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Abstract: In this paper, we study the boundedness of maximal Bochner-Riesz means. By
using the pointwise of maximal Bochner-Riesz means and the atomic decomposition of weak
Musielak-Orlicz Hardy space, we establish the boundedness of maximal Bochner-Riesz means from
weak Musielak-Orlicz Hardy space to weak Musielak-Orlicz space. This result is new even when
p(z, t) := ®(¢) for all (z, t) € R™ x [0, 00), where ® is an Orlicz function, and it is an extension to
Musielak-Orlicz spaces from the setting of the weighted spaces of Wang [1].
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1 Introduction

The Bochner-Riesz means of order ¢ € (0, co) are defined initially for Schwartz functions
f on R™ by, for any z € R",

5

rn@ = [ fe(1-5) emcas re 0.

R +

where f denotes the Fourier transform of f. The Bochner-Riesz means can be also expressed
as convolution operator T%(f)(x) = (f * ¢1/r)(z), where, for any z € R™ and ¢ € (0, 00),
o(z) :={(1—1]-*%} (z) and ¢.(x) := e "¢(x/e). The corresponding maximal Bochner-

Riesz means are defined by, for any = € R",

T2(f)(z) = sup TR(f)(x).
Re(0, 00)
The Bochner-Riesz means were first introduced by Bochner [2] in connection with summation
of multiple Fourier series. Questions concerning the convergence of multiple Fourier series
led to the study of their LP(R™) boundedness.
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In 2013, Wang [1] considered the values of § greater than the critical index n/p—(n—+1)/2
and proved the following weighted weak type estimate of 7, which is bounded from weighted
weak Hardy space W HP(R™) to weighted weak Lebesgue space W LP (R™).

Theorem A Let p € (0, 1] and § € (n/p—(n+1)/2, 00). If w € Ay (the Muckenhoupt

weight class), then there exists a positive constant C' independent of f such that

Recently, Liang et al. [3] introduced weak Musielak-Orlicz Hardy space W H¥ (R™), which
generalizes both the weak Orlicz-Hardy space and the weak weighted Hardy space, and hence

Tf(f)HWLf,(R") < C||f||WHf,(R")

has a wide generality. In light of Wang [1] and Liang et al. [3], it is a natural and interesting
problem to ask whether 7? is bounded from W H?(R") to W L¥(R"). In this paper, we shall
answer this problem affirmatively.

Precisely, this paper is organized as follows.

In Section 2, we recall some notions concerning Muckenhoupt weights, growth functions
and weak Musielak-Orlicz Hardy space WH?¥(R™). Then we present the boundedness of
maximal Bochner-Riesz means T? from W H¥(R") to WL?(R") (see Theorem 2.6 below),
the proof of which are given in Sections 3. This result is also new even it comes back to
Orlicz Hardy space.

In the process of the proof of main result, it is worth pointing out that a more subtle
pointwise estimate of T on atom (see Lemma 3.5 below) plays a crucial role for the desired
estimate of T°. Moreover, towards the boundedness of maximal Bochner-Riesz means 19
from WH¢?(R™) to WL¥(R"™), the range of § (see Theorem 2.6 below) coincides with that of
the known best conclusion of Theorem A even ¢(z, t) := w(x)t? for all (x, t) € R™ x [0, co0)
with p € (0, 1].

Finally, we make some conventions on notation. Let Z, := {1, 2, --- } and N := {0}UZ,..
For any o := (e, ,a,) € N* let |a| := ag + -+ + . Throughout the whole paper, we
denote by C' a positive constant which is independent of the main parameters, but it may
vary from line to line. The symbol D < F means that D < CF. If D < F and F < D,
we then write D ~ F. For any sets E, F C R", we use (E)’ to denote the set R" \ F,
|E| its n-dimensional Lebesgue measure and xg its characteristic function. For any a € R,
|a| denotes the maximal integer not larger than a. If there are no special instructions, any
space X(R™) is denoted simply by X. For example, L?(R") is simply denoted by LP. For
any index ¢ € [1, oo], we denote by ¢ its conjugate index, namely, 1/¢ + 1/¢’ = 1. For
any set E of R", t € [0, co) and measurable function ¢, let p(E, t) := o(z, t) dz and

B
{IfI >t} :={x € R": |f| > t}. As usual we use B, to denote the ball {x € R" : |z| < r}
with r € (0, o0).

