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Abstract: In this paper, we study the boundedness of maximal Bochner-Riesz means. By

using the pointwise of maximal Bochner-Riesz means and the atomic decomposition of weak

Musielak-Orlicz Hardy space, we establish the boundedness of maximal Bochner-Riesz means from

weak Musielak-Orlicz Hardy space to weak Musielak-Orlicz space. This result is new even when

ϕ(x, t) := Φ(t) for all (x, t) ∈ Rn × [0, ∞), where Φ is an Orlicz function, and it is an extension to

Musielak-Orlicz spaces from the setting of the weighted spaces of Wang [1].
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1 Introduction

The Bochner-Riesz means of order δ ∈ (0, ∞) are defined initially for Schwartz functions
f on Rn by, for any x ∈ Rn,

T δ
R(f)(x) :=

∫

Rn

f̂(ξ)
(

1− |ξ|2
R2

)δ

+

e2πix·ξ dξ, R ∈ (0, ∞),

where f̂ denotes the Fourier transform of f . The Bochner-Riesz means can be also expressed
as convolution operator T δ

R(f)(x) = (f ∗ φ1/R)(x), where, for any x ∈ Rn and ε ∈ (0, ∞),
φ(x) := {(1 − | · |2)δ

+}ˆ(x) and φε(x) := ε−nφ(x/ε). The corresponding maximal Bochner-
Riesz means are defined by, for any x ∈ Rn,

T δ
∗ (f)(x) := sup

R∈(0,∞)

T δ
R(f)(x).

The Bochner-Riesz means were first introduced by Bochner [2] in connection with summation
of multiple Fourier series. Questions concerning the convergence of multiple Fourier series
led to the study of their Lp(Rn) boundedness.
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In 2013, Wang [1] considered the values of δ greater than the critical index n/p−(n+1)/2
and proved the following weighted weak type estimate of T δ

∗ , which is bounded from weighted
weak Hardy space WHp

ω(Rn) to weighted weak Lebesgue space WLp
ω(Rn).

Theorem A Let p ∈ (0, 1] and δ ∈ (n/p−(n+1)/2, ∞). If ω ∈ A1 (the Muckenhoupt
weight class), then there exists a positive constant C independent of f such that

∥∥T δ
∗ (f)

∥∥
WLp

ω(Rn)
≤ C‖f‖WHp

ω(Rn).

Recently, Liang et al. [3] introduced weak Musielak-Orlicz Hardy space WHϕ(Rn), which
generalizes both the weak Orlicz-Hardy space and the weak weighted Hardy space, and hence
has a wide generality. In light of Wang [1] and Liang et al. [3], it is a natural and interesting
problem to ask whether T δ

∗ is bounded from WHϕ(Rn) to WLϕ(Rn). In this paper, we shall
answer this problem affirmatively.

Precisely, this paper is organized as follows.
In Section 2, we recall some notions concerning Muckenhoupt weights, growth functions

and weak Musielak-Orlicz Hardy space WHϕ(Rn). Then we present the boundedness of
maximal Bochner-Riesz means T δ

∗ from WHϕ(Rn) to WLϕ(Rn) (see Theorem 2.6 below),
the proof of which are given in Sections 3. This result is also new even it comes back to
Orlicz Hardy space.

In the process of the proof of main result, it is worth pointing out that a more subtle
pointwise estimate of T δ

∗ on atom (see Lemma 3.5 below) plays a crucial role for the desired
estimate of T δ

∗ . Moreover, towards the boundedness of maximal Bochner-Riesz means T δ
∗

from WHϕ(Rn) to WLϕ(Rn), the range of δ (see Theorem 2.6 below) coincides with that of
the known best conclusion of Theorem A even ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0, ∞)
with p ∈ (0, 1].

