LAZY 2－COCYCLE ON RADFORD BIPRODUCT HOM－HOPF ALGEBRA

MA Tian－shui，ZHENG Hui－hui
（School of Mathematics and Information Science，Henan Normal University，
Xinxiang 453007，China）

Abstract

In this paper，we study Lazy 2－cocycle on Radford＇s biproduct Hom－Hopf algebra． By using twisting method，we mainly investigate the relations between the left Hom－2－cocycles σ on (B, β) and $\bar{\sigma}$ on（ $B_{\times}^{\#} H, \beta \otimes \alpha$ ）which generalise the corresponding results in the case of usual Hopf algebras．

Keywords：lazy 2－cocycle；Radford＇s biproduct Hom－Hopf algebra；Yetter－Drinfeld cate－ gory

2010 MR Subject Classification： 16 T 05
Document code：A Article ID：0255－7797（2019）05－0677－17

1 Introduction and Preliminaries

A lazy 2－cocycle of a Hopf algebra H is a 2－cocycle $\sigma: H \otimes H \longrightarrow K$ ，which commutes with multiplication in the Hopf algebra．The second lazy cohomology group generalizes Sweedler＇s second cohomology group of a cocommutative Hopf algebra and the Schur mul－ tiplier of a group．Let $B \diamond H$ be a Radford biproduct，where H is a Hopf algebra and B is a Hopf algebra in the category of Yetter－Drinfeld modules over H ．A group morphism $H_{L}^{2}(B) \longrightarrow H_{L}^{2}(B \diamond H)$ is constructed by Cuadra and Panaite in［1］．In［2］，Panaite et al． introduced the concepts of pure and neat lazy 2－cocycle and extended pure and neat lazy cocycles to the Radford biproducts．

The origins of the study of Hom－algebras can be found in［3］by Hartwig，Larsson and Silvestrov，and earlier precursors of Hom－Lie algebras can be found in Hu＇s paper（see［4］）． Subsequently，Hom－type algebra has been studied by many researchers．Especially，in 2014， Li and Ma introduced the notions of Radford biproduct Hom－Hopf algebra（ $B_{\times}^{\#} H, \beta \otimes \alpha$ ）and Hom－Yetter－Drinfeld category ${ }_{H}^{H} \mathbb{Y D}$（see［5］），which generalize the corresponding concepts in usual Hopf algebras．In 2017，the authors presented a more general version of（ $B_{\times}^{\#} H, \beta \otimes \alpha$ ） （see［6］）．

Radford biproduct Hom－Hopf algebra was given below．

[^0]Theorem 1.1 Let (H, α) be a Hom-bialgebra, (B, β) a left (H, α)-module Hom-algebra with module structure $\triangleright: H \otimes B \longrightarrow B$ and a left (H, α)-comodule Hom-coalgebra with comodule structure $\rho: B \longrightarrow H \otimes B$. Then the following conclusions are equivalent.
(i) $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$ is a Hom-bialgebra, where $(B \# H, \beta \otimes \alpha)$ is a smash product Homalgebra (see [7]) and ($B \times H, \beta \otimes \alpha$) is a smash coproduct Hom-coalgebra.
(ii) The following conditions hold $(\forall a, b \in B$ and $h \in H)$
(R1) (B, ρ, α) is an (H, β)-comodule Hom-algebra,
(R2) $(B, \triangleright, \alpha)$ is an (H, β)-module Hom-coalgebra,
$(\mathrm{R} 3) \varepsilon_{B}$ is a Hom-algebra map and $\Delta_{B}\left(1_{B}\right)=1_{B} \otimes 1_{B}$,
$(\mathrm{R} 4) \Delta_{B}(a b)=a_{1}\left(\alpha^{2}\left(a_{2-1}\right) \triangleright \beta^{-1}\left(b_{1}\right)\right) \otimes \beta^{-1}\left(a_{20}\right) b_{2}$,
(R5) $h_{1} \alpha\left(a_{-1}\right) \otimes\left(\alpha^{3}\left(h_{2}\right) \triangleright a_{0}\right)=\left(\alpha^{2}\left(h_{1}\right) \triangleright a\right)_{-1} h_{2} \otimes\left(\alpha^{2}\left(h_{1}\right) \triangleright a\right)_{0}$.
Definition 1.2 Let (H, α) be a Hom-bialgebra, $\left(M, \triangleright_{M}, \alpha_{M}\right)$ a left (H, α)-module with action $\triangleright_{M}: H \otimes M \longrightarrow M, h \otimes m \mapsto h \triangleright_{M} m$ and $\left(M, \rho^{M}, \alpha_{M}\right)$ a left (H, α)-comodule with coaction $\rho^{M}: M \longrightarrow H \otimes M, m \mapsto m_{-1} \otimes m_{0}$. Then we call $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$ a (left-left) Hom-Yetter-Drinfeld module over (H, α) if the following condition holds:
(HYD) $h_{1} \alpha\left(m_{-1}\right) \otimes\left(\alpha^{3}\left(h_{2}\right) \triangleright_{M} m_{0}\right)=\left(\alpha^{2}\left(h_{1}\right) \triangleright_{M} m\right)_{-1} h_{2} \otimes\left(\alpha^{2}\left(h_{1}\right) \triangleright_{M} m\right)_{0}$,
where $h \in H$ and $m \in M$.
When (H, α) is a Hom-Hopf algebra, then the condition (HYD) is equivalent to

$$
(\mathrm{HYD})^{\prime}\left(\alpha^{4}(h) \triangleright_{M} m\right)_{-1} \otimes\left(\alpha^{4}(h) \triangleright_{M} m\right)_{0}=\alpha^{-2}\left(h_{11} \alpha\left(m_{-1}\right)\right) S_{H}\left(h_{2}\right) \otimes\left(\alpha^{3}\left(h_{12}\right) \triangleright_{M} m_{0}\right) .
$$

So it is natural to consider the relations between the 2-cocycles σ on (B, β) and $\bar{\sigma}$ on $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$.

In this paper, we mainly investigate the relations between the left 2-cocycles σ on (B, β) and $\bar{\sigma}$ on $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$, and also provide two non-trivial examples.

Next we recall some definitions and results in [8] which will be used later.
Definition 1.3 A left 2-cocycle on a $\operatorname{Hom-bialgebra}(H, \alpha)$ is a linear map $\sigma: H \otimes H \rightarrow$ K satisfying

$$
\begin{align*}
& \sigma \circ(\alpha \otimes \alpha)=\sigma, \tag{1.1}\\
& \sigma\left(b_{1}, c_{1}\right) \sigma\left(\alpha^{2}(a), b_{2} c_{2}\right)=\sigma\left(a_{1}, b_{1}\right) \sigma\left(a_{2} b_{2}, \alpha^{2}(c)\right) \tag{1.2}
\end{align*}
$$

for all $a, b, c \in H$.
Furthermore, σ is normal if $\sigma(1, h)=\sigma(h, 1)=\varepsilon(h)$ for all $h \in H$.
Remarks (1) Similarly if eq. (1.2) is replaced by

$$
\sigma\left(\alpha^{2}(a), b_{1} c_{1}\right) \sigma\left(b_{2}, c_{2}\right)=\sigma\left(a_{1} b_{1}, \alpha^{2}(c)\right) \sigma\left(a_{2}, b_{2}\right)
$$

then σ is a right 2-cocycle.
(2) If $\sigma: H \otimes H \longrightarrow K$ is a normal and convolution invertible, then σ is a left 2-cocycle if and only if σ^{-1} is a right 2-cocycle.

Proposition 1.4 Let (H, α) be a Hom-Hopf algebra.
(1) If σ is a normal left 2-cocyle on (H, α), for all $h, g \in H$, define a new multiplication on H as follows

$$
\begin{equation*}
h \cdot{ }_{\sigma} g=\sigma\left(h_{1}, g_{1}\right) \alpha^{-1}\left(h_{2} g_{2}\right) \tag{1.3}
\end{equation*}
$$

Then $\left(H,{ }_{\sigma}, \alpha\right)$ is a Hom-algebra, we denote the algebra by $\left({ }_{\sigma} H, \alpha\right)$.
(2) If σ is a normal right 2-cocyle on (H, α) for all $h, g \in H$, define multiplication on H as follows $h_{\sigma} \cdot g=\alpha^{-1}\left(h_{1} g_{1}\right) \sigma\left(h_{2}, g_{2}\right)$. Then $\left(H,_{\sigma} \cdot \alpha\right)$ is also a Hom-algebra, we denote the algebra by $\left(H_{\sigma}, \alpha\right)$.

Definition 1.5 A left 2-cocyle σ on (H, α) is called lazy if for all $h, g \in H$,

$$
\begin{equation*}
\sigma\left(h_{1}, g_{1}\right) h_{2} g_{2}=h_{1} g_{1} \sigma\left(h_{2}, g_{2}\right) \tag{1.4}
\end{equation*}
$$

Remark A lazy left 2-cocyle on (H, α) is also a right 2-cocyle on (H, α).
Lemma 1.6 Let $\gamma: H \longrightarrow K$ be a normal (i.e. $\gamma(1)=1$) and convolution invertible linear map such that $\gamma \circ \alpha=\gamma$, define $D^{1}(\gamma): H \otimes H \longrightarrow K$ by

$$
\begin{equation*}
D^{1}(\gamma)(h, g)=\gamma\left(h_{1}\right) \gamma\left(g_{1}\right) \gamma^{-1}\left(h_{2} g_{2}\right) \tag{1.5}
\end{equation*}
$$

for all $h, g \in H$. Then $D^{1}(\gamma)$ is a normal and convolution invertible left 2-cocycle on (H, α).
Remarks (1) The set $\operatorname{Reg}^{1}(H, \alpha)$ (respectively $\operatorname{Re} g^{2}(H, \alpha)$) consisting of normal and convolution invertible linear maps $\gamma: H \longrightarrow K$ such that $\gamma \circ \alpha=\gamma$ (respectively σ : $H \otimes H \longrightarrow K$ such that $\sigma \circ(\alpha \otimes \alpha)=\sigma)$, is a group with respect to the convolution product.
(2) γ is lazy if for all $h \in H, \gamma\left(h_{1}\right) h_{2}=h_{1} \gamma\left(h_{2}\right)$. The set of all normal and convolution invertible linear maps $\gamma: H \longrightarrow K$ satisfying $\gamma \circ \alpha=\gamma$ is denoted by $\operatorname{Re}_{L}^{1}(H)$, which is a group under convolution.

