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Abstract: In this paper, we investigate the existence and Ulam stability of solution for im-
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1 Introduction

Fractional differential equation, as an excellent tool for describing memory and hered-
itary properties of various materials and processes in natural sciences and engineering, re-
ceived a great deal of attention in the literature [1-4] and there were some works on the
investigation of the solution of fractional differential equation [5,6].

On the other hand, Riemann-Liouville fractional derivatives or integrals are strong tools
for resolving some fractional differential problems in the real world. It is possible to attribute
physical meaning to initial conditions expressed in terms of Riemann-Liouville fractional
derivatives or integrals which were verified by Heymans and Podlubny|[7], and such initial
conditions are more appropriate than physically interpretable initial conditions. For another,
they considered the impulse response with Riemann-Liouville fractional derivatives as widely
used in the fields of physics, such as viscoelasticity.

In recent years, many authors investigated the existence and stability of solutions to
fractional differential equations with Caputo fractional derivative, and there were a lot of

interesting and excellent results on this fields. However, there is still little literature on the
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existence and stability of solutions to Riemann-Liouville fractional differential equations.
Three years ago, Weera Yukunthorn et al.[8] studied the existence and uniqueness of solutions

to impulsive multiorders Riemann-Liouville fractional differential equations

Dira(t) = f(t,2(t), teJ, t#ty,

Aw(te) = pula(ty),  A'z(te) = gi(e(tr)), k=12, ,m,
xz(0) =0, D%"'z(0) =3,

where e R 0=ty <t1 < - <t < - - <ty <tmy1 =7, f:Jx R— R isa continuous
function, ¢y, 0 € C(R, R) for k =1,2,--- ,m, and D{* is the Riemann-Liouville fractional
derivative of order 1 < a;, < 2 on intervals J for k =0,1,2,--- ,m. The notation Ax(tk) is
defined by

(tk) = Il akx(t+) 1 e lx(tk)7 k= 1’2)" c,Mm,

tkl

and A*z(ty) is defined by

Aa(ty) = I a(tf) — I 'a(ty), k=1,2,---,m,
where Ifk__“’“ is the Riemann-Liouville fractional integral of order 2 — a; > 0 on Ji. By
using Banach’s fixed point theorem, the authors developed the existence theorem for such
equations.

Motivated by this work, we use Ménch’s fixed point theorem via measure of noncompact-
ness as well as the basic theory of Ulam stability to investigate the existence and stability of
solution to the following impulsive Riemann-Liouville fractional neutral function differential
equation with infinite delay in a Banach space X.

) g(t xt)] = (tvxt)7 te [OﬂTL t# tlm
Prty) = In(x(ty), AL a(te) = Ji(a(t), (1.1)
I§+ﬁ[ (0) - 9(07370)] =1 € Bv7[é+ﬁ[ (0) - g(ova)] =3 € Bw

Déi[ (

where k = 1,2,--- ,m and Do+ is the Riemann-Liouville fractional derivative of order 1 <
B <2 0=t <ty < - <ty < <ty <tyuyr =T, Let Ty = (tg,tgs1],k =
1,2,--- ,m,Ty = [0,t1]. f:JxB,and g:Jx B, are given functions, where B, is the phase
space defined in Section 2. The impulsive functions Iy, J, : X — X (k= 1,2,--- ,m) is an
appropriate functions. The notation Algiﬁx(tk), Aléjﬂx(tk) is defined by

AT a(ty) = 10 Pa(th) — I Pa(ty),

AI+ x(tk)* o+ﬁx( ) — Il z(ty), k=12---m,

where IOJr ,Ié+ﬁ is the Riemann-Liouville fractional integral of order 2 — 3, 1 — 3. The
histories z; : (— ,0] — X, defined by x4(s) = z(t + s), s < 0, belong to some abstract

phase space B,,.
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The rest of the paper is organized as follows: in section 2, some basic definitions,
notations and preliminary facts that are used throughout the paper are presented. In Section

3, we prove the solution of the equation and present the main results for problem (1.1).

2 Preliminaries

In this section, we mention some notations, definitions, lemmas and preliminary facts
needed to establish our main results.