Finally, we make some conventions on notation. Let Z+ := {1, 2, · · · } and N := {0}∪Z+.
For any α := (α1, · · · , αn) ∈ Nn, let |α| := α1 + · · ·+ αn. Throughout the whole paper, we
denote by C a positive constant which is independent of the main parameters, but it may
vary from line to line. The symbol D . F means that D ≤ CF . If D . F and F . D,
we then write D ∼ F . For any sets E, F ⊂ Rn, we use (E){ to denote the set Rn \ E,
|E| its n-dimensional Lebesgue measure and χE its characteristic function. For any a ∈ R,
bac denotes the maximal integer not larger than a. If there are no special instructions, any
space X (Rn) is denoted simply by X . For example, Lp(Rn) is simply denoted by Lp. For
any index q ∈ [1, ∞], we denote by q′ its conjugate index, namely, 1/q + 1/q′ = 1. For

any set E of Rn, t ∈ [0, ∞) and measurable function ϕ, let ϕ(E, t) :=
∫

E

ϕ(x, t) dx and

{|f | > t} := {x ∈ Rn : |f | > t}. As usual we use Br to denote the ball {x ∈ Rn : |x| < r}
with r ∈ (0, ∞).

2 Notion and Main Results

In this section, we first recall the notion concerning the weak Musielak-Orlicz Hardy
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space WHϕ via the grand maximal function, and then present the boundedness of maximal
Bochner-Riesz means T δ

∗ from WHϕ to WLϕ.
Recall that a function Φ : [0, ∞) → [0, ∞) is called an Orlicz function, if it is nonde-

creasing, Φ(0) = 0, Φ(t) > 0 for any t ∈ (0, ∞), and lim
t→∞

Φ(t) = ∞. An Orlicz function Φ is

said to be of lower (resp. upper) type p with p ∈ (0, +∞), if there exists a positive constant
C := Cp such that for any t ∈ [0, ∞) and s ∈ (0, 1] (resp. s ∈ [1, ∞)),

Φ(st) ≤ CspΦ(t).

Given a function ϕ : Rn× [0, ∞) → [0, ∞) such that for any x ∈ Rn, ϕ(x, ·) is an Orlicz
function, ϕ is said to be of uniformly lower (resp. upper) type p with p ∈ (0, +∞), if there
exists a positive constant C := Cp such that, for any x ∈ Rn, t ∈ [0, ∞) and s ∈ (0, 1] (resp.
s ∈ [1, ∞)), ϕ(x, st) ≤ Cspϕ(x, t). The critical uniformly lower type index of ϕ is defined
by

i(ϕ) := sup{p ∈ (0, +∞) : ϕ is of uniformly lower type p}. (2.1)

Observe that i(ϕ) may not be attainable, namely, ϕ may not be of uniformly lower type i(ϕ)
(see [4, p. 415] for more details).

Definition 2.1 [5, p. 120] Let q ∈ [1, ∞). A function ϕ(·, t) : Rn → [0, ∞) is said to
satisfy the uniform Muckenhoupt condition, denoted by ϕ ∈ Aq, if there exists a positive
constant C such that for any ball B ⊂ Rn and t ∈ (0, ∞), when q ∈ (1,∞),

1
|B|

∫

B

ϕ(y, t) dy

{
1
|B|

∫

B

[ϕ(y, t)]−
1

q−1 dy

}q−1

≤ C

and, when q = 1,
1
|B|

∫

B

ϕ(y, t) dy

{
ess sup

y∈B
[ϕ(y, t)]−1

}
≤ C.

Let A∞ :=
⋃

q∈[1,∞)Aq. The critical weight index of ϕ ∈ A∞ is defined as follows

q(ϕ) := inf{q ∈ [1, ∞) : ϕ ∈ Aq}. (2.2)

Observe that, if q(ϕ) ∈ (1, ∞), then ϕ /∈ Aq(ϕ), and there exists ϕ /∈ A1 such that q(ϕ) = 1
(see, for example, [6]).

