{a}$, we can get our desired results easily.

Remark 2.2 Let $0<\nu \leq \tau<1$, then we have the following inequalities from (2.1),

$$
\begin{equation*}
\frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!_{\tau} b} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)} \leq \frac{1-\nu}{1-\tau} \text { for }(b-a)>0 \tag{2.3}
\end{equation*}
$$

On the other hand, when $0<\nu \leq \tau<1$ and $b-a<0$, we also have by (2.1),

$$
\begin{equation*}
\frac{a^{-1} \nabla_{\nu} b^{-1}-a^{-1}!_{\nu} b^{-1}}{a^{-1} \nabla_{\tau} b^{-1}-a^{-1}!_{\tau} b^{-1}} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)} \tag{2.4}
\end{equation*}
$$

which implies

$$
\begin{align*}
\frac{\nu}{\tau} & \leq \frac{\nu(1-\nu)}{\tau(1-\tau)} \leq \frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!_{\tau} b} \\
& \leq \frac{\left(a \nabla_{\nu} b\right)\left(a!_{\nu} b\right)}{\left(a \nabla_{\tau} b\right)\left(a!_{\tau} b\right)} \frac{\nu(1-\nu)}{\tau(1-\tau)} \text { for }(b-a)<0 \tag{2.5}
\end{align*}
$$

by (2.2). Therefore, it is clear that (2.3) and (2.5) are sharper than (1.7) under some conditions for $\lambda=1$. Next, we give a quadratic refinement of Theorem 2.1, which is better than (1.7) when $\lambda=2$.

Theorem 2.3 Let ν, τ, a and b are real numbers with $0<\nu, \tau<1$, then we have

$$
\begin{equation*}
\frac{\left(a \nabla_{\nu} b\right)^{2}-\left(a!_{\nu} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a!_{\tau} b\right)^{2}} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)} \text { for }(b-a)(\tau-\nu)>0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(a \nabla_{\nu} b\right)^{2}-\left(a!_{\nu} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a!_{\tau} b\right)^{2}} \geq \frac{\nu(1-\nu)}{\tau(1-\tau)} \text { for }(b-a)(\tau-\nu)<0 \tag{2.7}
\end{equation*}
$$

Proof Put $f(v)=\frac{(1-v+v x)^{2}-\left(1-v+v x^{-1}\right)^{-2}}{v(1-v)}$, then we have $f^{\prime}(v)=\frac{1}{v^{2}(1-v)^{2}} h(x)$, where

$$
\begin{aligned}
h(x)= & 2 v(1-v)\left[(1-v+v x)(x-1)+\left(1-v+v x^{-1}\right)^{-3}\left(\frac{1}{x}-1\right)\right] \\
& -(1-2 v)\left[(1-v+v x)^{2}-\left(1-v+v x^{-1}\right)^{-2}\right]
\end{aligned}
$$

by a direct computation, we have $h^{\prime}(x)=\frac{2 x v^{2}}{\left((1-v)^{x+v}\right)^{4}} g(v)$, where $g(v)=3(1-v)(1-x)-(1-$ $v) x-v+((1-v) x+v)^{4}$. By $g^{\prime}(v)=-4(1-x)^{2}(1-v)\left[((1-v) x+v)^{2}+1+(1-v) x+v\right] \leq 0$, so we have $g(v) \geq g(1)=0$, which means $h^{\prime}(x) \geq 0$. Now if $0<x \leq 1$, then $h(x) \leq h(1)=0$, and so $f^{\prime}(v) \leq 0$, which means that $f(v)$ is decreasing on $(0,1)$. On the other hand, if $1 \leq x<\infty$, then $h(x) \geq h(1)=0$, and so $f^{\prime}(v) \geq 0$, which means that $f(v)$ is increasing on $(0,1)$. Put $x=\frac{b}{a}$, we can get our desired results directly.

3 Inequalities for Operators

In this section, we give some refinements of harmonic-arithmetic mean for operators, which are based on inequalities (2.1) and (2.2).

Lemma 3.1 Let $X \in M_{n}$ be self-adjoint and let f and g be continuous real functions such that $f(t) \geq g(t)$ for all $t \in S p(X)$ (the spectrum of X). Then $f(X) \geq g(X)$.