Let X be a complex Banach space, whose norm is denoted by || -||. Let J =[0,T], Jo =
[0,t1], Jk = (tg,tgs1] for K =1,2,--- ;m. Let

PC(J,X):={x:J — X, is continuous everywhere except for some t; at which

z(t)) and z(t;,) exist, and z(t;) = x(tx), k = 1,2,--- ,m}.

We introduce the space Co_gx(Jy, X) = {x : Jp — X : 27 Pa(t) € C(Jy, X)} with the
norm ||z||c, ,, = sup |t* P||z(t)||]] and PCy_g = {z : J — X : for each t € J), and t*Pz(t) €
teJ

k

€
C(Jy, X),k=0,1,2,--- ;m} with the norm
|zl pc, , = maxsup [~ C|lz(t)[|] : k= 0,1,2,--- ,m.
teJy

Clearly PCy_g is a Banach space. We use B, (z,X) to denote the closed ball in X with
center at z and radius 7.

Before introducing the fractional-order functional differential equation with infinite de-
lay, we define the abstract phase space B,. Let v : (0c0,0] — (0,00) be a continuous function
that satisfies | = fi)oo v(t)dt < 4o00. The Banach space (B,,|| - ||5,) induced by v is then
given by

B, :={p:(-00,0) — X : for any ¢ > 0, ¢(f) is a bounded and measurable
0
function on [-c, 0], and/ v(s) sup [|¢(0)|ds < +oo}
0

oo s<O<
endowed with the norm ||¢||p, = ffmv(s) sup |[l¢(0)]ds.
Define the following space s
B :={p:(~00,T] = X : o, € C*(Jy, X),k=0,1,2,--- ,m, and there exist
p(ty;) and o(t) with o(tx) = @(t;), po = ¢ € By},

where @y, is the restriction of ¢ to Ji, Jo = [0,t1], Jk = (tg, tes1], K =1,2,--- ,m.
We use || - || g, to denote a seminorm in the space B;, defined by

el = l|¢lls, + max{[|pwlls.2-p), k=0,1,--- ,m},

where

¢ = @0, 1@kl sne-p) = S;lf{SQ‘[’IIsO(S)H}-
s€Ji
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Now we consider some definitions about fractional differential equations.

Definition 2.1 The Riemann-Liouville fractional derivative of order a > 0 of a con-
tinuous function f;(a,b) — X is defined by

Do flt) = — <d>n/t(t e f(s)ds, m—l<a<n, te(ab),

@ I'(n—a) \ dt "

where n = [a] + 1, [«] denotes the integer part of number «, provided the right-hand side is
pointwise defined on (a,b), I is the gamma function.

Definition 2.2 The Riemann-Liouville fractional integral of order o > 0 of a contin-

uous function f : (a,b) — X is defined by

1 t

A0 = fg [ = s te )

provided the right-hand side is pointwise defined on (a,b).
Lemma 2.1 (see [9]) Let o > 0. Then for € C(a,b) N L(a,b), it holds
DgLI2a(t) = a(t),

(I3~ *)" P a(a) .

T DY — . a o\ a—j

aD(t) = w(t) Z ta g O

Jj=

n

wheren — 1 < a <n.
Lemma 2.2 (see [9]) If « > 0 and 3 > 0, then

- I'(5) -
a (4GBl — _—\ )Pt 17
a*( ) F(ﬁ i Oé) ( )
- I'(3) o
« t_ ﬁ 1 — t_ ﬁ [e3% 1-
a+( S) P(,@ _ a) ( (I)
Before investigating the solutions to equation (1.1), we consider a simplified version of

(1.1), given by
Dja(t) = f(), te0.T]. t#h,

Ig;ﬁa:(OJr) = Iy, Ié:’@x(OJr) =1,
where k =1,2,--- ,m,xg, 21, Y, yr € X and D€+ is the Riemann-Liouville fractional deriva-
tive of order 1 < 8 < 2.
Theorem 2.1 Let 1 <3< 2and f:J — X be continuous. If x € PCy_5(J, X) is a
solution of (2.1) if and only if x is a solution of the following the fractional integral equation