Lemma 1.7 The set of convolution invertible lazy 2-cocycle on (H, α) denoted by $Z_{L}^{2}(H, \alpha)$ is a group.

Proposition $1.8 D^{1}: \operatorname{Re} g_{L}^{1}(H, \alpha) \longrightarrow Z_{L}^{2}(H, \alpha)$ is a group homomorphism, whose image denoted by $B_{L}^{2}(H, \alpha)$ (its elements are called lazy 2-coboundary), is contained in the center of $Z_{L}^{2}(H, \alpha)$. Thus we call quotient group $H_{L}^{2}(H, \alpha):=Z_{L}^{2}(H, \alpha) / B_{L}^{2}(H, \alpha)$ the second lazy cohomology group of H.

2 Main Results and Examples

In this section, we investigate the relations between the left 2-cocycles σ on (B, β) and $\bar{\sigma}$ on ($B_{\times}^{\#} H, \beta \otimes \alpha$), and also provide two non-trivial examples. In what follows, let (H, α) be a Hom-Hopf algebra with bijective antipode S and $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$ Radford biproduct Hom-Hopf algebra such that $\alpha^{2}=i d$.

First we give some useful formulas. The Hom-coalgebra structure on $(B \otimes B, \beta \otimes \beta)$ in ${ }_{H}^{H} Y \mathbb{D}$ is given by

$$
\begin{align*}
\Delta_{B \otimes B}\left(b \otimes b^{\prime}\right) & =\left(i d \otimes C_{B, B} \otimes i d\right) \circ\left(\Delta_{B} \otimes \Delta_{B}\right)\left(b \otimes b^{\prime}\right) \\
& =\left(b_{1} \otimes b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \otimes\left(\beta^{-1}\left(b_{2(0)}\right) \otimes b_{2}^{\prime}\right) \tag{2.1}
\end{align*}
$$

So by (2.1), if $\sigma, \tau: B \otimes B \longrightarrow K$ are morphisms in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, their convolution in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ is given by

$$
\begin{equation*}
(\sigma * \tau)\left(b, b^{\prime}\right)=\sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \tau\left(\beta^{-1}\left(b_{2(0)}\right), b_{2}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Let $\sigma: B \otimes B \longrightarrow K$ be a morphism in ${ }_{H}^{H} \mathbb{Y D}$, that is, it satisfies the conditions

$$
\begin{align*}
& \sigma\left(h_{1} \cdot b, h_{2} \cdot b^{\prime}\right)=\varepsilon(h) \sigma\left(b, b^{\prime}\right) \tag{2.3}\\
& \sigma\left(b_{(0)}, b_{(0)}^{\prime}\right) b_{(-1)} b_{(-1)}^{\prime}=\sigma\left(b, b^{\prime}\right) 1_{H} \tag{2.4}\\
& \sigma \circ(\beta \otimes \beta)=\sigma \tag{2.5}
\end{align*}
$$

for all $h \in H$ and $b, b^{\prime} \in B$.
Lemma 2.1 For a morphism $\sigma: B \otimes B \longrightarrow K$ in ${ }_{H}^{H} \mathbb{Y D}$, we can get the following useful formula

$$
\begin{equation*}
\sigma(a, \alpha(h) \cdot b)=\sigma\left(S^{-1}(h) \cdot \beta^{-2}(a), b\right) \tag{2.6}
\end{equation*}
$$

for all $a, b \in B$ and $h \in H$.
Proof We can check that as follows

$$
\begin{aligned}
\sigma(a, \alpha(h) \cdot b) & =\sigma\left(\left(h_{12} S^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}(a), h_{2} \cdot b\right) \\
& =\sigma\left(\alpha\left(h_{12}\right) \cdot\left(S^{-1}\left(h_{11}\right) \cdot \beta^{-2}(a)\right), h_{2} \cdot b\right) \\
& =\sigma\left(\alpha\left(h_{21}\right) \cdot\left(\alpha\left(S^{-1}\left(h_{1}\right)\right) \cdot \beta^{-2}(a)\right), \alpha^{-1}\left(h_{22}\right) \cdot b\right) \\
& \stackrel{(2.3)}{=} \sigma\left(\alpha\left(S^{-1}\left(h_{1}\right)\right) \cdot \beta^{-2}(a), b\right) \varepsilon\left(h_{2}\right) \\
& =\sigma\left(S^{-1}(h) \cdot \beta^{-2}(a), b\right) .
\end{aligned}
$$

Definition 2.2 Let $\sigma: B \otimes B \longrightarrow K$ be a morphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Then σ is lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ if it satisfies the categorical laziness condition (for all $b, b^{\prime} \in B$)

$$
\begin{equation*}
\sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \beta^{-1}\left(b_{2(0)}\right) b_{2}^{\prime}=\sigma\left(\beta^{-1}\left(b_{2(0)}\right), b_{2}^{\prime}\right) b_{1}\left(b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \tag{2.7}
\end{equation*}
$$

Definition 2.3 Let $\sigma: B \otimes B \longrightarrow K$ be a morphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Then σ is a normal left 2-cocycle on (B, β) in ${ }_{H}^{H} \mathbb{Y D}$ if it is a normal morphism in ${ }_{H}^{H} \mathbb{Y D}$ and satisfies the categorical left 2-cocycle condition

$$
\begin{align*}
& \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) \sigma\left(\beta^{-1}\left(a_{2(0)}\right) b_{2}, \beta^{2}(c)\right) \\
= & \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right) \sigma\left(\beta^{2}(a), \beta^{-1}\left(b_{2(0)}\right) c_{2}\right) \tag{2.8}
\end{align*}
$$

for all $a, b, c \in B$.
Proposition 2.4 If we define a Hom-multiplication $\cdot{ }_{\sigma}$ on (B, β) by

$$
\begin{equation*}
b \cdot{ }_{\sigma} b^{\prime}=\sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(b_{2(0)}\right) b_{2}^{\prime}\right) \tag{2.9}
\end{equation*}
$$

for any $b, b^{\prime} \in B$, then
(1) $\left({ }_{\sigma} B, \beta\right)$ is a Hom-algebra if and only if σ is a normal left 2-cocycle in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.
(2) $\left({ }_{\sigma} B, \beta\right)$ is a left (H, α) Hom-module algebra with the same action as (B, β).

Proof (1) For any $b \in B$, it is easy to check that $b \cdot{ }_{\sigma} 1_{B}=\beta(b)$ if and only if $\sigma\left(b, 1_{B}\right)=\varepsilon(b)$ and $1_{B} \cdot{ }_{\sigma} b=\beta(b)$ if and only if $\sigma\left(1_{B}, b\right)=\varepsilon(b)$. For any $a, b, c \in B$, we have

$$
\begin{aligned}
\beta(a) \cdot{ }_{\sigma}\left(b \cdot{ }_{\sigma} c\right) \stackrel{(2.9)}{=} & \beta^{-1}\left(a_{2(0)}\right) \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{2}\right) \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right)\right. \\
& \left.\cdot \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{1}\right)\right) \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(a \cdot{ }_{\sigma} b\right) \cdot{ }_{\sigma} \beta(c) \stackrel{(2.9)}{=} & \beta^{-1}\left(\beta^{-1}\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(0)}\right) \beta\left(c_{2}\right)\right) \sigma\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{1},\right. \\
& \left.\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(-1)} \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) .
\end{aligned}
$$

Hence, if $\cdot \sigma$ is Hom-associative, we get

$$
\begin{aligned}
& \beta^{-1}\left(a_{2(0)}\right) \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{2}\right) \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{1}\right)\right) \\
& \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right)=\beta^{-1}\left(\beta^{-1}\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(0)}\right) \beta\left(c_{2}\right)\right) \sigma\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{1},\right. \\
& \left.\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(-1)} \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) .
\end{aligned}
$$

Applying ε to both sides of the above equation, we get (2.8).
Conversely, if σ is a left 2-cocycle in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, we have