2 Notion and Main Results

In this section, we first recall the notion concerning the weak Musielak-Orlicz Hardy
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space W H¥ via the grand maximal function, and then present the boundedness of maximal
Bochner-Riesz means T° from WH¢? to WL¥.

Recall that a function ® : [0, c0) — [0, o0) is called an Orlicz function, if it is nonde-
creasing, ®(0) =0, ®(t) > 0 for any ¢ € (0, co0), and tlirglo ®(t) = co. An Orlicz function @ is
said to be of lower (resp. upper) type p with p € (0, +00), if there exists a positive constant
C := C,, such that for any ¢ € [0, c0) and s € (0, 1] (resp. s € [1, c0)),

D(st) < CsPP(t).

Given a function ¢ : R x [0, 0o0) — [0, 0o) such that for any x € R™, ¢(z, -) is an Orlicz
function, ¢ is said to be of uniformly lower (resp. upper) type p with p € (0, +00), if there
exists a positive constant C' := C, such that, for any z € R", ¢ € [0, 0o) and s € (0, 1] (resp.
s € [1, )), p(z, st) < CsPo(x, t). The critical uniformly lower type index of ¢ is defined
by

i(p) :=sup{p € (0, +00) : ¢ is of uniformly lower type p}. (2.1)

Observe that i(p) may not be attainable, namely, ¢ may not be of uniformly lower type i(p)
(see [4, p.415] for more details).

Definition 2.1 [5, p.120] Let ¢ € [1, 00). A function ¢(-, t) : R" — [0, c0) is said to
satisfy the uniform Muckenhoupt condition, denoted by ¢ € A,, if there exists a positive
constant C' such that for any ball B C R™ and ¢ € (0, o0), when ¢ € (1, 00),

|;| /B oy, 1 dy{“i3 / p(y, "7 dy}ql e

;ﬂ/BSO(y’ t)dy { essesgp [o(y, t)]l} <c

and, when ¢ = 1,

Let A :=J A,. The critical weight index of ¢ € A, is defined as follows

q€[l, 00)
q(p) ==1inf{g € [1, 00) : ¢ € A }. (2.2)

Observe that, if () € (1, 00), then ¢ ¢ Ay, and there exists ¢ ¢ Ay such that ¢(p) =1
(see, for example, [6]).

Definition 2.2 [5, Definition 2.1] A function ¢ : R" x [0, c0) — [0, 00) is called a
growth function if the following conditions are satisfied

(i) ¢ is a Musielak-Orlicz function, namely,

(a) the function p(z, -) : [0, c0) — [0, o0) is an Orlicz function for all z € R™,

(b) the function ¢(-, t) is a Lebesgue measurable function on R” for all ¢ € [0, c0);

(il) ¢ € Ax;

(iii) ¢ is of uniformly lower type p for some p € (0, 1] and of uniformly upper type 1.

Clearly, ¢(x, t) := w(z)®(t) is a growth function if w € A, (the Musielak weight class)
and @ is an Orlicz function of lower type p for some p € (0, 1] and of upper type 1. It is



No. 5 An estimate for maximal Bochner-Riesz means on Musielak-Orlicz Hardy spaces 697

well known that, for p € (0, 1], if ®(¢) := ¢? for all ¢ € [0, ), then ® is an Orlicz function
of lower type p and of upper p; for p € [1/2, 1], if ®(¢) :=t?/In(e+¢) for all t € [0, c0), then
® is an Orlicz function of lower type ¢ for ¢ € (0, p) and of upper type p; for p € (0, 1/2],
if ®(t) := t?In(e +¢) for all ¢t € [0, 00), then ® is an Orlicz function of lower type p and of
upper type ¢ for ¢ € (p, 1]. Recall that if an Orlicz function is of upper type p € (0, 1), then
it is also of upper type 1. Another typical and useful growth function is
o
e 1 2D + (e + 07

oz, t) = [

for all (x, t) € R" x [0, co) with any « € (0, 1], 5 € [0, 00) and v € [0, 2a(1 + In 2)]; more
precisely, ¢ € Ay, ¢ is of uniformly upper type « and i(p) = « which is not attainable (see