Definition 2.2 [5, Definition 2.1] A function ϕ : Rn × [0, ∞) → [0, ∞) is called a
growth function if the following conditions are satisfied

(i) ϕ is a Musielak-Orlicz function, namely,
(a) the function ϕ(x, ·) : [0, ∞) → [0, ∞) is an Orlicz function for all x ∈ Rn,
(b) the function ϕ(·, t) is a Lebesgue measurable function on Rn for all t ∈ [0, ∞);
(ii) ϕ ∈ A∞;
(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type 1.
Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞ (the Musielak weight class)

and Φ is an Orlicz function of lower type p for some p ∈ (0, 1] and of upper type 1. It is



No. 5 An estimate for maximal Bochner-Riesz means on Musielak-Orlicz Hardy spaces 697

well known that, for p ∈ (0, 1], if Φ(t) := tp for all t ∈ [0, ∞), then Φ is an Orlicz function
of lower type p and of upper p; for p ∈ [1/2, 1], if Φ(t) := tp/ ln(e+ t) for all t ∈ [0, ∞), then
Φ is an Orlicz function of lower type q for q ∈ (0, p) and of upper type p; for p ∈ (0, 1/2],
if Φ(t) := tp ln(e + t) for all t ∈ [0, ∞), then Φ is an Orlicz function of lower type p and of
upper type q for q ∈ (p, 1]. Recall that if an Orlicz function is of upper type p ∈ (0, 1), then
it is also of upper type 1. Another typical and useful growth function is

ϕ(x, t) :=
tα

[ln(e + |x|)]β + [ln(e + t)]γ

for all (x, t) ∈ Rn × [0, ∞) with any α ∈ (0, 1], β ∈ [0, ∞) and γ ∈ [0, 2α(1 + ln 2)]; more
precisely, ϕ ∈ A1, ϕ is of uniformly upper type α and i(ϕ) = α which is not attainable (see
[5]).

Recall that the Musielak-Orlicz space Lϕ is defined to be the set of all measurable
functions f such that for some λ ∈ (0, ∞),

∫

Rn

ϕ

(
x,
|f(x)|

λ

)
dx < ∞

equipped with the (quasi-) norm

‖f‖Lϕ := inf
{

λ ∈ (0, ∞) :
∫

Rn

ϕ

(
x,
|f(x)|

λ

)
dx ≤ 1

}
.

Similarly, the weak Musielak-Orlicz space WLϕ is defined to be the set of all measurable
functions f such that for some λ ∈ (0, ∞),

sup
t∈(0,∞)

ϕ({|f | > t}, t/λ) < ∞

equipped with the quasi-norm

‖f‖WLϕ := inf

{
λ ∈ (0, ∞) : sup

t∈(0,∞)

ϕ

(
{|f | > t}, t

λ

)
≤ 1

}
.

Remark 2.3 Let ω be a classical Muckenhoupt weight and Φ an Orlicz function.
(i) If ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn×[0, ∞) with p ∈ (0, ∞), then Lϕ (resp. WLϕ)

is reduced to weighted Lebesgue space Lp
ω (resp. weighted weak Lebesgue space WLp

ω), and
particularly, when ω ≡ 1, the corresponding unweighted spaces are also obtained.

(ii) If ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn × [0, ∞), then Lϕ (resp. WLϕ) is reduced
to weighted Orlicz space LΦ

ω (resp. weighted weak Orlicz space WLΦ
ω), and particularly,

when ω ≡ 1, the corresponding unweighted spaces are also obtained.
In what follows, we denote by S the space of all Schwartz functions and by S ′ its dual

space (namely, the space of all tempered distributions). For any m ∈ N, let

Sm :=

{
ψ ∈ S : sup

α∈Nn, |α|≤m+1

sup
x∈Rn

(1 + |x|)(m+2)(n+1)|∂αψ(x)| ≤ 1

}
.
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Then, for any m ∈ N and f ∈ S ′, the non-tangential grand maximal function f∗m of f is
defined by setting, for all x ∈ Rn,

f∗m(x) := sup
ψ∈Sm

sup
|y−x|<t, t∈(0,∞)

|f ∗ ψt(y)|, (2.3)

where, for any t ∈ (0, ∞), ψt(·) := t−nψ( ·
t
). When

m = m(ϕ) :=
⌊
n

(
q(ϕ)
i(ϕ)