$$
\begin{aligned}
\beta(a) \cdot{ }_{\sigma}\left(b \cdot{ }_{\sigma} c\right) \stackrel{(2.9)}{=} & \beta^{-1}\left(a_{2(0)}\right) \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{2}\right) \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right)\right. \\
& \left.\cdot \beta^{-1}\left(\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right)_{1}\right)\right) \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right) \\
\stackrel{(R 4)}{=} & \beta^{-1}\left(a_{2(0)}\right) \beta^{-1}\left(\beta^{-1}\left(\beta^{-2}\left(b_{2(0)}\right)_{2(0)}\right) \beta^{-1}\left(c_{2}\right)_{2}\right) \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right)\right. \\
& \left.\cdot \beta^{-1}\left(\beta^{-2}\left(b_{2(0)}\right)_{1}\left(\beta^{-2}\left(b_{2(0)}\right)_{2(-1)} \cdot \beta^{-1}\left(\beta^{-1}\left(c_{2}\right)_{1}\right)\right)\right)\right) \\
& \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right) \\
= & \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-4}\left(b_{2(0) 2(0)}\right) \beta^{-2}\left(c_{22}\right)\right) \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right)\right. \\
& \left.\cdot\left(\beta^{-3}\left(b_{2(0) 1}\right)\left(\alpha^{-1}\left(b_{2(0) 2(-1)}\right) \cdot \beta^{-3}\left(c_{21}\right)\right)\right)\right) \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right) \\
= & \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-4}\left(b_{22(0)(0)}\right) \beta^{-2}\left(c_{22}\right)\right) \\
& \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right) \cdot\left(\beta^{-3}\left(b_{21(0)}\right)\left(\alpha^{-1}\left(b_{22(0)(-1)}\right) \cdot \beta^{-3}\left(c_{21}\right)\right)\right)\right) \\
& \sigma\left(b_{1},\left(b_{21(-1)} b_{22(-1)}\right) \cdot \beta^{-1}\left(c_{1}\right)\right) \\
= & \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-3}\left(b_{22(0)}\right) \beta^{-2}\left(c_{22}\right)\right) \\
& \sigma\left(\beta\left(a_{1}\right), \alpha\left(a_{2(-1)}\right) \cdot\left(\beta^{-3}\left(b_{21(0)}\right)\left(\alpha^{-1}\left(b_{22(-1) 2}\right) \cdot \beta^{-3}\left(c_{21}\right)\right)\right)\right) \\
& \sigma\left(b_{1},\left(b_{21(-1)} \alpha^{-1}\left(b_{22(-1) 1}\right)\right) \cdot \beta^{-1}\left(c_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(2.6)}{=} \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-3}\left(b_{22(0)}\right) \beta^{-2}\left(c_{22}\right)\right) \\
& \sigma\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right), \beta^{-3}\left(b_{21(0)}\right)\left(\alpha^{-1}\left(b_{22(-1) 2}\right) \cdot \beta^{-3}\left(c_{21}\right)\right)\right) \\
& \sigma\left(b_{1}, \alpha\left(b_{21(-1)}\right) \cdot\left(\alpha^{-1}\left(b_{22(-1) 1}\right) \cdot \beta^{-2}\left(c_{1}\right)\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \\
& \sigma\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right), \beta^{-3}\left(b_{12(0)}\right)\left(b_{2(-1) 2} \cdot \beta^{-3}\left(c_{12}\right)\right)\right) \\
& \sigma\left(\beta^{-1}\left(b_{11}\right), \alpha\left(b_{12(-1)}\right) \cdot\left(b_{2(-1) 1} \cdot \beta^{-3}\left(c_{11}\right)\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \\
& \sigma\left(\beta^{2}\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right)\right), \beta^{-1}\left(b_{12(0)}\right)\left(b_{2(-1) 2} \cdot \beta^{-1}\left(c_{12}\right)\right)\right) \\
& \sigma\left(b_{11}, b_{12(-1)} \cdot\left(\alpha\left(b_{2(-1) 1}\right) \cdot \beta^{-2}\left(c_{11}\right)\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \\
& \sigma\left(\beta^{2}\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right)\right), \beta^{-1}\left(b_{12(0)}\right)\left(b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right)_{2}\right) \\
& \sigma\left(b_{11}, b_{12(-1)} \cdot \beta^{-1}\left(\left(b_{2(-1)} \cdot \beta^{-1}\left(c_{1}\right)\right)_{1}\right)\right) \\
& \stackrel{(2.8)}{=} \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right)\right)_{1}\right. \text {, } \\
& \left.\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right)\right)_{2(-1)} \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\beta^{-1}\left(\left(S^{-1}\left(a_{2(-1)}\right) \cdot \beta^{-1}\left(a_{1}\right)\right)_{2(0)}\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\quad \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(S^{-1}\left(a_{2(-1)}\right)_{1} \cdot \beta^{-1}\left(a_{1}\right)_{1},\right. \\
& \left.\left(S^{-1}\left(a_{2(-1)}\right)_{2} \cdot \beta^{-1}\left(a_{1}\right)_{2}\right)_{(-1)} \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\beta^{-1}\left(\left(S^{-1}\left(a_{2(-1)}\right)_{2} \cdot \beta^{-1}\left(a_{1}\right)_{2}\right)_{(0)}\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(S^{-1}\left(a_{2(-1) 2}\right) \cdot \beta^{-1}\left(a_{11}\right)\right. \text {, } \\
& \left.\left(S^{-1}\left(a_{2(-1) 1}\right) \cdot \beta^{-1}\left(a_{12}\right)\right)_{(-1)} \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \left.\sigma\left(\beta^{-1}\left(\left(S^{-1}\left(a_{2(-1) 1}\right) \cdot \beta^{-1}\left(a_{12}\right)\right)\right)_{(0)}\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& \stackrel{(\mathrm{HYD})^{\prime}}{=} \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(S^{-1}\left(a_{2(-1) 2}\right) \cdot \beta^{-1}\left(a_{11}\right),\right. \\
& \left.\left(\left(S^{-1}\left(a_{2(-1) 1}\right)_{11} a_{12(-1)}\right) S\left(S^{-1}\left(a_{2(-1) 1}\right)_{2}\right)\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\beta^{-1}\left(\alpha\left(S^{-1}\left(a_{2(-1) 1}\right)_{12}\right) \cdot \beta^{-1}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(S^{-1}\left(a_{2(-1) 2}\right) \cdot \beta^{-1}\left(a_{11}\right)\right. \text {, } \\
& \left.\left(\left(S^{-1}\left(a_{2(-1) 122}\right) a_{12(-1)}\right) a_{2(-1) 11}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(S^{-1}\left(a_{2(-1) 121}\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 2}\right)\right) \cdot \beta^{-2}\left(a_{11}\right)\right. \text {, } \\
& \left.\left(\left(S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 122}\right)\right) \alpha^{-1}\left(a_{12(-1)}\right)\right) \alpha^{-1}\left(a_{2(-1) 11}\right)\right) \cdot \beta^{-2}\left(b_{11}\right)\right) \\
& \sigma\left(\left(S^{-1}\left(a_{2(-1) 121}\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& \stackrel{(2.6)}{=} \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, a_{2(-1) 2}\right. \\
& \left.\cdot\left(\left(\left(S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 122}\right)\right) \alpha^{-1}\left(a_{12(-1)}\right)\right) \alpha^{-1}\left(a_{2(-1) 11}\right)\right) \cdot \beta^{-2}\left(b_{11}\right)\right)\right) \\
& \sigma\left(\left(S^{-1}\left(a_{2(-1) 121}\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11},\left(\alpha^{-1}\left(a_{2(-1) 2}\right)\right.\right. \\
& \left.\left.\left(\left(S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 122}\right)\right) \alpha^{-1}\left(a_{12(-1)}\right)\right) \alpha^{-1}\left(a_{2(-1) 11}\right)\right)\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(S^{-1}\left(a_{2(-1) 121}\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11},\left(\alpha^{-1}\left(a_{2(-1) 222}\right)\right.\right. \\
& \left.\left.\left(\left(S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 221}\right)\right) \alpha^{-1}\left(a_{12(-1)}\right)\right) a_{2(-1) 1}\right)\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11},\left(\left(a_{2(-1) 222}\right.\right.\right. \\
& \left.\left.\left.S^{-1}\left(a_{2(-1) 221}\right)\right)\left(a_{12(-1)} a_{2(-1) 1}\right)\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \varepsilon\left(a_{2(-1) 22}\right) \sigma\left(\left(S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}, b_{2(-1)} \cdot \beta\left(c_{1}\right)\right) \\
& \stackrel{(2.3)}{=} \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(a_{2(-1) 221} \cdot\left(\left(S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right) b_{12}\right), a_{2(-1) 222}\right. \\
& \left.\cdot\left(b_{2(-1)} \cdot \beta\left(c_{1}\right)\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(a_{2(-1) 2211} \cdot\left(S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right) \cdot \beta^{-2}\left(a_{12(0)}\right)\right)\right)\left(a_{2(-1) 2212} \cdot b_{12}\right),\right. \\
& \left.\left(\alpha^{-1}\left(a_{2(-1) 222}\right) b_{2(-1)}\right) \cdot \beta^{2}\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(\left(\alpha^{-1}\left(a_{2(-1) 2211}\right) S^{-1}\left(\alpha\left(a_{2(-1) 21}\right)\right)\right) \cdot \beta^{-1}\left(a_{12(0)}\right)\right)\left(a_{2(-1) 2212} \cdot b_{12}\right),\right. \\
& \left.\left(\alpha^{-1}\left(a_{2(-1) 222}\right) b_{2(-1)}\right) \cdot \beta^{2}\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(\left(\left(\alpha^{-1}\left(a_{2(-1) 2112}\right) S^{-1}\left(\alpha^{-1}\left(a_{2(-1) 2111}\right)\right)\right) \cdot \beta^{-1}\left(a_{12(0)}\right)\right)\right. \\
& \left.\left(\alpha\left(a_{2(-1) 212}\right) \cdot b_{12}\right),\left(a_{2(-1) 22} b_{2(-1)}\right) \cdot \beta^{2}\left(c_{1}\right)\right) \\
& =\beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(a_{12(0)}\left(a_{2(-1) 21} \cdot b_{12}\right),\left(a_{2(-1) 22} b_{2(-1)}\right) \cdot \beta^{2}\left(c_{1}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(a \cdot_{\sigma} b\right) \cdot{ }_{\sigma} \beta(c) \stackrel{(2.9)}{=} \beta^{-1}\left(\beta^{-1}\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(0)}\right) \beta\left(c_{2}\right)\right) \sigma\left(\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{1}\right. \\
&\left.\left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-1}\left(b_{2}\right)\right)_{2(-1)} \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) \\
& \stackrel{(R 4)}{=} \beta^{-2}\left(\left(\beta^{-1}\left(\beta^{-2}\left(a_{2(0)}\right)_{2(0)}\right) \beta^{-1}\left(b_{2}\right)_{2}\right)(0)\right) c_{2} \\
& \sigma\left(\beta^{-2}\left(a_{2(0)}\right)_{1}\left(\beta^{-2}\left(a_{2(0)}\right)_{2(-1)} \cdot \beta^{-1}\left(\beta^{-1}\left(b_{2}\right)_{1}\right)\right)\right. \\
&\left.\left(\beta^{-1}\left(\beta^{-2}\left(a_{2(0)}\right)_{2(0)}\right) \beta^{-1}\left(b_{2}\right)_{2}\right)_{(-1)} \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) \\
&=\left(\beta^{-5}\left(a_{2(0) 2(0)(0)}\right) \beta^{-3}\left(b_{22(0)}\right)\right) c_{2} \sigma\left(\beta^{-2}\left(a_{2(0) 1}\right)\left(a_{2(0) 2(-1)} \cdot \beta^{-2}\left(b_{21}\right)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(\alpha^{-3}\left(a_{2(0) 2(0)(-1)}\right) \alpha^{-1}\left(b_{22(-1)}\right)\right) \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) \\
= & \left(\beta^{-4}\left(a_{2(0) 2(0)}\right) \beta^{-3}\left(b_{22(0)}\right)\right) c_{2} \sigma\left(\beta^{-2}\left(a_{2(0) 1}\right)\left(\alpha^{-1}\left(a_{2(0) 2(-1) 1}\right) \cdot \beta^{-2}\left(b_{21}\right)\right),\right. \\
& \left.\left(\alpha^{-1}\left(a_{2(0) 2(-1) 2}\right) \alpha^{-1}\left(b_{22(-1)}\right)\right) \cdot c_{1}\right) \sigma\left(a_{1}, a_{2(-1)} \cdot \beta^{-1}\left(b_{1}\right)\right) \\
= & \left(\beta^{-4}\left(a_{22(0)(0)}\right) \beta^{-3}\left(b_{22(0)}\right)\right) c_{2} \sigma\left(\beta^{-2}\left(a_{21(0)}\right)\left(\alpha^{-1}\left(a_{22(0)(-1) 1}\right) \cdot \beta^{-2}\left(b_{21}\right)\right),\right. \\
& \left.\left(\alpha^{-1}\left(a_{22(0)(-1) 2}\right) \alpha^{-1}\left(b_{22(-1)}\right)\right) \cdot c_{1}\right) \sigma\left(a_{1},\left(a_{21(-1)} a_{22(-1)}\right) \cdot \beta^{-1}\left(b_{1}\right)\right) \\
= & \left(\beta^{-3}\left(a_{22(0)}\right) \beta^{-3}\left(b_{22(0)}\right)\right) c_{2} \sigma\left(\beta^{-2}\left(a_{21(0)}\right)\left(\alpha^{-1}\left(a_{22(-1) 21}\right) \cdot \beta^{-2}\left(b_{21}\right)\right),\right. \\
& \left.\left(\alpha^{-1}\left(a_{22(-1) 22}\right) \alpha^{-1}\left(b_{22(-1)}\right)\right) \cdot c_{1}\right) \sigma\left(a_{1},\left(a_{21(-1)} \alpha^{-1}\left(a_{22(-1) 1}\right)\right) \cdot \beta^{-1}\left(b_{1}\right)\right) \\
= & \left(\beta^{-2}\left(a_{2(0)}\right) \beta^{-2}\left(b_{2(0)}\right)\right) c_{2} \sigma\left(\beta^{-2}\left(a_{12(0)}\right)\left(a_{2(-1) 21} \cdot \beta^{-2}\left(b_{12}\right)\right),\right. \\
& \left.\left(a_{2(-1) 22} b_{2(-1)}\right) \cdot c_{1}\right) \sigma\left(\beta^{-1}\left(a_{11}\right),\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-2}\left(b_{11}\right)\right) \\
= & \beta^{-1}\left(a_{2(0)}\right)\left(\beta^{-2}\left(b_{2(0)}\right) \beta^{-1}\left(c_{2}\right)\right) \sigma\left(a_{11}, \alpha\left(a_{12(-1)} a_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}\right)\right) \\
& \sigma\left(a_{12(0)}\left(a_{2(-1) 21} \cdot b_{12}\right),\left(a_{2(-1) 22} b_{2(-1)}\right) \cdot \beta^{2}\left(c_{1}\right)\right),
\end{aligned}
$$