I . th=1 P2
F(ﬁ)/Ot(t—s)ﬂ f(s)ds+a:1r( )+xOF(ﬁ—1)’ t €[0,t],
L e ds+ -1 e 82
0= T J, ¢Sty (2:2)
i #9-2 t k #9-2
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where k =1,2,---,m

Proof For all t € (ty,txy1] where k =0,1,--- ,m by Lemma 2.1 and 2.2, we obtain

L t — ) f(s)ds + x 7 x 72
t =2
+zym +Zyzrw—u

B 18 D’ 7! 72
=DorTor S0+ [ P(ﬁ)”"rw—l)

+Zyzl—‘(ﬂ +Zyz

=f(t).
Thus, expression (2.2) satisfies the first equation of problem (2.1). For k = 1,2,---,
follows from (2.1) that

m, it

2 2— ! t7
I0+Bx(t) =1 7 [I+f( ))""xl T(5) +m0r(ﬁ_1)

' tﬁ—Z ot

=Ig f() + xl[§;ﬁ<1€(ﬁ)) + fofgzﬂ(ﬁ)

. 2 p t7 2-4 tﬁ ’
v 1= tI i
+i_zly/|:0+ (1—«(6)) 0+ ( :|+Zy 1))
K k
= f() + ot t oo+ Y Tt —t)+ D u
i=1 i=1
B-1 82

L0zt =17 [IJ( )+x1;(ﬁ) +m0r(ﬁ_1)
P P2 t k 192
+;%7F(67 1)(75* 1 ) +;yi71ﬂ(ﬁi 1)]
k
=Io+ f(t) + 21 + ZE

Therefore, we have

AL a(ty) = 12 a(ty) - fgﬁ’x(tk)

k—1 k—1
= Zm(tk — ;) +Zyi = Tt —t) = > i
=1 =1 =1 =1
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k
AL a(t) = I () — I () = Y % = Y 5 =T

Consequently, all the conditions of problem (2.1) are satisfied. Hence, (2.2) is a solution of
problem (2.1)
Next, based on Theorem, we consider the solutions of the Cauchy problem(1.1)
Definition 2.3 Suppose function x : (— «,T] — X. The solution of the fractional

differential equation, given by

o= ¢ € By, t e (- x,0],

F(lﬁ)/ (t = 5)" f (s, 2)ds + g(t, z)
+v2 tﬁgl + 1 v t €[0,t]
. F(ﬂt) LE-1) o 4B-1 18—2
z(t) = r(m/o (t = 8)"" (s w)ds + g(t20) + oy + 153

k 52
+21Ji<m<ti>>r(’;_l)<ﬁt_1 1)

k B—2
F LG gy 1€ (et

will be called a fundamental solution of problem (1.1).
Lemma 2.3 (sce [10]) Assume z € B,, then for t € J, z, € B,. Moreover

U@ < llzells, < l¢lls, +1 sup 18> (s)ll,
se|0,

0
where [ = / v(t)dt < + o, ¢ = xp.
Next, we consider some definitions and properties of the measures of noncompactness.
The Hausdorff measure of noncompactness 3(-) defined on each bounded subset % of

Banach space X is given by
B(A) =inf{e > 0; A has a finite € — net in X}.

Some basic properties of 3(-) are given in the following lemma.

Lemma 2.4 (see [11-13]) If X is a real Banach space and %, % C X are bounded, then
the following properties are satisfied

(1) monotone: if for all bounded subsets &, Z of X, # C & implies (A) < 5(Z);

(2) nonsingular: B({z} U B) = [B(HA) for every x € X and every nonempty subset
P CX;

(3) regular: & is precompact if and only if 5(Z) = 0;

4) BB+ 2) < B(B)+ B(Z), where B+ P ={x+y;x € B,ye D};