− 1
)⌋

, (2.4)

we denote f∗m simply by f∗, where q(ϕ) and i(ϕ) are as in (2.2) and (2.1), respectively.
Definition 2.4 [5, Definition 2.2] Let ϕ be a growth function as in Definition 2.2.

The weak Musielak-Orlicz Hardy space WHϕ is defined as the set of all f ∈ S ′ such that
f∗ ∈ WLϕ equipped with the quasi-norm ‖f‖WHϕ := ‖f∗‖WLϕ .

Remark 2.5 Let ω be a classical Muckenhoupt weight and Φ an Orlicz function.
(i) If ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn× [0, ∞) with p ∈ (0, 1], then WHϕ is reduced

to weighted weak Hardy space WHp
ω, and particularly, when ω ≡ 1, the corresponding

unweighted spaces are also obtained.
(ii) If ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn× [0, ∞), then WHϕ is reduced to weighted

weak Orlicz Hardy space WHΦ
ω , and particularly, when ω ≡ 1, the corresponding unweighted

spaces are also obtained.
The main results of this paper are as follows, the proof of which are given in Section 3.
Theorem 2.6 Let p ∈ (0, 1], δ ∈ (n/p − (n + 1)/2, ∞) and ϕ be a growth function

as in Definition 2.2, which is of uniformly lower type p and of uniformly upper type 1. If
ϕ ∈ A1, then there exists a positive constant C independent of f such that

∥∥T δ
∗ (f)

∥∥
WLϕ ≤ C‖f‖WHϕ .

Corollary 2.7 Let p ∈ (0, 1], δ ∈ (n/p− (n+1)/2, ∞), ω be a classical Muckenhoupt
weight and Φ an Orlicz function, which is of uniformly lower type p and of uniformly upper
type 1. If ω ∈ A1, then there exists a positive constant C independent of f such that

∥∥T δ
∗ (f)

∥∥
WLΦ

ω

≤ C‖f‖WHΦ
ω
.

Remark 2.8 Let ω be a classical Muckenhoupt A1 weight and Φ an Orlicz function.
(i) When ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0, ∞) with p ∈ (0, 1], we have

WHϕ = WHp
ω, Theorem 2.6 is reduced to Theorem A.

(ii) When ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn× [0, ∞), we have WHϕ = WHΦ
ω , and

particularly, when ω ≡ 1, the corresponding result on unweighted space is also obtained.

3 Proof of Theorem 2.6

To prove Theorem 2.6, we need some auxiliary lemmas. Let us begin with some notions.
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For any measurable set E of Rn, the space Lq
ϕ(E) for q ∈ [1, ∞] is defined as the set of

all measurable functions f on E such that

‖f‖Lq
ϕ(E) :=





sup
t∈(0,∞)

[
1

ϕ(E, t)

∫

E

|f(x)|qϕ(x, t) dx

]1/q

< ∞, q ∈ [1, ∞),

‖f‖L∞(E) < ∞, q = ∞.

Definition 3.1 [3, Definition 3.1] Let ϕ be a growth function as in Definition 2.2.
(i) A triplet (ϕ, q, s) is said to be admissible, if q ∈ (q(ϕ), ∞] and s ∈ [m(ϕ), ∞) ∩ N,

where q(ϕ) and m(ϕ) are as in (2.2) and (2.4), respectively.
(ii) For an admissible triplet (ϕ, q, s), a measurable function a is called a (ϕ, q, s)-atom

associated with some ball B ⊂ Rn if it satisfies the following three conditions
(a) supp a ⊂ B;
(b) ‖a‖Lq

ϕ(B) ≤ ‖χB‖−1
Lϕ ;

(c)
∫

Rn

a(x)xαdx = 0 for any α ∈ Nn with |α| ≤ s.