then we can get $\beta(a) \cdot{ }_{\sigma}\left(b \cdot{ }_{\sigma} c\right)=\left(a \cdot{ }_{\sigma} b\right) \cdot{ }_{\sigma} \beta(c)$, i.e., $\cdot{ }_{\sigma}$ is Hom-associative.
(2) We check that $\left({ }_{\sigma} B, \beta\right)$ is a left (H, α)-Hom-module algebra. Clearly, $h \cdot 1_{B}=\varepsilon(h) 1_{B}$ for any $h \in H$. Next we only need to check the identity $h \cdot\left(b \cdot{ }_{\sigma} b^{\prime}\right)=\left(h_{1} \cdot b\right) \cdot \sigma\left(h_{2} \cdot b^{\prime}\right)$ for any $h \in H$ and $b, b^{\prime} \in B$. Indeed, we have

$$
\begin{array}{cl}
& \left(h_{1} \cdot b\right) \cdot \sigma\left(h_{2} \cdot b^{\prime}\right) \\
\stackrel{(\text { (2.9) }}{=} & \sigma\left(h_{11} \cdot b_{1},\left(h_{12} \cdot b_{2}\right)_{(-1)} \cdot \beta^{-1}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(\left(h_{12} \cdot b_{2}\right)_{(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(h_{11} \cdot b_{1},\left(h_{1211} \alpha\left(b_{2(-1)}\right)\right) S\left(h_{122}\right) \cdot \beta^{-1}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \\
& \beta^{-1}\left(\beta^{-1}\left(\alpha\left(h_{1212}\right) \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(h_{11} \cdot b_{1},\left(\alpha\left(h_{121}\right) \alpha\left(b_{2(-1)}\right)\right) S\left(\alpha^{-1}\left(h_{1222}\right)\right) \cdot \beta^{-1}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \\
& \beta^{-1}\left(\beta^{-1}\left(\alpha\left(h_{1221}\right) \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(\alpha^{-1}\left(h_{111}\right) \cdot b_{1},\left(\left(\alpha\left(h_{112}\right) \alpha\left(b_{2(-1)}\right)\right) S\left(h_{122}\right)\right) \cdot \beta^{-1}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \\
= & \beta^{-1}\left(\beta^{-1}\left(h_{121} \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(\alpha^{-1}\left(h_{111}\right) \cdot b_{1}, h_{112}\left(\alpha\left(b_{2(-1)}\right) S\left(\alpha^{-1}\left(h_{122}\right)\right)\right) \cdot \beta^{-1}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \\
= & \beta^{-1}\left(\beta^{-1}\left(h_{121} \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(\alpha^{-1}\left(h_{111}\right) \cdot b_{1}, \alpha\left(h_{112}\right) \cdot\left(\left(\alpha\left(b_{2(-1)}\right) S\left(\alpha^{-1}\left(h_{122}\right)\right)\right) \cdot \beta^{-2}\left(h_{21} \cdot b_{1}^{\prime}\right)\right)\right) \\
= & \beta^{-1}\left(\beta^{-1}\left(h_{121} \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(\alpha^{-1}\left(h_{111}\right) \cdot b_{1}, \alpha^{-1}\left(h_{112}\right) \cdot\left(\left(\alpha\left(b_{2(-1)}\right) S\left(\alpha^{-1}\left(h_{122}\right)\right)\right) \cdot \beta^{-2}\left(h_{21} \cdot b_{1}^{\prime}\right)\right)\right) \\
(2.3) & \beta^{-1}\left(\beta^{-1}\left(h_{121} \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(b_{1}, \alpha\left(b_{2(-1)}\right) S\left(h_{12}\right) \cdot \beta^{-2}\left(h_{21} \cdot b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(\alpha\left(h_{11}\right) \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(b_{1}, \alpha^{-1}\left(\alpha\left(b_{2(-1)}\right) S\left(h_{12}\right)\right) h_{21} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(\alpha\left(h_{11}\right) \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(b_{1}, \alpha\left(b_{2(-1)}\right)\left(S\left(\alpha^{-1}\left(h_{12}\right)\right) \alpha^{-1}\left(h_{21}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(\alpha\left(h_{11}\right) \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right) \\
= & \sigma\left(b_{1}, \alpha\left(b_{2(-1)}\right)\left(S\left(h_{211}\right) h_{212}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \beta^{-1}\left(\beta^{-1}\left(h_{1} \cdot b_{2(0)}\right)\left(h_{22} \cdot b_{2}^{\prime}\right)\right)
\end{array}
$$

$$
\begin{aligned}
& =\sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\left(h_{1} \cdot \beta^{-2}\left(b_{2(0)}\right)\right)\left(h_{2} \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right) \\
& =h \cdot\left(b \cdot{ }_{\sigma} b^{\prime}\right)
\end{aligned}
$$

the proof is completed.
Let $\gamma: B \longrightarrow K$ be a morphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, that is

$$
\begin{align*}
& \gamma(h \cdot b)=\varepsilon(h) \gamma(b), \tag{2.10}\\
& \gamma\left(b_{(0)}\right) b_{(-1)}=\gamma(b) 1_{H}, \tag{2.11}\\
& \gamma \circ \beta=\gamma \tag{2.12}
\end{align*}
$$

for all $h \in H$ and $b \in B$.
If γ is a normal and convolution invertible linear map in ${ }_{H}^{H} \mathbb{Y D}$, with convolution inverse γ^{-1} in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, the analogue of the operator D^{1} is given in ${ }_{H}^{H} \mathbb{Y D}$ by

$$
\begin{gathered}
D^{1}(\gamma)\left(b, b^{\prime}\right) \quad=\quad \gamma\left(b_{1}\right) \gamma\left(b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \gamma^{-1}\left(\beta^{-1}\left(b_{2(0)}\right) b_{2}^{\prime}\right) \\
\stackrel{(2.10)}{=} \gamma\left(b_{1}\right) \gamma\left(b_{1}^{\prime}\right) \gamma^{-1}\left(b_{2} b_{2}^{\prime}\right) .
\end{gathered}
$$

For a morphism $\gamma: B \longrightarrow K$ in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, the laziness condition is identical to the usual one: $\gamma\left(b_{1}\right) b_{2}=b_{1} \gamma\left(b_{2}\right)$ for all $b \in B . \operatorname{Reg}_{L}^{1}(B, \beta)$ is a group in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

Theorem 2.5 (i) For a normal left 2-cocycle $\sigma: B \otimes B \longrightarrow K$ in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, define $\bar{\sigma}$: $B_{\times}^{\#} H \otimes B_{\times}^{\#} H \longrightarrow K$ by

$$
\begin{equation*}
\bar{\sigma}\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right)=\sigma\left(b, \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \tag{2.13}
\end{equation*}
$$

then $\bar{\sigma}$ is a normal left 2-cocycle on $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$ and we have ${ }_{\sigma} B \# H={ }_{\bar{\sigma}}\left(B_{\times}^{\#} H\right)$ as Hom-algebras. Moreover, $\bar{\sigma}$ is unique with this property.
(ii) If $\bar{\sigma}$ is a left 2-cocycle on $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$, then σ is a left 2 -cocycle on (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.
(iii) If σ is convolution invertible in ${ }_{H}^{H} \mathbb{Y D}$, then $\bar{\sigma}$ is convolution invertible, with inverse

$$
\begin{equation*}
\bar{\sigma}^{-1}\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right)=\sigma^{-1}\left(b, \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \tag{2.14}
\end{equation*}
$$

where σ^{-1} is the convolution inverse of σ in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.
(iv) σ is lazy in ${ }_{H}^{H} \mathbb{Y D}$ if and only if $\bar{\sigma}$ is lazy.
(v) If $\sigma, \tau: B \otimes B \longrightarrow K$ are lazy 2-cocycles in ${ }_{H}^{H} \mathbb{Y D}$, then $\bar{\sigma} *=\bar{\sigma} * \bar{\tau}$, hence the map $\sigma \longrightarrow \bar{\sigma}$ is a group homomorphism from $Z_{L}^{2}(B, \beta)$ to $Z_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$.
(vi) If $\gamma: B \longrightarrow K$ is a normal and convolution invertible morphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, define $\bar{\gamma}: B_{\times}^{\#} H \longrightarrow K$ by

$$
\begin{equation*}
\bar{\gamma}(b \otimes h)=\gamma(b) \varepsilon(h) \tag{2.15}
\end{equation*}
$$

then $\bar{\gamma}$ is normal and convolution invertible and $\overline{D^{1}(\gamma)}=D^{1}(\bar{\gamma})$. If γ is lazy in ${ }_{H}^{H} Y \mathbb{D}$, then $\bar{\gamma}$ is also lazy.