For more details about this property, readers can refer to [9].
Theorem 3.2 Let $A, B \in M_{n}^{++}$and $0<\nu, \tau<1$, then

$$
\begin{equation*}
\tau(1-\tau)\left(A \nabla_{\nu} B-A!_{\nu} B\right) \leq \nu(1-\nu)\left(A \nabla_{\tau} B-A!_{\tau} B\right) \tag{3.1}
\end{equation*}
$$

for $(B-A)(\tau-\nu) \geq 0$; and

$$
\begin{equation*}
\tau(1-\tau)\left(A \nabla_{\nu} B-A!_{\nu} B\right) \geq \nu(1-\nu)\left(A \nabla_{\tau} B-A!_{\tau} B\right) \tag{3.2}
\end{equation*}
$$

for $(B-A)(\tau-\nu) \leq 0$.
Proof Let $a=1$ in (2.1), for $(b-1)(\tau-v) \geq 0$, then we have

$$
\begin{align*}
& \tau(1-\tau)\left[1-\nu+\nu b-\left(1-\nu+\nu b^{-1}\right)^{-1}\right] \\
\leq \quad & \nu(1-\nu)\left[1-\tau+\tau b-\left(1-\tau+\tau b^{-1}\right)^{-1}\right] \tag{3.3}
\end{align*}
$$

We may assume $0<\tau<v<1$ and $0<b \leq 1$. For $(B-A)(\tau-\nu) \geq 0$, we have $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq I$. The operator $X=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ has a positive spectrum. By Lemma 3.1 and (3.3), we have

$$
\begin{align*}
& \tau(1-\tau)\left[1-\nu+\nu X-\left(1-\nu+\nu X^{-1}\right)^{-1}\right] \\
\leq \quad & \nu(1-\nu)\left[1-\tau+\tau X-\left(1-\tau+\tau X^{-1}\right)^{-1}\right] \tag{3.4}
\end{align*}
$$

Multiplying (3.4) by $A^{\frac{1}{2}}$ on the both sides, we can get the desired inequality (3.1).
Using the same technique, we can get (3.2) by (2.2). Notice that the inequalities of Theorem 3.2 provide a refinement and a reverse of (1.2).

4 Inequalities for Hilbert-Schmidt Norm

In this section, we present inequalities of Theorem 2.2 for Hilbert-Schmidt norm.
Theorem 4.1 Let $X \in M_{n}$ and $B \in M_{n}^{++}$for $0<v, \tau<1$, then we have

$$
\begin{align*}
& \frac{\|(1-v) X+v X B\|_{2}^{2}-\left\|\left[(1-v) X^{-1}+v B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{v(1-v)} \\
\leq & \frac{\|(1-\tau) X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\tau(1-\tau)} \tag{4.1}
\end{align*}
$$

for $(B-I)(\tau-v) \geq 0$; and

$$
\begin{align*}
& \frac{\|(1-v) X+\nu X B\|_{2}^{2}-\left\|\left[(1-v) X^{-1}+v B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{v(1-v)} \\
\geq & \frac{\|(1-\tau) X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\tau(1-\tau)} \tag{4.2}
\end{align*}
$$

for $(B-I)(\tau-v) \leq 0$.
Proof Since B is positive definite, it follows by spectral theorem that there exist unitary matrices $V \in M_{n}$ such that $B=V \Lambda V^{*}$, where $\Lambda=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)$ and ν_{i} are eigenvalues of B, so $\nu_{l}>0, l=1,2, \cdots, n$. Let $Y=V^{*} X V=\left[y_{i l}\right]$, then

$$
(1-v) X+v X B=V[(1-v) Y+v Y \Lambda] V^{*}=V\left[\left(1-v+v \nu_{l}\right) y_{i l}\right] V^{*}
$$

and

$$
\left[(1-v) X^{-1}+v B^{-1} X^{-1}\right]^{-1}=V\left[(1-v) Y^{-1}+v \Lambda^{-1} Y^{-1}\right]^{-1} V^{*}=V\left[\left(1-v+v \nu_{l}^{-1}\right)^{-1} y_{i l}\right] V^{*}
$$