(5) B(BU Z) < max{B(A), B(2)};
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(6) BAB) < |\|B(A);
(7) it W C C(J; X) is bounded and equicontinuous, then ¢ — G(W(t)) is continuous on
J, and
B(W) < max B(W(t)), (2.1)

teJ

3 </OtW(s)ds> < /Otﬁ(W(s))ds for all ¢ € J, (2.2)

t t
/ W(s)ds = {/ u(s)ds for all ue Wt e J} ;
0 0

(8) if {u, }7° is a sequence of Bochner integrable functions from J into X with |lu, ()| <
m(t) for almost all ¢ € J and every n > 1, where m(t) € L(J;R"), then the function
P(t) = B({u,}5°,)) belongs to L(J; RT) and satisfies

3 <{/0t Un(s)ds : > 1}) < 2/(:w(s)ds; (2.3)

(9) if W is bounded, then for each ¢ > 0, there is a sequence {u,}7>; C W such that

where

BW) < 28({un}izy) + e (2.4)

The following lemmas about the Hausdorff measure of noncompactness will be used in
proving our main results.

Lemma 2.5 (see [14]) Let D be a closed convex subset of a Banach Space X and 0 € D.
Assume that F': D — X is a continuous map which satisfies the Ménch’s condition, that is,
M C D is countable, M C co (0 U F(M)) = M is compact. Then F has a fixed point in D.

Next, we consider the Ulam stability for the equation.

Consider the following inequality

1Dy [ (t) = g(t,z0)] = f(t,2)] <e.

Definition 2.4 Equation (1.1) is Hyers-Ulam stable if, for any ¢ > 0, there exists
a solution y(¢) which satisfies the above inequality and has the same initial value as z(t),
where z(t) is a solution to (1.1). Then y(t) satisfies ||y(t) — z(¢)|| < Ke in which K is a

constant.

3 Existence

To prove our main results, we list the following basic assumptions of this paper.

(Hy) The function f: J x B, — X satisfies the following conditions.

(i) f(-, ) is measurable for all ¢ € B, and f(t,-) is continuous for a.e. t € J.

(ii) There exist a constant «; € (0,a), m € Lﬁ(J, R*) and a positive integrable
function Q : RT™ — R™ such that || f(t,¢)]| < m(t)Q(||¢]|5,) for all (¢,¢) € J x B,, where Q
satisfies lim inf % =0.

n—x
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(iii) There exist a constant «y € (0,a) and a function n € L%(J, R*) such that, for
any bounded subset F} C B,,
Bt F1)) <) sup B(F1(0))]

e (—,0]

for a.e. t € J, where F;(0) = {v(f) : v € F1} and 3 is the Hausdorff MNC.
(Hs) The function g : J x B, — X satisfies the following conditions.

(i) g is continuous and there exist a constant H; > 0 and
112~ Pg(t, 2)|| < Hi(1 + [l2]|,)-

(ii) There exist a constant az € (0,«) and g* € L%S(J, R*) such that, for any bounded
subset Fy C B,,

Bg(t, Fa)) < g*(t) sup B(F2(0)), G =supg*(t).

o€ (—ox,0] teJ

(Hg) Ip,Jx : X — X,k =1,2,--- ,m are continuous functions and satisfy

[ e(2)lx < ckllzllg,  [[Te(@)lx < frllzllg
B°2Ix(F3)) < Kix  sup  B(F5(0)),

0c(—x,T)

B(t° 2T (Fy)) < My, sup  B(F4(0)),
0e(—ox,T)

where ck,fk,Kk,Mk >0. F5,F, C B,

m

(Ho): Hil+ 5= X (fi+e) <1,

i=1

m

278 T
M* = G M+ K;) <1
rpe+1 )HnHLQ 2 (J,RF) to I* Z( +K)

i=1

where T* = max{1,T, 7%}, I'* = min {I'(3 + 1),'(3),T(8 — 1)}.
Theorem 3.1 Suppose conditions (H;)—(Hy) are satisfied. Then system(1.1) has at

least one solution on J.
Proof We define the operator I' : B, — B, by

(o= ¢ € B,, t€ (- ox,0]
F(ﬁ)/o(t )7 f (s, 35)ds + g(tw1) + o I )+<p1 NG _1>,t€[0,t1],
Fl‘(t): F(/Bk) 0 ﬁiz’ s )t ( ) ]:‘(ﬂ_]_)
+Z»n-<w<ti>>t1)<ﬂ’f1 )
+ZI ﬁ__21> te (tk,tk_,_ﬂ.
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The operator T' has a fixed point if and only if system (1.1) has a solution. For ¢ € B,,

denote

@ _{ ot). e (=0
0, teld

Then ¢(t) € B,. Let
xz(t) =y(t) +o(t), —x<t<T.
It is easy to see that y satisfies yo = 0,¢ € (— o, 0] and
t
( F(lﬂ)/o (t— )77 f(s,ys + ds)ds + gty + 1)
7=t =2
T T TE-