Proof (i) It is easy to see that $\bar{\sigma}$ is normal. Since ${ }_{\sigma} B \# H$ is a Hom-algebra, we have

$$
\begin{equation*}
((\beta \otimes \alpha)(b \# h))\left(\left(b^{\prime} \# h^{\prime}\right)\left(b^{\prime \prime} \# h^{\prime \prime}\right)\right)=\left((b \# h)\left(b^{\prime} \# h^{\prime}\right)\right)\left((\beta \otimes \alpha)\left(b^{\prime \prime} \# h^{\prime \prime}\right)\right) . \tag{2.16}
\end{equation*}
$$

Applying $\varepsilon_{B} \otimes \varepsilon_{H}$ to both sides of (2.16), then $\bar{\sigma}$ is a normal left 2-cocycle on $\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$.
We prove that the multiplication in ${ }_{\sigma} B \# H$ and $\bar{\sigma}\left(B_{\times}^{\#} H\right)$ coincide.

$$
\begin{aligned}
&(b \# h)\left(b^{\prime} \# h^{\prime}\right)= b \cdot\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right) \# \alpha^{-1}\left(h_{2}\right) h^{\prime} \\
& \stackrel{(2.9)}{=} \sigma\left(b_{1}, b_{2(-1)} \cdot\left(\alpha^{-1}\left(h_{11}\right) \cdot \beta^{-2}\left(b_{1}^{\prime}\right)\right)\right) \\
& \beta^{-2}\left(b_{2(0)}\right)\left(\alpha^{-1}\left(h_{12}\right) \cdot \beta^{-2}\left(b_{2}^{\prime}\right)\right) \# \alpha^{-1}\left(h_{2}\right) h^{\prime} \\
&= \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \\
& \beta^{-2}\left(b_{2(0)}\right)\left(\alpha^{-1}\left(h_{12}\right) \cdot \beta^{-2}\left(b_{2}^{\prime}\right)\right) \# \alpha^{-1}\left(h_{2}\right) h^{\prime} \\
&= \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \\
&\left(\beta^{-1} \otimes \alpha^{-1}\right)\left(\beta^{-1}\left(b_{2(0)}\right)\left(h_{12} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \# h_{2} h_{2}^{\prime}\right. \\
&= \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} h_{11}, b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \\
&\left(\beta^{-1} \otimes \alpha^{-1}\right)\left(\beta^{-1}\left(b_{2(0)}\right)\left(h_{12} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \# h_{2} h_{2}^{\prime}\right. \\
&= \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \\
&\left(\beta^{-1} \otimes \alpha^{-1}\right)\left(\beta^{-1}\left(b_{2(0)}\right)\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \# \alpha^{-1}\left(h_{22}\right) h_{2}^{\prime}\right) \\
&= \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \\
&\left(\beta^{-1} \otimes \alpha^{-1}\right)\left(\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}\right)\left(\beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right)\right) \\
&= \bar{\sigma}\left((b \otimes h)_{1},\left(b^{\prime} \otimes h^{\prime}\right)_{1}\right)\left(\beta^{-1} \otimes \alpha^{-1}\right)\left((b \otimes h)_{2}\left(b^{\prime} \otimes h^{\prime}\right)_{2}\right) \\
& \stackrel{(1.3)}{=}(b \otimes h) \cdot \bar{\sigma}\left(b^{\prime} \otimes h^{\prime}\right) .
\end{aligned}
$$

The uniqueness of $\bar{\sigma}$ follows easily by applying $\varepsilon_{B} \otimes \varepsilon_{H}$ to the multiplications in ${ }_{\sigma} B \# H$ and $\bar{\sigma}\left(B_{\times}^{\#} H\right)$. We check that as follows

$$
\begin{aligned}
& \left(\varepsilon_{B} \otimes \varepsilon_{H}\right)\left((b \# h)\left(b^{\prime} \# h^{\prime}\right)\right) \\
= & \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\left(\varepsilon_{B} \otimes \varepsilon_{H}\right)\left(\beta^{-2}\left(b_{2(0)}\right)\left(\alpha^{-1}\left(h_{12}\right) \cdot \beta^{-2}\left(b_{2}^{\prime}\right)\right) \# \alpha^{-1}\left(h_{2}\right) h^{\prime}\right) \\
= & \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \varepsilon\left(b_{2(0)}\right) \varepsilon\left(h_{12}\right) \varepsilon\left(b_{2}^{\prime}\right) \varepsilon\left(h_{2}\right) \varepsilon\left(h^{\prime}\right) \\
= & \sigma\left(\beta(b), h \cdot b^{\prime}\right) \varepsilon\left(h^{\prime}\right) \\
= & \sigma\left(b, \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\varepsilon_{B} \otimes \varepsilon_{H}\right)\left((b \otimes h) \cdot \bar{\sigma}\left(b^{\prime} \otimes h^{\prime}\right)\right) \\
= & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \\
& \left(\varepsilon_{B} \otimes \varepsilon_{H}\right)\left(\beta^{-1} \otimes \alpha^{-1}\right)\left(\beta^{-1}\left(b_{2(0)}\right)\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \# \alpha^{-1}\left(h_{22}\right) h_{2}^{\prime}\right) \\
= & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \varepsilon\left(b_{2(0)}\right) \varepsilon\left(h_{21}\right) \varepsilon\left(b_{2(0)}^{\prime}\right) \varepsilon\left(h_{22}\right) \varepsilon\left(h_{2}^{\prime}\right) \\
= & \bar{\sigma}\left(\beta(b) \otimes \alpha(h), \beta\left(b^{\prime}\right) \otimes \alpha\left(h^{\prime}\right)\right) \\
= & \bar{\sigma}\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) .
\end{aligned}
$$

(ii) Let $a, b, c \in B$ and $h, g, l \in H$, we have

$$
\begin{aligned}
& \bar{\sigma}\left((a \otimes h)_{1},(b \otimes g)_{1}\right) \bar{\sigma}\left((a \otimes h)_{2}(b \otimes g)_{2},\left(\beta^{2} \otimes \alpha^{2}\right)(c \otimes l)\right) \\
= & \bar{\sigma}\left((b \otimes g)_{1},(c \otimes l)_{1}\right) \bar{\sigma}\left(\left(\beta^{2} \otimes \alpha^{2}\right)(a \otimes h),(b \otimes g)_{2}(c \otimes l)_{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { LHS }= & \bar{\sigma}\left(a_{1} \otimes a_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(g_{1}\right)\right) \\
& \bar{\sigma}\left(\left(\beta^{-1}\left(a_{2(0)}\right) \otimes h_{2}\right)\left(\beta^{-1}\left(b_{2(0)}\right) \otimes g_{2}\right), \beta^{2}(c) \otimes l\right) \\
= & \bar{\sigma}\left(a_{1} \otimes a_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(g_{1}\right)\right) \\
& \bar{\sigma}\left(\beta^{-1}\left(a_{2(0)}\right)\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}\right)\right) \otimes \alpha^{-1}\left(h_{22}\right) g_{2}, \beta^{2}(c) \otimes l\right) \\
\stackrel{(2.13)}{=}) & \sigma\left(a_{1},\left(\alpha\left(a_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}\right)\right) \\
& \sigma\left(\beta^{-1}\left(a_{2(0)}\right)\left(h_{21} \cdot \beta^{-1}\left(b_{2}\right)\right),\left(h_{22} g\right) \cdot \beta(c)\right) \varepsilon(l)
\end{aligned}
$$

and

$$
\begin{aligned}
R H S= & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(g_{1}\right), c_{1} \otimes c_{2(-1)} \alpha^{-1}\left(l_{1}\right)\right) \\
& \bar{\sigma}\left(\beta^{2}(a) \otimes h,\left(\beta^{-1}\left(b_{2(0)}\right) \otimes g_{2}\right)\left(\beta^{-1}\left(c_{2(0)}\right) \otimes l_{2}\right)\right) \\
= & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(g_{1}\right), c_{1} \otimes c_{2(-1)} \alpha^{-1}\left(l_{1}\right)\right) \\
& \bar{\sigma}\left(\beta^{2}(a) \otimes h, \beta^{-1}\left(b_{2(0)}\right)\left(g_{21} \cdot \beta^{-2}\left(c_{2(0)}\right)\right) \otimes \alpha^{-1}\left(g_{22}\right) l_{2}\right) \\
\stackrel{(2.13)}{=} & \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) g_{1}\right) \cdot \beta^{-1}\left(c_{1}\right)\right) \\
& \sigma\left(\beta^{2}(a), \alpha(h) \cdot\left(\beta^{-2}\left(b_{2(0)}\right)\left(g_{2} \cdot \beta^{-2}\left(c_{2}\right)\right)\right) \varepsilon(l) .\right.
\end{aligned}
$$

Let $h=g=l=1_{H}$, we can get (2.8).
(iii)

$$
\begin{array}{cl}
& \left(\bar{\sigma} * \bar{\sigma}^{-1}\right)\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) \\
= & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \bar{\sigma}^{-1}\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}, \beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right) \\
\stackrel{(2.13,2.14)}{=} & \sigma\left(b_{1}, \alpha\left(b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \\
& \sigma^{-1}\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right) \varepsilon\left(h_{2}^{\prime}\right)\right. \\
= & \sigma\left(b_{1}, b_{2(-1)} \cdot\left(h_{1} \cdot \beta^{-2}\left(b_{1}^{\prime}\right)\right)\right) \sigma^{-1}\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \\
\stackrel{(2.2)}{=} & \left(\sigma * \sigma^{-1}\right)\left(b, \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \\
= & \varepsilon(b) \varepsilon(h) \varepsilon\left(b^{\prime}\right) \varepsilon\left(h^{\prime}\right) .
\end{array}
$$