[5]).
Recall that the Musielak-Orlicz space L¥ is defined to be the set of all measurable

functions f such that for some A € (0, 00),

/R”<p<x, W;”) dr < o0

equipped with the (quasi-) norm

| fllze = inf{)\ € (0, ) : /Rn o (357 |f(;)|) dr < 1}.

Similarly, the weak Musielak-Orlicz space W L¥ is defined to be the set of all measurable

functions f such that for some A € (0, o),

sup p({[f] > t}, t/X) < oo

te(0, 00)

equipped with the quasi-norm

te(0, 00)

lfllwre == inf{)\e (0,0): sup ¢ ({|f| >t} ;) < 1}.

Remark 2.3 Let w be a classical Muckenhoupt weight and ® an Orlicz function.

(i) If p(z, t) := w(x)t? for all (x, t) € R™x[0, co) with p € (0, 00), then L? (resp. W L?)
is reduced to weighted Lebesgue space LP (resp. weighted weak Lebesgue space W LP), and
particularly, when w = 1, the corresponding unweighted spaces are also obtained.

(ii) If p(z, t) := w(x)®(t) for all (z, t) € R™ x [0, 00), then L¥ (resp. W L?) is reduced
to weighted Orlicz space L® (resp. weighted weak Orlicz space WLZ), and particularly,
when w = 1, the corresponding unweighted spaces are also obtained.

In what follows, we denote by S the space of all Schwartz functions and by S’ its dual

space (namely, the space of all tempered distributions). For any m € N, let

a€eN?, |a|<m+1 z€R™

Sy = {1/) €S: sup sup (1 + |z]) DD |9 ()| < 1} .
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Then, for any m € N and f € S’, the non-tangential grand maximal function f; of f is
defined by setting, for all x € R”,

fo(x) := sup sup |f* YY)l (2.3)

YESm |y—=z|<t,t€(0, 00)

where, for any ¢ € (0, 00), ¥,(-) :=t™"¢(;). When

o= o (1-9)]

» simply by f*, where ¢(¢) and i(¢) are as in (2.2) and (2.1), respectively.
Definition 2.4 [5, Definition 2.2] Let ¢ be a growth function as in Definition 2.2.
The weak Musielak-Orlicz Hardy space W H? is defined as the set of all f € &’ such that
f* € WL? equipped with the quasi-norm || f|lwwe := || f*|lwre-

we denote

Remark 2.5 Let w be a classical Muckenhoupt weight and ® an Orlicz function.

(i) If p(z, t) := w(x)t? for all (x, t) € R™ x [0, co) with p € (0, 1], then WH? is reduced
to weighted weak Hardy space WHP, and particularly, when w = 1, the corresponding
unweighted spaces are also obtained.

(ii) If p(z, t) == w(z)®(t) for all (x, t) € R" x [0, 00), then WH¥ is reduced to weighted
weak Orlicz Hardy space W H?, and particularly, when w = 1, the corresponding unweighted
spaces are also obtained.

The main results of this paper are as follows, the proof of which are given in Section 3.

Theorem 2.6 Let p e (0,1],5 € (n/p— (n+1)/2, 00) and ¢ be a growth function
as in Definition 2.2, which is of uniformly lower type p and of uniformly upper type 1. If
@ € Ay, then there exists a positive constant C' independent of f such that

Corollary 2.7 Let pe (0, 1], € (n/p—(n+1)/2, ), w be a classical Muckenhoupt

weight and ® an Orlicz function, which is of uniformly lower type p and of uniformly upper

TNy e < Cllfllwme.

type 1. If w € A;, then there exists a positive constant C independent of f such that

Remark 2.8 Let w be a classical Muckenhoupt A; weight and ® an Orlicz function.