(iii) For an admissible triplet (ϕ, q, s), the weak Musielak-Orlicz atomic Hardy space
WHϕ, q, s

at is defined as the set of all f ∈ S ′ satisfying that there exist a sequence of (ϕ, q, s)-
atoms, {ai, j}i∈Z,j∈N, associated with balls {Bi, j}i∈Z,j∈N, and a positive constant C such
that

∑
j∈N

χBi, j
(x) ≤ C for all x ∈ Rn, and i ∈ Z, and f =

∑
i∈Z

∑
j∈N

λi, jai, j in S ′, where

λi, j := C̃2i‖χBi, j
‖Lϕ for all i ∈ Z and j ∈ N, C̃ is a positive constant independent of f .

Moreover, define

‖f‖WHϕ, q, s
at

:= inf

{
inf

{
λ ∈ (0, ∞) : sup

i∈Z

{∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)}
≤ 1

}}
,

where the first infimum is taken over all admissible decompositions of f as above.
Lemma 3.2 [7, Lemma 6] Let p1 ∈ (0, 1), δ := n/p1 − (n + 1)/2 and α ∈ Nn. Then

there exists a positive constant C := Cn, p1, α such that the kernel φ of Bochner-Riesz means
of order δ satisfies the inequality

sup
x∈Rn

(1 + |x|)n/p1 |∂αφ(x)| ≤ C.

Lemma 3.3 [3, Theorem 3.5] Let (ϕ, q, s) be an admissible triplet as in Definition 3.1.
Then WHϕ = WHϕ, q, s

at with equivalent quasi-norms.
Lemma 3.4 [5, Lemma 4.5 (i)] Let ϕ ∈ Aq with q ∈ [1, ∞). Then there exists a positive

constant C such that for any ball B ⊂ Rn, λ ∈ (1, ∞) and t ∈ (0, ∞),

ϕ(λB, t) ≤ Cλnqϕ(B, t).

Lemma 3.5 Let p ∈ (0, 1), δ := n/p − (n + 1)/2 and ϕ be a growth function as in
Definition 2.2, which is of uniformly lower type p and of uniformly upper type 1. Suppose b
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is a multiple of a (ϕ, ∞, bn(q(ϕ)/p − 1)c)-atom associated with some ball B(x0, r), where
q(ϕ) is as in (2.2). Then there exists a positive constant C independent of b such that, for
any x ∈ Rn,

T δ
∗ (b)(x) ≤ C‖b‖L∞

(
r

r + |x− x0|

)n
p

. (3.1)

Proof We show this lemma by borrowing some ideas from the proof of [8, Lemma
2]. It suffices to show (3.1) holds for x0 = 0 and r = 1. Indeed, for any multiple of a
(ϕ, ∞, bn(q(ϕ)/p− 1)c)-atom b associated with some ball B(x0, r), it is easy to see that

b1(·) := ‖χB1‖−1
Lϕ‖b‖−1

L∞b(x0 + r·)

is a (ϕ, ∞, bn(q(ϕ)/p−1)c)-atom associated with the ball B(0, 1). For any x ∈ Rn, we have

(b ∗ φε)(x) = ε−n

∫

Rn

b(x− y)φ
(y

ε

)
dy

= ‖b‖L∞‖χB1‖Lϕε−n

∫

Rn

b1

(x− x0

r
− y

r

)
φ

(y

ε

)
dy

= ‖b‖L∞‖χB1‖Lϕ(b1 ∗ φε/r)
(x− x0

r

)
,

which implies that

T δ
∗ (b)(x) = ‖b‖L∞‖χB1‖LϕT δ

∗ (b1)
(x− x0

r

)
.