—_— —5)P (s 3 S b L 2
g—2
+ZJ ;) + o, ))(;_D(ﬁt_l—ti)
g2
+Z.n-<y<t;> + ) =gy € (]

if and only if z(¢) satisfies z(t) = ¢(t),t € (— ,0] and

ﬁ/ (s,xs)ds + g(t,z)

1 B-2

€ [07 tl}a

t
-+ + Jt
SDQF(@ 801 ( )
th-1 th=2

(t= )" f(s,@.)ds + g(t,20) + Pz + 017
—2 t

+ZJ ﬁ(ﬂ ~ )
B—2

"’ZI ((7) t =R t € (tr, thra]-

B:}/), induced by B,

€ [0,t4],

\

Define the Banach space (B, || - |

B, ={y:y € B,y =0}
with the norm
()|l 5z = sup{s*~?lly(s)llx, s € [0,T7}.
Let B, = {y € B, : ||| g < r}. Then for each r, B, is a bounded, close and convex subset.
For any y € B,, it follows from Lemma 2.3 that

lly: +<13t\|Bv < ly:ll s, + HQBtHBU

<1 sup s> x(s)| + |9l 5,
s€10,t]

<lIr+|¢ls, ="
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We define the operator N : B, — B, by

t

o / (t— )7 F(s.yn+ d)ds + glt.ue + 1)
- v te]

‘oo t o1
I3 -1

1(/t)(t—8)ﬁ(1f(s) + ¢y)ds

L) Jo Wfs L

+9(t, ye + &) + 802?(7) + @1%

0) tl])

k . 52
F D) + 0l =g (g~
o o
D L) + 6y 1€ (etionl

Step 1 We prove that there exists some r > 0 such that N(B,) C B,. If this is
not true, then, for each positive integer r, there exist y, € B, and t, € (— ,T] such that
|(Ny,)(t,)|| > r. On the other hand, it follows from the assumption that

2— 1 " 1,0
2 ﬂ||N<yr<tr>>||<Hr(@ [ = s )+ b

+ ta_ﬁg(tr, (yr)tr + étr)

t%—ﬁ-‘rﬂ—l tz_ﬁ+ﬁ_2
T +'*”1F<ﬁ—1>

k A 2062
+ Jilye(t7) + o(t) Sz~ (== — ti)

2 NEESE

k ) 2—B+8—2
| B ) + 0l ) E

=1

<[

b el +
r(3) '

/0 ' (t, — )7 (s, (y,)s + dss)ds

S L) +¢<@>>H

=1

+ i1+ | o), + 6

)

v

1

P(ﬁ — 1) ||<P1||
> w7 + 6(6)

LT

L'(B)
1
IB-1)

T2
< ——m()Q(r') + Hy + Hyr'

rp+1)
T T* &
T ;fz‘i‘CZ) T.

+

+1"*

(2l + lleall) + (
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So we have
r < |[Ny.(t:)| g
T2
< -
—Fw+n

£ (gl + llga ) + &W22ﬁ+@)

Dividing both sides by r and taking » — 4  from

m(t)Q(r') + Hy + Hyr'

lim L lim 7” + 1915, =1
r—oc T r—0X T
and Q
lim inf (—n) =0
n—oc n
yields

T* m
Hil+ £ ;(fi te) <1

This contradicts (Hy). Thus, for some number r, N(B,.) C B,.
Step 2 N is continuous on B,. Let {y"}'> C B,, with y» — y in B, as n — + ox.
Then, by using hypotheses (H;),(Hz) and (H3), we have

(i)
f(svyg+€f;s)—>f(8,ys+cﬁs), n —x .
(ii) ) A
g(ﬂl/?*’@) —>g<t,yt+¢t>, n —o .
(iii)

IL(y™ () + () — Tily(t;) + ()| — 0,
Iy (87) + 6(t7)) = T(y(t7) + S = 0, n—oc,i=1,2,--- ,m.