Now, by (2.6) and the unitarily invariant of the Hilbert-Schmidt norm, we have

$$
\begin{aligned}
& \|(1-v) X+v X B\|_{2}^{2}-\left\|\left[(1-v) X^{-1}+v B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2} \\
= & \sum_{i, l=1}^{n}\left(1-v+v \nu_{l}\right)^{2}\left|y_{i l}\right|^{2}-\sum_{i, l=1}^{n}\left(1-v+v \nu_{l}^{-1}\right)^{-2}\left|y_{i l}\right|^{2} \\
= & \sum_{i, l=1}^{n}\left[\left(1-v+v \nu_{l}\right)^{2}-\left((1-v)+v \nu_{l}^{-1}\right)^{-2}\right]\left|y_{i l}\right|^{2} \\
\leq & \frac{v(1-v)}{\tau(1-\tau)} \sum_{i, l=1}^{n}\left[\left((1-\tau)+\tau \nu_{l}\right)^{2}-\left((1-\tau)+\tau \nu_{l}^{-1}\right)^{-2}\right]\left|y_{i l}\right|^{2} \\
= & \frac{v(1-v)}{\tau(1-\tau)}\left[\sum_{i, l=1}^{n}\left((1-\tau)+\tau \nu_{l}\right)^{2}\left|y_{i l}\right|^{2}-\sum_{i, l=1}^{n}\left((1-\tau)+\tau \nu_{l}^{-1}\right)^{-2}\left|y_{i l}\right|^{2}\right] \\
= & \frac{v(1-v)}{\tau(1-\tau)}\left[\|(1-\tau) X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}\right] .
\end{aligned}
$$

Here we completed the proof of (4.1). Using the same method in (2.7), we can get (4.2) easily. So we omit it.

It is clear that Theorem 4.1 provids a refinement of Corollary 4.2 in [7].
Remark 4.2 Theorem 4.1 is not true in general when we exchange I for A, where A is a positive definite matrix. That is: let $X \in M_{n}$ and $A, B \in M_{n}^{++}$for $0<\nu, \tau<1$, then we can not have results as below

$$
\begin{align*}
& \frac{\|(1-\nu) A X+\nu X B\|_{2}^{2}-\left\|\left[(1-\nu) X^{-1} A^{-1}+\nu B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\nu(1-\nu)} \\
\leq & \frac{\|(1-\tau) A X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1} A^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\tau(1-\tau)} \tag{4.3}
\end{align*}
$$

for $(B-A)(\tau-\nu) \geq 0$ and

$$
\begin{align*}
& \frac{\|(1-\nu) A X+\nu X B\|_{2}^{2}-\left\|\left[(1-\nu) X^{-1} A^{-1}+\nu B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\nu(1-\nu)} \\
\geq & \frac{\|(1-\tau) A X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1} A^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\tau(1-\tau)} \tag{4.4}
\end{align*}
$$

for $(B-A)(\tau-\nu) \leq 0$.
Now we give the following example to state it.
Example 4.3 Let $B=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right), A=\left(\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ and $X=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$, then (4.3) and (4.4) are not true for $\nu=\frac{1}{2}$ and $\tau=\frac{2}{3}$.

Proof we can compute that

$$
\|(1-\nu) A X+\nu X B\|_{2}^{2}=\frac{53}{36}+\frac{23}{9} \nu+\frac{53}{36} \nu^{2}
$$

and

$$
\left\|\left((1-\nu) X^{-1} A^{-1}+\nu B^{-1} X^{-1}\right)^{-1}\right\|_{2}^{2}=\frac{1}{\left(6-6 \nu+2 \nu^{2}\right)^{2}}\left[53+9 \nu^{2}-40 \nu\right] .
$$

A careful calculation shows that

$$
\begin{align*}
& \frac{\|(1-\nu) A X+\nu X B\|_{2}^{2}-\left\|\left[(1-\nu) X^{-1} A^{-1}+\nu B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\nu(1-\nu)} \\
= & \frac{1}{\left(6-6 \nu+2 \nu^{2}\right)^{2}}\left[-\frac{53}{9} \nu^{4}+\frac{173}{9} \nu^{3}-\frac{123}{9} \nu^{2}-\frac{231}{9} \nu+26\right] . \tag{4.5}
\end{align*}
$$