If we assume (3.1) holds for x0 = 0 and r = 1, then, for any x ∈ Rn, we obtain

T δ
∗ (b)(x) . ‖b‖L∞‖χB1‖Lϕ‖b1‖L∞

(
1

1 +
∣∣x−x0

r

∣∣

)n/p

. ‖b‖L∞

(
r

r + |x− x0|

)n/p

.

It remains to prove (3.1) holds for x0 = 0 and r = 1. Let b be a multiple of a (ϕ, ∞, bn(q(ϕ)/p−
1)c)-atom associated with the ball B(0, 1). From Lemma 3.2 and p ∈ (0, 1), we deduce that,
for any x ∈ B(0, 2),

T δ
∗ (b)(x) = sup

1/ε∈(0,∞)

|(b ∗ φε)(x)| ≤ ‖b‖L∞

∫

Rn

|φ(y)| dy

≤ ‖b‖L∞

∫

Rn

1
(1 + |y|)n/p

dy ∼ ‖b‖L∞

(
1

1 + 2

)n/p

. ‖b‖L∞

(
1

1 + |x|

)n/p

,

which is wished.
By repeating the estimate of (2) in the proof of [8, Lemma 2], we know that, for any

x ∈ [B(0, 2)]{ and ε ∈ (0, ∞),

|(b ∗ φε)(x)| . ‖b‖L∞ |x|−n/p.
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From this and the inequality |x| ∼ |x| + 1 with x ∈ [B(0, 2)]{, it follows that, for any
x ∈ [B(0, 2)]{,

T δ
∗ (b)(x) = sup

1/ε∈(0,∞)

|(b ∗ φε)(x)| . ‖b‖L∞

(
1

1 + |x|

)n/p

,

which is also wished. This finishes the proof of Lemma 3.5.

Lemma 3.6 [5, Lemma 4.5 (ii)] Let ϕ ∈ Aq with q ∈ (1, ∞). Then there exists a
positive constant C such that, for any ball B := x0 + Br and t ∈ (0, ∞),

∫

B{

ϕ(x, t)
|x− x0|nq

dx ≤ C
ϕ(B, t)

rnq
.

Proof of Theorem 2.6 By Lemma 3.3, we know that, for any f ∈ WHϕ = WHϕ, q, s
at

with q ∈ (q(ϕ), ∞), where q(ϕ) and m(ϕ) are, respectively, as in (2.2) and (2.4), let xi, j

denote the center of Bi, j and ri, j its radius, then there exists a sequence of multiple of
(ϕ, q, s)-atoms, {bi, j}i∈Z, j∈N, associated with balls {Bi, j}i∈Z,j∈N such that

f =
∑
i∈Z

∑
j∈N

bi, j in S ′ ,

∑
j∈N

χBi, j
(x) . 1 for all x ∈ Rn and i ∈ Z, ‖bi, j‖L∞ϕ (Bi, j) . 2i for i ∈ Z and j ∈ N, and

‖f‖WHϕ ∼ inf

{
λ ∈ (0, ∞) : sup

i∈Z

{∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)}
≤ 1

}
.

Thus, to prove T δ
∗ (f) ∈ WLϕ, it suffices to prove that, for all α, λ ∈ (0,∞) and f ∈ WHϕ,

ϕ
({

x ∈ Rn : T δ
∗ (f)(x) > α

}
,
α

λ

)
. sup

i∈Z

{∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)}
. (3.2)

To prove (3.2), we may assume that there exists i0 ∈ Z such that α = 2i0 , without loss of
generality. Write

f =
i0−1∑

i=−∞

∑
j∈N

+
∞∑

i=i0

∑
j∈N

=: F1 + F2.