Now, for every ¢ € [0,¢1], we have

BN ) = N0l < i [t 4 80~ o+ bl

T t2_5[ oyl + ¢0) — g(t,ye + 1)

Hf S0+ 0s) — F(5,Ys + 6s)

_F ﬁ+
+1%7 Hg Lyl + ) — gty + ér)

-0 (n —-x).
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Moreover, for all ¢ € (tg, tri1],k=1,2,--- ,m, we have

2Ny (1) <m_rw+ £+ 60) = Fls,9+ 82)

+ 1275 Hg t,yl + ¢t) —g(t,ye + (/gt)

AL
7;

)+ () = Jily(t) + ()|

k

e

(") + 07) — Lyt + 66|
—0 (n —X).

We thus obtain

[Ny" — Nyl g — 0 as n —o
implying that N is continuous on B,..

Step 3 The map N(B,) is equicontinuous on J. The functions {Ny : y € B,} are

equicontinuous at t = 0. For t1,t5 € Ji,t1 < t2,k=0,1,2,--- ;m and y € B, we have

27| Ny(t1) — Ny(t2) | <Ci(t0)t3 7| Ny(t) — Ny(to)|
<Ci(t)[[t7 " Ny(tr) — 5" Ny(t) |
+ Ci(t)[[t377 Ny(ta) — 177" Ny(t) |
<Ci(t)|[t7 " Ny(t) — 5" Ny(t)|
+Ci(t) [Ny (@)l = 77,

where there exist C;(t;) > 0 . The right side is independent of y € B, and tend to zero

as t; — ty since 2 PNy(t) € C(Jpx) and [[t377 — 57| — 0 as t; — to. So ||[Ny(t;) —
Ny(t2)||p — 0 as t1 — to. Hence, N(B,) is equicontinuous on .J
Step 4 Monch’s condition holds.

Let N = N1 + NQ + Ng, where

le ﬁ)/ t—S = 1f(5 ys+¢s)d87

N tP—1 B2
Noy(t) =g(t, ye + &) + ST + PIRg )
: IR o R
Nsy(t) :Z Jily(t;) + o(t; ))m(ﬁ — ;)
2 A 12
+ Zli(y(ti_) + ¢(tf))m~

Assume W C B, is countable and W C o ({0} U N(W)). We show that 8(W) = 0, where
B is the Hausdorff MNC. Without loss of generality, we may suppose that W = {y"}>
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Since N (W) is equicontinuous on Ji, W C ©o ({0} U N(W)) is equicontinuous on J; as well.
Using Lemma 2.4, (Hy)(iii), (Hz)(ii),(Hs), we have

BNy (1)) §r<2> / (t— s n(s) sup Ay (O)}y)lds

6 —x<6<0

21" [l By (0)}5-1)
— su 1)
L(B+1) " L33 (JR+) _ :<§< Ys =t

B({Nay" (D) }s1) <Bg(t.yp + b))
<G sup. ﬂ({yt (0)}n=1),

—x <0

IA

BUNsy™(1)}21) Ztﬁ 250" () + o)}y

{Ztﬁ 2L(y™ (1) + o(87))}esy)

=A {Ztﬁ ST () + 6()))

ﬂ({z 2Ly () + 0()) 1)

<P (MK s O
We thus obtain
BUANY"(O}51) <BANy"(O)}5=) + 6 {Noy" (O)}5-1) + 6 ({Ney" () }a-1)
27" 1o
STEr Mo rry S PUV O )
+G_sup By (O)}=)

—oc<b
T* . n o
+ o Lzl(Mi + K;) 7§3§S0ﬂ({y (@) }o=1)

2T
< -
_<F(ﬂ+1)“n”wz wrny TE

e m

+€* (Mi+K¢)) BHy" )} n=1)
=M"B({y" () }n=1)

where M* is defined in assumption (Hy). Since W and N (W) are equicountinuous on every
Jk, it follows from Lemma 2.4 that the inequality implies S(NW) < M*3(W). Thus, from
Monch’s condition, we have

BW) < B(cof0} UN(W)) = BINM) < M"B(W).
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Since M* < 1, we get S(W) = 0. Tt follows that W is relatively compact. Using Lemma 2.5,
we know that N has a fixed point y in W. So the theorem is proved.