(i) When ¢(z, t) := w(z)t? for all (x,t) € R™ x [0, c0) with p € (0, 1], we have
WHY = WHP, Theorem 2.6 is reduced to Theorem A.

(ii) When p(z, t) := w(z)®(t) for all (z, t) € R" x [0, c0), we have WH?Y = WH?, and

particularly, when w = 1, the corresponding result on unweighted space is also obtained.

Tf(f)HWLS < Clfllwrs.

3 Proof of Theorem 2.6

To prove Theorem 2.6, we need some auxiliary lemmas. Let us begin with some notions.
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For any measurable set E of R", the space LL(FE) for ¢ € [1, oo] is defined as the set of

all measurable functions f on F such that

1/q

; /

sup |f(x)|%0(z, t)dx| <oo, qe€l[l, o0),
. t€(0, 00) [‘P(Ev t) E

1 flleee) ==

1 Fllze(m) < oo, g = oo.

Definition 3.1 [3, Definition 3.1] Let ¢ be a growth function as in Definition 2.2.

(i) A triplet (¢, ¢, s) is said to be admissible, if g € (¢(¢), oo] and s € [m(p), o) NN,
where ¢(¢) and m(p) are as in (2.2) and (2.4), respectively.

(ii) For an admissible triplet (¢, ¢, s), a measurable function a is called a (¢, ¢, s)-atom
associated with some ball B C R if it satisfies the following three conditions

(a) supp a C B;

(b) [lallzes) < lIxsllzs:

(c) / a(z)x®dx = 0 for any a € N with |o] < s.

(iii) E‘gr an admissible triplet (¢, ¢, s), the weak Musielak-Orlicz atomic Hardy space
WH7Z** is defined as the set of all f € &’ satisfying that there exist a sequence of (¢, g, s)-

atoms, {a; j}icz jen, associated with balls {B; ;}icz jen, and a positive constant C' such

that > xp, () < C for all x € R”, and i € Z, and f = > > X ja;; in &', where
JeN_ _ i€Z jEN
Ni,j = C2|xB, ,|le for all i € Z and j € N, C' is a positive constant independent of f.

Moreover, define

2i
| £llw g+ =it S inf A € (0, 00) : sup Z@(Bi,j, > <1 b
o ez | X A

where the first infimum is taken over all admissible decompositions of f as above.

Lemma 3.2 [7, Lemma 6] Let p; € (0, 1), 6 :=n/p; — (n+1)/2 and a € N". Then
there exists a positive constant C' := C', ,,,  such that the kernel ¢ of Bochner-Riesz means
of order § satisfies the inequality

sup (1 + |z[)"/71]0%¢(x)| < C.
zERn

Lemma 3.3 [3, Theorem 3.5] Let (¢, g, s) be an admissible triplet as in Definition 3.1.
Then WHY = WH7** with equivalent quasi-norms.

Lemma 3.4 [5, Lemma 4.5 (i)] Let ¢ € A, with ¢ € [1, 00). Then there exists a positive
constant C' such that for any ball B C R", A € (1, o) and t € (0, o0),

©(AB, t) < CA"p(B, t).