(iv) Now let $b, b^{\prime} \in B$ and $h, h^{\prime} \in H$ and assume that σ is lazy in ${ }_{H}^{H} Y \mathbb{D}$, then we prove (1.4) for $\bar{\sigma}$ on ($B_{\times}^{\#} H, \beta \otimes \alpha$) as follows:

$$
\begin{aligned}
R H S= & \bar{\sigma}\left((b \otimes h)_{2},\left(b^{\prime} \otimes h^{\prime}\right)_{2}\right)(b \otimes h)_{1}\left(b^{\prime} \otimes h^{\prime}\right)_{1} \\
= & \bar{\sigma}\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}, \beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right)\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right)\left(b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \\
\stackrel{(2.13)}{=} & \sigma\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\left(b_{1}\left(\left(b_{2(-1) 1} \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(-1) 2}\right) h_{12}\right)\left(b_{2(-1)}^{\prime}\right) h^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sigma\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\left(b_{1}\left(\left(b_{2(-1) 1} \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(-1) 2}\right) h_{12}\right)\left(b_{2(-1)}^{\prime} h^{\prime}\right)\right) \\
= & \sigma\left(\beta^{-2}\left(b_{2(0)(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(0)(-1)}\right) h_{12}\right)\left(b_{2(-1)}^{\prime} h^{\prime}\right)\right) \\
= & \sigma\left(\beta^{-2}\left(b_{2(0)(0)}\right), h_{22} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1))}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(0)(-1))}\right) h_{21}\right)\left(b_{2(-1)}^{\prime} h^{\prime}\right)\right) \\
= & \sigma\left(\beta^{-2}\left(b_{2(0)(0)}\right), h_{22} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(0)(-1)}\right)\left(\alpha^{-1}\left(h_{21}\right) \alpha^{-1}\left(b_{2(-1)}^{\prime}\right)\right)\right) \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(b_{2(0)(0)}, h_{22} \cdot b_{2(0)}^{\prime}\right)\left(b_{1}\left(\left(\alpha_{2}\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(0)(-1)}\right) \alpha^{-1}\left(h_{21} b_{2(-1)}^{\prime}\right)\right) \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(\beta\left(b_{2(0)(0)}\right),\left(h_{21} \cdot \beta\left(b_{2}^{\prime}\right)\right)_{(0)}\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1))}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \left.\otimes\left(\alpha^{-1}\left(b_{2(0)(-1)}\right) \alpha^{-1}\left(\left(\left(h_{21} \cdot \beta\left(b_{2}^{\prime}\right)\right)_{(-1)}\right) h_{22}\right)\right) \alpha^{-1}\left(h^{\prime}\right)\right) \\
= & \sigma\left(\beta\left(b_{2(0)(0)}\right),\left(h_{21} \cdot \beta\left(b_{2}^{\prime}\right)\right)_{(0)}\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right. \\
& \otimes\left(\left(\alpha ^ { - 2 } (b _ { 2 (0) (- 1) }) \alpha ^ { - 1 } \left((h _ { 2 1 } \cdot \beta (b _ { 2 } ^ { \prime })) _ { (- 1))) h _ { 2 2 }) \alpha (h ^ { \prime })) } ^ { = } \sigma (b _ { 2 (0) (0) } , \beta ^ { - 1 } (h _ { 2 1 } \cdot \beta (b _ { 2 } ^ { \prime })) _ { (0) }) \left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right)\right.\right.\right.\right. \\
& \left.\otimes\left(\left(\alpha^{-2}\left(b_{2(0)(-1)}\right) \beta^{-1}\left(h_{21} \cdot \beta\left(b_{2}^{\prime}\right)\right)_{(-1))}\right) h_{22}\right) \alpha\left(h^{\prime}\right)\right) \\
(2.4) & \sigma\left(b_{2(0)}, \beta^{-1}\left(h_{21} \cdot \beta\left(b_{2}^{\prime}\right)\right)\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \otimes\left(1_{H} h_{22}\right) \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(b_{2(0)}, \alpha\left(h_{12}\right) \cdot b_{2}^{\prime}\right)\left(b_{1}\left(\left(\alpha\left(b_{2(-1)}\right) \alpha^{-1}\left(h_{11}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \otimes h_{2} \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(\beta^{-2}\left(b_{2(0)}\right),\left(\alpha^{-1}\left(h_{1}\right) \cdot \beta^{-2}\left(b^{\prime}\right)\right)_{2}\right)\left(b_{1}\left(b_{2(-1)} \cdot\left(\alpha^{-1}\left(h_{1}\right) \cdot \beta^{-2}\left(b^{\prime}\right)\right)_{1}\right)\right. \\
= & \left.\otimes h_{2} \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(\beta^{-1}\left(b_{2(0)}\right),\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{2}\right)\left(b_{1}\left(b_{2(-1)} \cdot \beta^{-1}\left(\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{1}\right)\right) \otimes h_{2} \alpha\left(h^{\prime}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& L H S=\bar{\sigma}\left((b \otimes h)_{1},\left(b^{\prime} \otimes h^{\prime}\right)_{1}\right)(b \otimes h)_{2}\left(b^{\prime} \otimes h^{\prime}\right)_{2} \\
&=\bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right)\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}\right)\left(\beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right) \\
& \stackrel{(2.13)}{=} \sigma\left(b_{1}, \alpha\left(b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \\
& \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \beta^{-1}\left(b_{2(0)}\right)\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \otimes \alpha^{-1}\left(h_{22}\right) h_{2}^{\prime} \\
&=\sigma\left(b_{1}, b_{2(-1)} \cdot\left(\alpha^{-1}\left(h_{11}\right) \cdot \beta^{-2}\left(b_{1}^{\prime}\right)\right)\right) \beta^{-1}\left(b_{2(0)}\right)\left(h_{12} \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right) \otimes h_{2} \alpha\left(h^{\prime}\right) \\
&=\sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{1}\right)\right) \beta^{-1}\left(b_{2(0)}\right)\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{2} \otimes h_{2} \alpha\left(h^{\prime}\right) \\
& \stackrel{(2.7)}{=} \sigma\left(\beta^{-1}\left(b_{2(0)}\right),\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{2}\right) b_{1}\left(b_{2(-1)} \cdot \beta^{-1}\left(\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{1}\right)\right) \otimes h_{2} \alpha\left(h^{\prime}\right),
\end{aligned}
$$

which proves that $\bar{\sigma}$ is lazy.
Conversely, if $\bar{\sigma}$ is lazy, we have
$\bar{\sigma}\left((b \otimes h)_{2},\left(b^{\prime} \otimes h^{\prime}\right)_{2}\right)(b \otimes h)_{1}\left(b^{\prime} \otimes h^{\prime}\right)_{1}=\bar{\sigma}\left((b \otimes h)_{1},\left(b^{\prime} \otimes h^{\prime}\right)_{1}\right)(b \otimes h)_{2}\left(b^{\prime} \otimes h^{\prime}\right)_{2}$,
then we can get

$$
\begin{aligned}
& \sigma\left(\beta^{-1}\left(b_{2(0)}\right),\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{2}\right)\left(b_{1}\left(b_{2(-1)} \cdot \beta^{-1}\left(\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{1}\right)\right) \otimes h_{2} \alpha\left(h^{\prime}\right)\right) \\
= & \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{1}\right)\right) \beta^{-1}\left(b_{2(0)}\right)\left(h_{1} \cdot \beta^{-1}\left(b^{\prime}\right)\right)_{2} \otimes h_{2} \alpha\left(h^{\prime}\right) .
\end{aligned}
$$

Applying $i d \otimes \varepsilon$ to both sides of the above equation and let $h=1_{H}$, we get σ is lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.
(v) Using (2.2) for the convolution in ${ }_{H}^{H} \mathbb{Y D}$, we compute

$$
\begin{array}{ll}
& \overline{(\sigma * \tau)}\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) \\
\stackrel{(2.13)}{=} & (\sigma * \tau)\left(b \otimes \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \\
\stackrel{(2.2)}{=} & \sigma\left(b_{1}, b_{2(-1)} \cdot\left(h_{1} \cdot \beta^{-2}\left(b_{1}^{\prime}\right)\right)\right) \tau\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \\
= & \sigma\left(b_{1},\left(\alpha\left(b_{2(-1)}\right) h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \tau\left(\beta^{-1}\left(b_{2(0)}\right), \alpha\left(h_{2}\right) \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right) \varepsilon\left(h_{2}^{\prime}\right) \\
\stackrel{(2.13)}{=} & \bar{\sigma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right), b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \bar{\tau}\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}, \beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right) \\
= & \bar{\sigma}\left((b \otimes h)_{1},\left(b^{\prime} \otimes h^{\prime}\right)_{1}\right) \bar{\tau}\left((b \otimes h)_{2},\left(b^{\prime} \otimes h^{\prime}\right)_{2}\right) \\
= & (\bar{\sigma} * \bar{\tau})\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) .
\end{array}
$$

(vi) Obviously $\bar{\gamma}$ is normalized, and it is easy to see that its convolution inverse is given by $\bar{\gamma}^{-1}(b \times h)=\gamma^{-1}(b) \varepsilon(h)$, where γ^{-1} is the convolution inverse of γ in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Now we compute

$$
\begin{array}{cl}
& \overline{D^{1}(\gamma)}\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) \\
\stackrel{(2.13)}{=} & D^{1}(\gamma)\left(b, \alpha(h) \cdot \beta^{-1}\left(b^{\prime}\right)\right) \varepsilon\left(h^{\prime}\right) \\
= & \gamma\left(b_{1}\right) \gamma\left(\alpha\left(h_{1}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \gamma^{-1}\left(b_{2}\left(\alpha\left(h_{2}\right) \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right)\right) \varepsilon\left(h^{\prime}\right) \\
\stackrel{(2.10)}{=} & \gamma\left(b_{1}\right) \gamma\left(b_{1}^{\prime}\right) \gamma^{-1}\left(b_{2}\left(h \cdot \beta^{-1}\left(b_{2}^{\prime}\right)\right)\right) \varepsilon\left(h^{\prime}\right) \\
= & \gamma\left(b_{1}\right) \varepsilon\left(b_{2(-1)}\right) \varepsilon\left(h_{1}\right) \gamma\left(b_{1}^{\prime}\right) \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{2(0)}\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\right) \varepsilon\left(h_{22}\right) \varepsilon\left(h_{2}^{\prime}\right)\right. \\
= & \gamma\left(b_{1}\right) \varepsilon\left(b_{2(-1)}\right) \varepsilon\left(h_{1}\right) \gamma\left(b_{1}^{\prime}\right) \varepsilon\left(b_{2(-1)}^{\prime}\right) \varepsilon\left(h_{1}^{\prime}\right) \bar{\gamma}^{-1}\left(\beta ^ { - 1 } \left(b_{2(0)}\left(h_{21} \cdot \beta^{-2}\left(b_{2(0)}^{\prime}\right)\right)\right.\right. \\
& \left.\left.\otimes \alpha^{-1}\left(h_{22}\right)\left(h_{2}^{\prime}\right)\right)\right) \\
= & \bar{\gamma}\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right) \bar{\gamma}\left(b_{1}^{\prime} \otimes b_{2(-1)}^{\prime} \alpha^{-1}\left(h_{1}^{\prime}\right)\right) \bar{\gamma}^{-1}\left(\beta^{-1}\left(b_{2(0)} \otimes h_{2}\right)\left(\beta^{-1}\left(b_{2(0)}^{\prime}\right) \otimes h_{2}^{\prime}\right)\right) \\
= & \bar{\gamma}\left((b \otimes h)_{1}\right) \bar{\gamma}\left(\left(b^{\prime} \otimes h^{\prime}\right)_{1}\right) \bar{\gamma}^{-1}\left((b \otimes h)_{2}\left(b^{\prime} \otimes h^{\prime}\right)_{2}\right) \\
\stackrel{(1.5)}{=} & D^{1}(\bar{\gamma})\left(b \otimes h, b^{\prime} \otimes h^{\prime}\right) .
\end{array}
$$