4 Ulam Stability

(H5) The function g(t,x) satisfies the condition that |g(¢,x) — g(t,y)| < Lz — y|, L is
a constant and 0 < LI < 1.

Theorem 3.2 Suppose conditions (H;)(H;)(H4)(Hs) are satisfied. Then system(1.1)
has at least one solution on J and this solution is Ulam stable.

Proof Tt is easy to see that the solution satisfies condition (Hy) when the solution
satisfies condition (Hs). By using Theorem 3.1, we can prove the existence of this solution.

Then we consider the inequality

E|IDg, [x(t) — g(t,z0)] — f(t,20)|* < e.

Suppose there exists a function fi(t,y,) satisfies ||f(¢,z:) — fi(t,y¢)|| < €, Then for the
equation

D} [z () g(t, )] = f(t,z), te[0,T], t+#ty,
AL a(ty) = In(z(ty), AL a(t ) Ji(z(ty)),
I27P[2(0) — g(0,20)] = 1 € By, I,7"[2(0) — g(0,20)] = ¢ € B,

We have the fundamental solution of this equation as

=¢ € B,, te(— 0],
L t B-1 d
5 / (£ = )7 £(s,ys)ds + g(t, o)

+<P2F< ) —lel“(ﬁ 0 ,t €[0,t4],
61 th—2
y(t) = / (8= 8)" (5 9a)ds + 9(tve) + oy + 155
162
+ZI 5_21) t € (tr, trs]

It is obvious to see that the solution is Ulam stable in the interval (— o, 0], so, first, let’s
have a look at the interval ¢ € (0, ],

2—3 t
tQ_BHx(t) - y(t)” = |;<ﬁ)/0 (t - 8)6_1(f(57xs) - f(svys))d8| + t2_6‘g<tvxt> - g(t7yt)|

T2-Pe (B EAVCES R 2-B () —
T [ (= s L ale) — )

<
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So, we have

9 T276€ t1 .
Bt =90 < g | (=9 s

_ 25 t1 -1
Here K = m 0 (tl — S)ﬁ ds.

Second, consider the interval t € (1, t2],

A Latt) o0l =p [ (€9 )~ Flosuds + 0l — olt.)
¥ i_ilui(x(m) W) 5= (g
+1Zkl:(fi(x(tz)) L) 5
Lo [ tas s 1=t - w0
- é(ﬁ-(m(t{)) — L) =g g
¥ é(fim(t;» - L) 5=

As we have had the conclusion that in the interval t € (0,¢;] that |y(t) — z(t)| < Ke, so we
have

1Lz (t7)) — Li(y(t;))] < Kae,
[Ji(x(t) = Ji(y(t;))] < Kae,

due to Iy, Ji are continuous functions.

So
2B gt
ot = (Ol < [ (=9 s+ 2 Lt (o)
k
) ~ L)) 5=y (g 1)
k
+ 3t = Lt )5,

e / "t — 5P s + L at) — y(0))
LB) Jo
k Klg ¢ KQk'E
-0 -

=1
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So

_ T? Pe
A 1elt) O < [

k

ch‘f t2
+ZF 1—Ll)(ﬁ —t)

=1

KQIC&

TTE-Ha-L)

So, in the interval t € (¢, 2],

T2—[3 to
K _>/ (tg — S)'Bilds
0

T(B)(1 - LI

- K, ts
+;r(ﬁ— na-g-1 W
L Kk

DB —1)(1— L)’

In this way, when ¢ is in the interval ¢ € (¢;_1, ;] can be proved.
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