Lemma 3.5 Let p € (0, 1), 6 :=n/p— (n+ 1)/2 and ¢ be a growth function as in
Definition 2.2, which is of uniformly lower type p and of uniformly upper type 1. Suppose b
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is a multiple of a (¢, oo, [n(q(v)/p — 1)]|)-atom associated with some ball B(xq, r), where
q(p) is as in (2.2). Then there exists a positive constant C' independent of b such that, for
any x € R",

T5(0)(z) < CJbl () (3.1)

T+ |z — x|

Proof We show this lemma by borrowing some ideas from the proof of [8, Lemma
2]. It suffices to show (3.1) holds for zp = 0 and r = 1. Indeed, for any multiple of a
(p, 00, |n(q(¢)/p — 1)])-atom b associated with some ball B(xq, r), it is easy to see that

b1() = lIxB, I Z2 1Dl o b(wo + 1)
isa (¢, 00, [n(q(p)/p—1)])-atom associated with the ball B(0,1). For any x € R", we have

o) = [ wa=po (L) dy

—n r—x Yy Y
= [blle=lxmleee™ [ b (=)o () ay
R T T €
r—X
= IellolIxa o (b 6oy (=22

which implies that

T2 (6)() = [0l< lem T2 (b1) (E—2 )

If we assume (3.1) holds for zy = 0 and r = 1, then, for any x € R™, we obtain

n/p
1
T2 (b)(2) S 116l oo x5, e 11| oo <‘>

1+ |2=20

n/p
r
S Ibf[ e (7"‘|‘|35_370|> .

It remains to prove (3.1) holds for zo = 0 and » = 1. Let b be a multiple of a (¢, oo, |n(q(v)/p—
1)])-atom associated with the ball B(0,1). From Lemma 3.2 and p € (0, 1), we deduce that,
for any = € B(0,2),

@) = s (e < Bl [ o)y

1/e€(0, c0)

1 1\ L\
Sl | rsp dy ~ bl 05 ) Sl { 777 )
< Il [ s o~ bl <1+2> = 1 (1+a:|>

which is wished.
By repeating the estimate of (2) in the proof of [8, Lemma 2|, we know that, for any
z € [B(0,2)]° and ¢ € (0, o0),

(b ¢)(@)] < [1Bl] e || =7
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From this and the inequality |z| ~ |z| + 1 with 2 € [B(0,2)]¢, it follows that, for any
z € [B(0,2)]%,

n/p
1
T°(b)(x) = sup |(bx ¢ )(x)] <||b oc<> ;
(b)(x) 1/Ee(oml( )(@)] S 116l T+ ]
which is also wished. This finishes the proof of Lemma 3.5.

Lemma 3.6 [5, Lemma 4.5 (ii)] Let ¢ € A, with ¢ € (1, c0). Then there exists a
positive constant C' such that, for any ball B := xy + B, and t € (0, 00),

[ )

¢ | — x| - rnd

Proof of Theorem 2.6 By Lemma 3.3, we know that, for any f € WHY = WH"*
with ¢ € (¢(¢), 00), where ¢(p) and m(p) are, respectively, as in (2.2) and (2.4), let z; ;
denote the center of B, ; and r; ; its radius, then there exists a sequence of multiple of

(¢, g, s)-atoms, {b; ;}icz, jen, associated with balls {B; ;}icz jen such that

=Y S h, s,

i€Z jeN

> X8, (x) S1forallz € R" and i € Z, ||b; ]|z (B, ;) S 2' for i € Z and j € N, and

JEN
. 2t
Il fllwae ~inf < A € (0, 0o) : sup Z(p B j, ~ <15%.
et | S A

Thus, to prove T?(f) € WL¥, it suffices to prove that, for all a, A € (0,00) and f € WH?,

@ ({a: ER™:TO(f)(x) > a} ) %) < Szlelg {ng (Bm, 2;) } . (3.2)

jeN

To prove (3.2), we may assume that there exists ig € Z such that a = 2%, without loss of

generality. Write
io —1 o0

F=Y >4 =R+h

i=—oco jJEN  i=ig jEN

Let a € (0,1 — 1/q) be a positive constant, by the well-known weighted L? boundedness

of T? with p € A; C A,, Hélder’s inequality, xB, () S 1forall z € R" and i € Z,
JEN

||bi,j||L3;>(Bi,]») < 2i for i € Z and j € N, and the uniformly upper type 1 property of o, we
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see that

© <{x ER": T2 (Fy)(z) > 2"}, 2;\0)