Let $\nu=\frac{1}{2}$ and $\tau=\frac{2}{3}$, then (4.5) implies

$$
\frac{\|(1-\nu) A X+\nu X B\|_{2}^{2}-\left\|\left[(1-\nu) X^{-1} A^{-1}+\nu B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\nu(1-\nu)}=0.96 \cdots
$$

and

$$
\frac{\|(1-\tau) A X+\tau X B\|_{2}^{2}-\left\|\left[(1-\tau) X^{-1} A^{-1}+\tau B^{-1} X^{-1}\right]^{-1}\right\|_{2}^{2}}{\tau(1-\tau)}=0.88 \cdots
$$

which implies that (4.3) is not true clearly. Similarly, we can also prove that (4.4) is not true by exchanging ν and τ.

5 Inequalities for determinant

In this section, we present inequalities of Theorem 2.1 and Theorem 2.2 for determinant. Before it, we should recall some basic signs. The singular values of a matrix A are defined by $s_{j}(A), j=1,2, \cdots, n$. And we denote the values of $\left\{s_{j}(A)\right\}$ as a non-increasing order. Besides, $\operatorname{det}(A)$ is the determinant of A. To obtain our results, we need a following lemma.

Lemma 5.1 [10] (Minkowski inequality) Let $a=\left[a_{i}\right], b=\left[b_{i}\right], i=1,2, \cdots, n$ such that a_{i}, b_{i} are positive real numbers. Then

$$
\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}+\left(\prod_{i=1}^{n} b_{i}\right)^{\frac{1}{n}} \leq\left(\prod_{i=1}^{n}\left(a_{i}+b_{i}\right)\right)^{\frac{1}{n}} .
$$

Equality hold if and only if $a=b$.
Theorem 5.2 Let $X \in M_{n}$ and $A, B \in M_{n}^{++}$for $0<v, \tau<1$, then we have for $(B-A)(\tau-v) \leq 0$,

$$
\begin{equation*}
\operatorname{det}\left(A!_{v} B\right)^{\frac{1}{n}}+\frac{v(1-\nu)}{\tau(1-\tau)} \operatorname{det}\left(A \nabla_{\tau} B-A!_{\tau} B\right)^{\frac{1}{n}} \leq \operatorname{det}\left(A \nabla_{v} B\right)^{\frac{1}{n}} \tag{5.1}
\end{equation*}
$$

Proof We may assume $0<v<\tau<1$, then $0<s_{j}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) \leq 1$ for $(B-A)(\tau-v)$ ≤ 0, so we have $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq I$. By inequality (2.2) and we denote the positive definite matrix $T=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, then we have

$$
\frac{\left((1-v)+v s_{j}(T)\right)-\left((1-v)+v s_{j}(T)^{-1}\right)^{-1}}{\left((1-\tau)+\tau s_{j}(T)\right)-\left((1-\tau)+\tau s_{j}(T)^{-1}\right)^{-1}} \geq \frac{v(1-v)}{\tau(1-\tau)}
$$

for $j=1,2, \cdots, n$. It is a fact that the determinant of a positive definite matrix is product of its singular values, by Lemma 5.1, we have

$$
\begin{aligned}
& \operatorname{det}\left(I \nabla_{v} T\right)^{\frac{1}{n}}=\operatorname{det}[(1-v) I+v T]^{\frac{1}{n}} \\
= & {\left[\prod_{i=1}^{n}\left(1-v+v s_{i}(T)\right)\right]^{\frac{1}{n}} } \\
\geq & {\left[\prod_{i=1}^{n}\left(1-v+v s_{i}(T)-\left(1-v+v s_{i}(T)^{-1}\right)^{-1}\right)\right]^{\frac{1}{n}}+\left[\prod_{i=1}^{n}\left(1-v+v s_{i}(T)^{-1}\right)^{-1}\right]^{\frac{1}{n}} } \\
\geq & {\left[\prod_{i=1}^{n} \frac{v(1-v)}{\tau(1-\tau)}\left(1-\tau+\tau s_{i}(T)-\left(1-\tau+\tau s_{i}(T)^{-1}\right)^{-1}\right)\right]^{\frac{1}{n}} } \\
& +\left[\prod_{i=1}^{n}\left(1-v+v s_{i}(T)^{-1}\right)^{-1}\right]^{\frac{1}{n}} \\
= & \frac{v(1-v)}{\tau(1-\tau)} \operatorname{det}\left[\left(I \nabla_{\tau} T\right)-\left(I!_{\tau} T\right)\right]^{\frac{1}{n}}+\operatorname{det}\left(I!_{v} T\right)^{\frac{1}{n}} .
\end{aligned}
$$