Let a ∈ (0, 1 − 1/q) be a positive constant, by the well-known weighted Lq boundedness
of T δ

∗ with ϕ ∈ A1 ⊂ Aq, Hölder’s inequality,
∑
j∈N

χBi, j
(x) . 1 for all x ∈ Rn and i ∈ Z,

‖bi, j‖L∞ϕ (Bi, j) . 2i for i ∈ Z and j ∈ N, and the uniformly upper type 1 property of ϕ, we
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see that

ϕ

({
x ∈ Rn : T δ

∗ (F1)(x) > 2i0
}

,
2i0

λ

)

≤
∫

Rn

∣∣∣∣
T δ
∗ (F1)(x)

2i0

∣∣∣∣
q

ϕ

(
x,

2i0

λ

)
dx . 2−i0q

∫

Rn

|F1(x)|qϕ
(

x,
2i0

λ

)
dx

∼2−i0q

∫

Rn

∣∣∣∣∣
i0−1∑

i=−∞

∑
j∈N

bi, j(x)

∣∣∣∣∣

q

ϕ

(
x,

2i0

λ

)
dx

.2−i0q

∫

Rn

(
i0−1∑

i=−∞
2iaq′

)q/q′ { i0−1∑
i=−∞

2−iaq

[∑
j∈N

|bi, j(x)|
]q

ϕ

(
x,

2i0

λ

)}
dx

.2−i0q(1−a)

i0−1∑
i=−∞

2−iaq

∫

Rn

∑
j∈N

|bi, j(x)|qϕ
(

x,
2i0

λ

)
dx

.2−i0q(1−a)

i0−1∑
i=−∞

2−iaq
∑
j∈N

2iqϕ

(
Bi, j ,

2i0

λ

)
dx

.2i0[1−q(1−a)]

i0−1∑
i=−∞

2i[q(1−a)−1] sup
i

[∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)]
∼ sup

i

{∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)}
,

which is wished.
For F2, let xi, j denote the center of Bi, j and ri, j its radius, and

Ai0 :=
∞⋃

i=i0

⋃
j∈N

B̃i, j , B̃i, j := B

(
xi, j ,

(
3
2

)p(i−i0)/n

2ri, j

)
.

To prove that

ϕ

({
x ∈ Rn : T δ

∗ (F2)(x) > 2i0
}

,
2i0

λ

)
. sup

i

{∑
j∈N

[
ϕ

(
Bi, j ,

2i

λ

)]}
,

we cut {x ∈ Rn : T δ
∗ (F2)(x) > 2i0} into Ai0 and {x ∈ (Ai0){ : T δ

∗ (F2)(x) > 2i0}. Since ϕ is
of uniformly lower type p, ϕ ∈ A1, and by Lemma 3.4, it follows that, for any λ ∈ (0, ∞),

ϕ

({
x ∈ Ai0 : T δ

∗ (F2)(x) > 2i0
}

,
2i0

λ

)
≤ ϕ

(
Ai0 ,

2i0

λ

)

≤
∞∑

i=i0

∑
j∈N

ϕ

(
B̃i, j ,

2i0

λ

)
.

∞∑
i=i0

∑
j∈N

[(
3
2

)p(i−i0)/n
]n

2(i0−i)pϕ

(
Bi, j ,

2i

λ

)

∼
∞∑

i=i0

(
3
4

)p(i−i0) ∑
j∈N

ϕ

(
Bi, j ,

2i

λ

)
.

∞∑
i=i0

(
3
4

)p(i−i0)

sup
i

{∑
j∈N

[
ϕ

(
Bi, j ,

2i

λ

)]}

∼ sup
i

{∑
j∈N

[
ϕ

(
Bi, j ,

2i

λ

)]}
,
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which is also wished.
Let p1 := 2n/(n + 1 + 2δ), since δ > n/p − (n + 1)/2, we have p1 < p. For any