T3 (F, ! 2% ; 2
<[ [peer,(, ) w2 [ e (x %) @
R’!L A R” A

2i0

10—1 io
~2—ioq/ Z Z:b2 ;( © (JJ, 2)\> dx
i=—o0 jEN

52@/ (Z:l 22aq>q/q {2:1 g—iag [Zw” ] (p(x, i)} da

i=—00 i=—00 JEN

<2—20q(1 a) ZOZ:I Q—Wq/ ZV)” )% <x >

i=—00 jEN

ip—1 0
st 30 oS (5 ) e
i=—o00 JEN
2i
Z(‘D (Bz 7 )] ~ Sup {Z‘p <Bi7j7 )\> } s
jEN ¢ LjeN

For F5, let ; ; denote the center of B; ; and r; ; its radius, and

* SR 3\ Pli=i0)/n
Aig = U UBi’j’Bi’j =B <xi7ja <2> 27%‘,;‘) .

i=ig jEN

’L() 1
210[1 q(1—a)] Z 9ilg(1—a)—1] sup

1=—00

which is wished.

TO prove tha(
QO {.fl: e Rn : T (FQ)(IL‘) > 210} y 47;0 < Ssu ”) Bl iy 7i 5
* /\ ~ 2p ; »J )\

we cut {z € R : T?(F,)(x) > 2} into A;, and {z € (4;,)% : T(F)(z) > 2% }. Since ¢ is
of uniformly lower type p, ¢ € Ay, and by Lemma 3.4, it follows that, for any A € (0, o0),

) 90 2to
® <{$ € Ay, T (Fy)(z) > 27}, A) S <Ai07 A)
90 < 3\ Pl=io)/n]" (o) 2!
SONIC ”,A)szz[@ ] 2iire (55

i=1ip jEN i=1i9 jEN

oo 3 p(i—io) o0 3 p(i—io) 21
DI ORISR CHEIE ol R DI CHES])

i=io jEN i=io ¢ jeN

)



No. 5 An estimate for maximal Bochner-Riesz means on Musielak-Orlicz Hardy spaces 703

which is also wished.

Let p1 := 2n/(n 4+ 1 + 2§), since § > n/p — (n + 1)/2, we have p; < p. For any
(z,t) € R™ x (0, 00), set p1(z, t) := p(x, t)tPr~P, then ¢, is a Musielak-Orlicz function of
uniformly lower type p; and of uniformly upper type 1 + p; — p. It is easy to see that

bi ;= lIxe., llze 191l bi. s
is a (p1, 00, [n(q(v)/p1 — 1)|)-atom associated with the ball B; ;. By this and Lemma 3.5,

we know that, for any x € R",

T2 (bi, ) (@) = T2 (i ll = Ix s, ller b7 ;) (@)
= 1bi,jll =X, e T2 (1) (2)

.o n/p1
< |16, ] 1,00 o — b oo
S sl o (72 ) L

r.o n/p1
<1Ib, T
< lou sl ( . rx—w)

n/p
<27:< i, j > '
~Y b

|z — 5 4]

from this, by Lemma 3.6, Lemma 3.4 with ¢ € A, and the uniformly lower type p property
of ¢, it follows that

o({re @ mm@ 2}, )
<o~ "”ZZ/NJ)G 5 (b ) () g0< QA) dr

1=109 jEN

"o pn/p1 9o
0P %7 =
ey [ (m_%,ﬂ) oo %) as

i=ip jEN

_ y _ 1 pn/p1 9io
roggire () 3)
ZZ ’ Bie \ |z — i A

i=ig jEN (Bi, j

o o [ 3\ —pn/m g\ P(i=io)/n o
52710p22(ri,j)p o <2> 21y ¢ | B i, <2> 214, 4 TN

i=19 jEN

> /3 P (i0—1) /1 3 pli—io) 9i
ooy s (3) ()" 2o (B 3)

i=ig jEN

< /3 p(i—io)(1—p/p1) oi
SO (e )
i=io jEN

{3}

This finishes the proof of Theorem 2.6.
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