Multiplying $\left(\operatorname{det} A^{\frac{1}{2}}\right)^{\frac{1}{n}}$ on the both sides of the inequalities above, we can get (5.1).
Theorem 5.3 Let $X \in M_{n}$ and $A, B \in M_{n}^{++}$for $0<\nu, \tau<1$, then we have for $(B-A)(\tau-\nu) \leq 0$,

$$
\begin{equation*}
\operatorname{det}\left(A!_{\nu} B\right)^{\frac{2}{n}}+\frac{\nu(1-\nu)}{\tau(1-\tau)} \operatorname{det}\left(A \nabla_{\tau} B-A!_{\tau} B\right)^{\frac{2}{n}} \leq \operatorname{det}\left(A \nabla_{\nu} B\right)^{\frac{2}{n}} \tag{5.2}
\end{equation*}
$$

Proof Using the same technique above to (2.4), we can easily get the proof of Theorem 5.3.

References

[1] Hirzallah O, Kittaneh F. Matrix Young inequalities for the Hilbert-Schmidt norm[J]. Lin. Alg. Appl., 2000, 308: 77-84.
[2] Kittaneh F, Manasrah Y. Reverse Young and Heinz inequalities for matrices[J]. J. Math. Anal. Appl., 2010, 361: 262-269.
[3] Zuo H, Shi G, Fujii M. Refined Young inequality with Kantorovich constant[J]. Jounal of Mathematical Inequalities, 2011, 5: 551-556.
[4] Zhang J, Wu J. New progress on the operator inequalities involving improved Young's and its reverse inequalities relating to the Kantorovich constant[J]. J. Inequ. Appl., 2017, 2017: 1-16.
[5] Hu X. Young-type inequalities for matrices[J]. Journal of East China Normal University, 2012, 4: 12-17.
[6] Alzer H, Fonseca C M da, Kovačec A. Young-type inequalities and their matrix analogues[J]. Linear Multilinear Algebra, 2015, 63: 622-635.
[7] Liao W, Wu J. Matrix inequalities for the difference between arithmetic mean and harmonic mean[J]. Annals of Functional Analysis, 2015, 6: 191-202.
[8] Sababheh M. Convexity and matrix means[J]. Linear Algebra Applications, 2016, 506: 588-602.
［9］Furuta T，Mićić J，Pecaric J．Mond－Pecaric method in operator inequalities［M］．Zagreb：Element， 2005.
［10］Horn R A，Johnson C R．Matrix analysis（2nd ed．）［M］．New York：Cambridge University Press， 2013.

算术－调和平均不等式的改进

杨长森，任永辉，张海霞
（河南师范大学数学与信息科学学院，河南 新乡 453007）

摘要：本文研究了算术－调和平均不等式的加细。首先利用经典分析的方法给出了关于标量情形的不等式，进而推广到算子的情形，得出了若 $0<\nu, \tau<1, ~ a, b>0$ 且使 $(b-a)(\tau-\nu)>0$ ，则有 $\frac{a \nabla_{\nu} b-a!_{\nu} b}{a \nabla_{\tau} b-a!_{\tau} b} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)}$ 及 $\frac{\left(a \nabla_{\nu} b\right)^{2}-\left(a!_{\nu} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a!_{\tau} b\right)^{2}} \leq \frac{\nu(1-\nu)}{\tau(1-\tau)}$ ．推广了W．Liao等人的结果。

关键词：算术－调和平均；算子不等式；Hilbert－Schmidt范数
MR（2010）主题分类号：15A15；15A42；15A60；47A30 中图分类号：O177．1

[^0]: ${ }^{*}$ Received date：2018－07－06 Accepted date：2018－12－29
 Foundation item：Supported by National Natural Science Foundation of China（11271112； 11771126；11701154）．

 Biography：Yang Changsen（1965－），male，born at Xinxiang，Henan，professor，major in functional analysis．E－mail：yangchangsen0991＠sina．com