Hence we have indeed $\overline{D^{1}(\gamma)}=D^{1}(\bar{\gamma})$. If γ is lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, then we have

$$
\begin{aligned}
\bar{\gamma}\left((b \otimes h)_{1}\right)(b \otimes h)_{2} & \stackrel{(2.15)}{=} \gamma\left(b_{1}\right)\left(b_{2} \otimes \alpha(h)\right) \\
& =\gamma\left(b_{2}\right)\left(b_{1} \otimes \alpha(h)\right) \\
& \stackrel{(2.11)}{=} \gamma\left(b_{2(0)}\right)\left(b_{1} \otimes b_{2(-1)} h\right) \\
& \left.=\gamma\left(b_{2(0)}\right)\right) \varepsilon\left(h_{2}\right)\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right) \\
& \stackrel{(2.15)}{=} \bar{\gamma}\left(\beta^{-1}\left(b_{2(0)}\right) \otimes h_{2}\right)\left(b_{1} \otimes b_{2(-1)} \alpha^{-1}\left(h_{1}\right)\right) \\
& =\bar{\gamma}\left((b \otimes h)_{2}\right)(b \otimes h)_{1},
\end{aligned}
$$

so $\bar{\gamma}$ is lazy.
Remarks (1) $Z_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$ is a group by Lemma 1.7.
(2) If σ, τ are left lazy 2 -cocycles on (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, we can get $\bar{\sigma}, \bar{\tau}$ are left lazy 2 cocycles on ($B_{\times}^{\#} H, \beta \otimes \alpha$) by (i) and (iv). Then $\bar{\sigma} * \bar{\tau}$ is a left lazy 2 -cocycle on ($B_{\times}^{\#} H, \beta \otimes \alpha$). Combining (ii) with (v), we have $\sigma * \tau$ is a left lazy 2 -cocycle on (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

By (2.13) and (2.14), we have $\bar{\sigma}^{-1}=\overline{\sigma^{-1}}$. If $\bar{\sigma} \in Z_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$, then $\bar{\sigma}^{-1}=\overline{\sigma^{-1}} \in$ $Z_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$. Combining (ii) with (iv), then σ^{-1} is a lazy 2 -cocycle on (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

In a word, the set of convolution invertible lazy 2 -cocycle on (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ denoted by $Z_{L}^{2}(B, \beta)$ is a group.

Proposition $2.6 D^{1}: \operatorname{Reg}_{L}^{1}(B, \beta) \longrightarrow Z_{L}^{2}(B, \beta)$ is a group homomorphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, whose image denoted by $B_{L}^{2}(B, \beta)$ (its elements are called lazy 2 -coboundary in ${ }_{H}^{H} Y \mathbb{D}$), is contained in the center of $Z_{L}^{2}(B, \beta)$. Thus we call quotient group $H_{L}^{2}(B, \beta):=Z_{L}^{2}(B, \beta) / B_{L}^{2}(B, \beta)$ the second lazy cohomology group of (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

Proof It is easy to check that $D^{1}: \operatorname{Reg}_{L}^{1}(B, \beta) \longrightarrow Z_{L}^{2}(B, \beta)$ is a group homomorphism in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Now we prove $B_{L}^{2}(B, \beta)$ is contained in the center of $Z_{L}^{2}(B, \beta)$.

For all $\gamma \in \operatorname{Re}_{2}^{1}(B, \beta)$ and $\sigma \in Z_{L}^{2}(B, \beta)$,

$$
\begin{aligned}
\left(\sigma * D^{1}(\gamma)\right)\left(b, b^{\prime}\right) & \stackrel{(2.2)}{=} \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) D^{1}(\gamma)\left(\beta^{-1}\left(b_{2(0)}\right), b_{2}^{\prime}\right) \\
= & \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \gamma\left(\beta^{-1}\left(b_{2(0) 1}\right)\right) \gamma\left(b_{21}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{2(0) 2}\right) b_{22}^{\prime}\right) \\
= & \sigma\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \gamma\left(\beta^{-1}\left(b_{2(0) 2}\right)\right) \gamma\left(b_{22}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{2(0) 1}\right) b_{21}^{\prime}\right) \\
= & \sigma\left(b_{1},\left(b_{21(-1)} b_{22(-1)}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \\
& \stackrel{(2.11)}{=} \sigma\left(\beta^{-1}\left(b_{22(0)}\right)\right) \gamma\left(b_{22}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{21(0)}\right) b_{21}^{\prime}\right) \\
= & \left.\alpha\left(b_{21(-1)}\right) \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \gamma\left(b_{22}\right) \gamma\left(b_{22}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{21(0)}\right) b_{21}^{\prime}\right) \\
= & \sigma\left(\beta^{-1}\left(b_{11}\right), \alpha\left(b_{12(-1)}\right) \cdot \beta^{-2}\left(b_{11}^{\prime}\right)\right) \gamma\left(b_{2}\right) \gamma\left(b_{2}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{12(0)}\right) b_{12}^{\prime}\right) \\
& \stackrel{(2.7)}{=} \sigma\left(\beta^{-1}\left(b_{12(0)}\right), b_{12}^{\prime}\right) \gamma^{-1}\left(b_{11}\left(b_{12(-1)}^{\prime}\right)\right) \gamma\left(b_{2}\right) \gamma\left(b_{2}^{\prime}\right) \gamma^{-1}\left(\beta^{-1}\left(b_{12(0)}\right) b_{12}^{\prime}\right) \\
& \left.\left.=\sigma\left(b_{11}^{\prime}\right)\right)\right) \gamma\left(b_{2}\right) \gamma\left(b_{2}^{\prime}\right) \\
= & \sigma\left(\beta^{-1}\left(b_{22(0)}\right), b_{22}^{\prime}\right) \gamma^{-1}\left(\beta\left(b_{1}\right)\left(b_{22(-1)}^{\prime} \cdot b_{1}^{\prime}\right)\right) \gamma\left(b_{21}\right) \gamma\left(b_{21}^{\prime}\right) \\
= & \sigma\left(b_{2(0)}, \beta\left(b_{2}^{\prime}\right)\right) \gamma^{-1}\left(b_{11}\left(\alpha\left(b_{2(-1)}\right) \cdot \beta^{-1}\left(b_{11}^{\prime}\right)\right)\right) \gamma\left(b_{12}\right) \gamma\left(b_{12}^{\prime}\right), \\
\left(D^{1}(\gamma) * \sigma\right)\left(b, b^{\prime}\right) & \stackrel{(2.2)}{=} D^{1}(\gamma)\left(b_{1}, b_{2(-1)} \cdot \beta^{-1}\left(b_{1}^{\prime}\right)\right) \sigma\left(\beta^{-1}\left(b_{2(0)}\right), b_{2}^{\prime}\right) \\
= & \gamma\left(b_{11}\right) \gamma\left(\alpha^{2}\left(b_{2(-1) 1}\right) \cdot \beta^{-1}\left(b_{11}^{\prime}\right)\right) \gamma^{-1}\left(b_{12}\left(b_{2(-1) 2} \cdot \beta^{-1}\left(b_{12}^{\prime}\right)\right)\right) \\
& \sigma\left(\beta^{-1}\left(b_{2(0)}\right), b_{2}^{\prime}\right) \\
& \stackrel{(2.10)}{=} \gamma\left(b_{11}\right) \varepsilon\left(b_{2(-1) 1}\right) \gamma\left(b_{11}^{\prime}\right) \gamma^{-1}\left(b_{12}\left(b_{2(-1) 2} \cdot \beta^{-1}\left(b_{12}^{\prime}\right)\right)\right) \sigma\left(b_{2(0)}, \beta\left(b_{2}^{\prime}\right)\right) \\
= & \gamma\left(b_{11}\right) \gamma\left(b_{11}^{\prime}\right) \gamma^{-1}\left(b_{12}\left(\alpha\left(b_{2(-1)}\right) \cdot \beta^{-1}\left(b_{12}^{\prime}\right)\right)\right) \sigma\left(\beta\left(b_{2(0)}\right), \beta\left(b_{2}^{\prime}\right)\right) .
\end{aligned}
$$

Then $\sigma * D^{1}(\gamma)=D^{1}(\gamma) * \sigma$. The proof is completed.
Proposition 2.7 If σ is a lazy 2-coboundary for (B, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, then $\bar{\sigma}$ is a lazy 2coboundary for ($B_{\times}^{\#} H, \beta \otimes \alpha$), so the group homomorphism $Z_{L}^{2}(B, \beta) \longrightarrow Z_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes\right.$
$\alpha), \sigma \mapsto \bar{\sigma}$, factorizes to a group homomorphism $H_{L}^{2}(B, \beta) \longrightarrow H_{L}^{2}\left(B_{\times}^{\#} H, \beta \otimes \alpha\right)$.
Proof It follows immediately from (vi) in Theorem 2.5.
Example 2.8 Let $A=s p\left\{1_{A}, z\right\}$ and the automorphism $\beta: A \longrightarrow A, \beta\left(1_{A}\right)=$ $1_{A}, \beta(z)=-z$. Then (A, β) is a Hom-algebra with multiplication: $1_{A} 1_{A}=1_{A}, 1_{A} z=z 1_{A}=$ $-z, z^{2}=0$, and (A, β) is a Hom-coalgebra with comultiplication and counit

$$
\begin{aligned}
& \Delta\left(1_{A}\right)=1_{A} \otimes 1_{A}, \quad \varepsilon\left(1_{A}\right)=1_{k}, \\
& \Delta(z)=(-z) \otimes 1_{A}+1_{A} \otimes(-z), \quad \varepsilon(z)=0
\end{aligned}
$$

Let $H=s p\left\{1_{H}, g\right\}$ be the group Hopf algebra with $g^{2}=1_{H}$ and $\Delta(g)=g \otimes g, S_{H}(g)=g=$ g^{-1}. Then $\left(H, i d_{H}\right)$ is a Hom-Hopf algebra.