(x, t) ∈ Rn × (0, ∞), set ϕ1(x, t) := ϕ(x, t)tp1−p, then ϕ1 is a Musielak-Orlicz function of
uniformly lower type p1 and of uniformly upper type 1 + p1 − p. It is easy to see that

b1
i, j := ‖χBi, j

‖−1
Lϕ1‖bi, j‖−1

L∞bi, j

is a (ϕ1, ∞, bn(q(ϕ)/p1 − 1)c)-atom associated with the ball Bi, j . By this and Lemma 3.5,
we know that, for any x ∈ Rn,

T δ
∗ (bi, j)(x) = T δ

∗
(‖bi, j‖L∞‖χBi, j

‖Lϕ1 b1
i, j

)
(x)

= ‖bi, j‖L∞‖χBi, j
‖Lϕ1 T δ

∗
(
b1
i, j

)
(x)

. ‖bi, j‖L∞‖χBi, j
‖Lϕ1

(
ri, j

ri, j + |x− xi, j |

)n/p1

‖b1
i, j‖L∞

. ‖bi, j‖L∞

(
ri, j

ri, j + |x− xi, j |

)n/p1

. 2i

(
ri, j

|x− xi, j |

)n/p1

,

from this, by Lemma 3.6, Lemma 3.4 with ϕ ∈ A1, and the uniformly lower type p property
of ϕ, it follows that

ϕ

({
x ∈ (Ai0)

{ : T δ
∗ (F2)(x) > 2i0

}
,

2i0

λ

)

≤2−i0p

∞∑
i=i0

∑
j∈N

∫

(B̃i, j){
|T δ
∗ (bi, j)(x)|pϕ

(
x,

2i0

λ

)
dx

.2−i0p

∞∑
i=i0

∑
j∈N

∫

(B̃i, j){
2ip

(
ri, j

|x− xi, j |

)pn/p1

ϕ

(
x,

2i0

λ

)
dx

.2−i0p

∞∑
i=i0

∑
j∈N

(ri, j)
pn/p1 2ip

∫

(B̃i, j){

(
1

|x− xi, j |

)pn/p1

ϕ

(
x,

2i0

λ

)
dx

. 2−i0p

∞∑
i=i0

∑
j∈N

(ri, j)
pn/p1 2ip

[(
3
2

)p(i−i0)/n

2ri, j

]−pn/p1

ϕ

(
B

(
xi, j ,

(
3
2

)p(i−i0)/n

2ri, j

)
,

2i0

λ

)

.2−i0p

∞∑
i=i0

∑
j∈N

2ip

(
3
2

)p2(i0−i)/p1 (
3
2

)p(i−i0)

2(i0−i)pϕ

(
B(xi, j , ri, j),

2i

λ

)

.
∞∑

i=i0

(
3
2

)p(i−i0)(1−p/p1)

sup
i

{∑
j∈N

[
ϕ

(
Bi, j ,

2i

λ

)]}

∼ sup
i

{∑
j∈N

[
ϕ

(
Bi, j ,

2i

λ

)]}
.

This finishes the proof of Theorem 2.6.
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极大Bochner-Riesz平均在弱Musielak-Orlicz Hardy

空间上的估计

王文华,邱小丽,王爱庭,李宝德

(新疆大学数学与系统科学学院,新疆乌鲁木齐 830046)

摘要: 本文研究了极大 Bochner-Riesz 平均的有界性. 利用极大 Bochner-Riesz 平均的点态估计及

弱 Musielak-Orlicz Hardy 空间的原子分解, 得到了极大 Bochner-Riesz 平均从弱 Musielak-Orlicz Hardy

空间到弱 Musielak-Orlicz 空间是有界的. 即使对任意的 (x, t) ∈ Rn × [0, ∞), 当 Musielak-Orlicz 函数

ϕ(x, t)取为特殊的 Orlicz函数 Φ(t)时, 上述结果也是新的. 这个结果是王华加权空间上的结果 (见文献[1])

在 Musielak-Orlicz 空间情形下的推广.
关键词: Bochner-Riesz平均; Muckenhoupt权; Orlicz函数; Hardy空间
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