Define $\cdot: H \otimes A \longrightarrow A$ such that $1_{H} \cdot 1_{A}=1_{A}, 1_{H} \cdot z=-z, g \cdot 1_{A}=1_{A}$, and $g \cdot z=z$. It is easy to check (A, β) is a left $\left(H, i d_{H}\right)$-module Hom-algebra and module Hom-coalgebra.

Define $\rho: A \longrightarrow H \otimes A$ such that $\rho\left(1_{A}\right)=1_{H} \otimes 1_{A}$ and $\rho(x)=g \otimes(-z)$. We get (A, β) is a left $\left(H, i d_{H}\right)$-comodule Hom-algebra and comodule Hom-coalgebra. Then we can get a Radford biproduct Hom-bialgebra $\left(A_{\times}^{\#} H, \beta \otimes i d\right)$ (see [5]).

Define $\sigma: A \otimes A \longrightarrow K$ by

σ	1_{A}	z
1_{A}	1	0
z	0	s

where $\forall s \in K$.
Then we can check that σ is normal left 2-cocycle on (A, β) in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, and σ is lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. By Theorem 2.5, $\bar{\sigma}$ is defined as follows

$\bar{\sigma}$	$1_{A} \otimes 1_{H}$	$1_{A} \otimes g$	$z \otimes 1_{H}$	$z \otimes g$
$1_{A} \otimes 1_{H}$	1	1	0	0
$1_{A} \otimes g$	1	1	0	0
$z \otimes 1_{H}$	0	0	s	s
$z \otimes g$	0	0	$-s$	$-s$

and $\bar{\sigma}$ is a normal lazy left 2-cocycle.
Let $\gamma\left(1_{A}\right)=1, \gamma(z)=0$. Then γ is normal and lazy in ${ }_{H}^{H} \mathbb{Y D}$. By Theorem 2.5, $\bar{\gamma}$ is defined as follows

$\bar{\gamma}$	1_{H}	g
1_{A}	1	1
z	0	0

and $\bar{\gamma}$ is normal and lazy.
Example 2.9 Let $K Z_{2}=K\{1, a\}$ be Hopf group algebra. Then $\left(K Z_{2}, i d\right)$ is a HomHopf algebra. Let $T_{2,-1}=K\left\{1, g, x, y \mid g^{2}=1, x^{2}=0, y=g x, g y=-y g=x\right\}$ be Taft's Hopf
algebra, its coalgebra structure and antipode are given by

$$
\begin{aligned}
& \Delta(g)=g \otimes g, \quad \Delta(x)=x \otimes g+1 \otimes x, \quad \Delta(y)=y \otimes 1+g \otimes y \\
& \varepsilon(g)=1, \quad \varepsilon(x)=0, \quad \varepsilon(y)=0
\end{aligned}
$$

and $S(g)=g, S(x)=y, S(y)=-x$. Define a linear map $\alpha: T_{2,-1} \longrightarrow T_{2,-1}$ by $\alpha(1)=$ $1, \alpha(g)=g, \alpha(x)=-x, \alpha(y)=-y$. Then α is an automorphism of Hopf algebra.

So we can get a Hom-Hopf algebra $H_{\alpha}=\left(T_{2,-1}, \alpha \circ \mu_{T_{2,-1}}, 1_{T_{2,-1}}, \Delta_{T_{2,-1}} \circ \alpha, \varepsilon_{T_{2,-1}}, \alpha\right)$. Define module action $\triangleright: K Z_{2} \otimes H_{\alpha} \longrightarrow H_{\alpha}$ by

$$
\begin{aligned}
& 1_{K Z_{2}} \triangleright 1_{H_{\alpha}}=1_{H_{\alpha}}, \quad 1_{K Z_{2}} \triangleright g=g, \quad 1_{K Z_{2}} \triangleright x=-x, 1_{K Z_{2}} \triangleright y=-y, \\
& a \triangleright 1_{H_{\alpha}}=1_{H_{\alpha}}, \quad a \triangleright g=g, \quad a \triangleright x=-x, \quad a \triangleright y=-y .
\end{aligned}
$$

Then by a routine computation we can get $\left(H_{\alpha}, \triangleright, \alpha\right)$ is a $\left(K Z_{2}, i d\right)$-module Hom-algebra. Therefore, $\left(H_{\alpha} \# K Z_{2}, \alpha \otimes i d\right)$ is a smash product Hom-algebra.

Define comodule action $\rho: H_{\alpha} \longrightarrow K Z_{2} \otimes H_{\alpha}$ by

$$
\begin{aligned}
& \rho: H_{\alpha} \longrightarrow K Z_{2} \otimes H_{\alpha}, \quad 1_{H_{\alpha}} \mapsto 1_{K Z_{2}} \otimes 1_{H_{\alpha}}, \\
& g \mapsto 1_{K Z_{2}} \otimes g, \quad x \mapsto-a \otimes x, \quad y \mapsto-a \otimes y
\end{aligned}
$$

Then we can get $\left(H_{\alpha}, \rho, \alpha\right)$ is a left $\left(K Z_{2}, i d\right)$-comodule Hom-coalgebra. Therefore $\left(H_{\alpha} \times\right.$ $\left.K Z_{2}, \alpha \otimes i d\right)$ is a smash coproduct Hom-coalgebra.

Then we can get a Radford biproduct Hom-bialgebra ($H_{\alpha \times}{ }^{\#} K Z_{2}, \alpha \otimes i d$) (see [5]).
Define $\sigma: H_{\alpha} \otimes H_{\alpha} \longrightarrow K$ by

σ	1	g	x	y
1	1	1	0	0
g	1	1	0	0
x	0	0	$-s$	s
y	0	0	$-s$	s

where $\forall s \in K$.
Then we can check that σ is a normal left 2-cocycle on $\left(H_{\alpha}, \alpha\right)$ in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$, and σ is lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. By Theorem 2.5, $\bar{\sigma}$ is defined as follows

$\bar{\sigma}$	$1 \otimes 1$	$1 \otimes a$	$g \otimes 1$	$g \otimes a$	$x \otimes 1$	$x \otimes a$	$y \otimes 1$	$y \otimes a$
$1 \otimes 1$	1	1	1	1	0	0	0	0
$1 \otimes a$	1	1	1	1	0	0	0	0
$g \otimes 1$	1	1	1	1	0	0	0	0
$g \otimes a$	1	1	1	1	0	0	0	0
$x \otimes 1$	0	0	0	0	$-s$	$-s$	s	s
$x \otimes a$	0	0	0	0	$-s$	$-s$	s	s
$y \otimes 1$	0	0	0	0	$-s$	$-s$	s	s
$y \otimes a$	0	0	0	0	$-s$	$-s$	s	s

and $\bar{\sigma}$ is a normal lazy left 2－cocycle on $\left(H_{\alpha \times}^{\#} K Z_{2}, \alpha \otimes i d\right)$ ．
Let $\gamma(1)=1, \gamma(g)=1, \gamma(x)=0, \gamma(y)=0$ ．Then γ is normal and lazy in ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ ．By Theorem 2．5， $\bar{\gamma}$ is defined as follows

$\bar{\gamma}$	1	a
1	1	1
g	1	1
x	0	0
y	0	0

and $\bar{\gamma}$ is normal and lazy．

References

［1］Cuadra J，Panaite F．Extending lazy 2 －cocycles on Hopf algebras and lifting projective representa－ tions afforded by them［J］．J．Alg．，2007，313（2）：695－723．
［2］Panaite F，Staic M D，Van Oystaeyen F．On some classes of lazy cocycles and categorical struc－ tures［J］．J．Pure Appl．Alg．，2007，209（3）：687－701．
［3］Hartwig J T，Larsson D，Silvestrov S D．Deformations of Lie algebras using σ－derivations［J］J．Alg．， 2006，295：314－361．
［4］ Hu Naihong．q－Witt algebras，q－Lie algebras，q－holomorph structure and representations［J］．Alg． Colloq．，1999，6（1）：51－70．
［5］Li Haiying，Ma Tianshui．A construction of Hom－Yetter－Drinfeld category［J］．Colloq．Math．，2014， 137（1）：43－65．
［6］Ma Tianshui，Wang Yongzhong，Liu Linlin．Generalized Radford biproduct Hom－Hopf algebras and related braided tensor categories［J］．J．Math．，2017，37（6）：1161－1172．
［7］Ma Tianshui，Li Haiying，Yang Tao．Cobraided smash product Hom－Hopf algebras［J］．Colloq．Math．， 2014，134（1）：75－92．
［8］Lu Daowei，Wang Shuanhong．Crossed product Hom－Hopf algebra and lazy 2－cocycle［J］．arXiv： 1509.01518 v 2 ．

Radford双积Hom－Hopf代数上的Lazy 2－余循环

马天水，郑慧慧
（河南师范大学数学与信息科学学院，河南 新乡 453007）

摘要：本文研究了Radford双积Hom－Hopf代数上的lazy 2－余循环．利用扭曲方法得到了 (B, β) 上的左Hom－2－余循环 σ 和（ $B_{\times}^{\#} H, \beta \otimes \alpha$ ）上的左Hom－2－余循环 $\bar{\sigma}$ 之间的关系，推广了通常Hopf代数情形下的相应结论．

关键词：lazy 2－余循环；Radford双积Hom－Hopf代数；Yetter－Drinfeld范畴
$\operatorname{MR}(2010)$ 主题分类号：16T05 中图分类号：O153．3

[^0]: ＊Received date：2018－08－9 Accepted date：2018－11－05
 Foundation item：Supported by China Postdoctoral Science Foundation（2017M611291）and Natural Science Foundation of Henan Province（17A110007）．

 Biography：Ma Tianshui（1977－），male，born in Tanghe，Henan，associate professor，major in Hopf algebra and its application．E－mail：matianshui＠yahoo．com．

