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Abstract: Let Fg[t] be the polynomial ring over the finite field Fy of ¢ elements. For N € N,
let Gy be the set of all polynomials in Fy[t] of degree less than N. Suppose that the characteristic
of F, is greater than 2 and A C G%. If (d,d*>) ¢ A— A= {a—a' : a,a’ € A} for any d € F [t]\ {0},
we prove that |A] < C’q2N%, where the constant C' depends only on g. By using this estimate,
we extend Sarkozy’s theorem in function fields to the case of a finite family of polynomials of degree
less than 3.
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1 Introduction

Let N={0,1,2,---} and write N for N\ {0}. For a subset A of an additive group, we
define the difference set A — A = {a—da’ : a,a’ € A}. If A also is finite, we denote by |A| its
cardinality.

In the late 1970s, Furstenberg [1] and Sarkozy [2] independently proved the following
conclusion. If A is a subset of positive upper density of Z, then there exist two distinct
elements of A whose difference is a perfect square. The latter also provided an explicit
estimate, but the former result is not quantitative. Sarkozy’s theorem was later improved
by Pintz, Steiger and Szemerédi in [3], where they obtained the following theorem.

Theorem A There exists a constant D > 0 such that the following holds. Let N € N
and ACNN[L,N]. If (A— A)n{n?:n e N, } =0, then we have

|A] < DN(IOgN)_TIQIOgIOgIOglogN.

Remark 1 Balog, Pelikédn, Pintz and Szemerédi [4] showed that one may replace %
by i in the above bound. This estimate is the current best known bound.

In 1996, by extending the ideas of Furstenberg, Bergelson and Leibman [5] established
a far reaching qualitative result, the so-called Polynomial Szemerédi theorem. It is natural

to ask for a quantitative version of the Polynomial Szemerédi theorem. Recently, Lyall and
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Magyar [6] made some progress towards this problem. They first proved a higher dimensional
analogue of Sarkozy’s theorem.

Theorem B For k € N with & > 2, there exists a constant D’ > 0 such that the
following holds. Let N € Ny and A C N* N [I,N]*. If (A — A) N {(n,n2,--~ ,nF) in €
7\ {0}} =0, then we have

log log N) =

A <D’N’“(
4] = log N

Then by applying Theorem B, they established a quantitative result on the existence of
polynomial configurations of the type in the Polynomial Szemerédi theorem in the difference
set of sparse subsets of Z.

Theorem C Let ! € N, and Py, -+, P, € Z[x] with P;(0) =0 fori =1,--- ,l. Suppose
that k = E?i{z degP; > 2. Then there exists a constant D” > 0 such that the following

inequality holds: let N € Ny and A C NN [L,N]. If {Py(n),---,P(n)} ¢ A— A for any
n € Z\ {0}, then we have
loglogN><k11>z
log N ’

Remark 2 Theorems B and C were quoted from the revised version of [6], where the

4] < "N (

authors improved the main results in the original edition.

By taking [ = 1, P, = 22 and k = 2, Sarkozy’s theorem follows from Theorem C. Thus,
we may consider Theorem C to be Sarkozy’s theorem for a family of polynomials.

Let F, be the finite field of ¢ elements. Let p denote the characteristic of F,. We denote
by A = F[t] the polynomial ring over F, and write A* = F,[t] \ {0}. For N € N, let Gy be
the set of all polynomials in A of degree less than V.

By adapting part of the Pintz-Steiger-Szemerédi argument, Lé and Liu [7] obtained an
analogue of Theorem A in function fields.

Theorem D If p > 3, then there exists a constant D" > 0, depending only on ¢, such
that the following holds: let N € Nwith N >2and A C Gy. If (A—A)N{d*:d € A*} =10,

then we have
(log N)*

N
In this paper, for the case £k = 2, we consider the analogues of Theorems B and C

|A| S D///qN

in function fields. First, by closely following the approach of Lyall and Magyar, which is
explained in detail by Rice [8], we prove a 2-dimensional version of Sarkoézy’s theorem in
function fields.

Theorem 1 If p > 3, then there exists a constant C' > 0, depending only on ¢, such that
the following holds: let N € N with N > 2 and A C G%. If (A— A)n{(d,d?) :d € A*} =0,
then we have

log N
Al < 0N —=—.
Al < Ce —5

By adapting the lifting argument in [6], we deduce the following analogue of Theorem

C from Theorem 1.
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Theorem 2 TLet! € N, and Py, -, P, € Alz] with P;(0) =0fori=1,---,l. Suppose
that max degP; < 2 and p > 3. Then there exists a constant C’ > 0, depending only on
q, P, -+, P, such that the following inequality holds: let N € N with N > 2 and A C Gy.
If {Pi(d), - ,P(d)} £ A— A for any d € A*, then we have |4| < C’qN(%)%.

In particular, by taking [ = 1 and P; = 2% in Theorem 2, we obtain a slight improvement
of Theorem D.

In the general cases k > 3, it is more difficult to establish a k-dimensional analogue
of Theorem B in function fields. The main obstruction is that we are not able to obtain
satisfactory exponential sum estimates on the minor arcs (for details of the circle method,
see [9]), i.e., suitable generalizations of Proposition 10. We intend to return to this topic in
the future.

2 Preliminaries

Let K = F,(t) be the field of fractions of A. For a,b € A with b # 0, we define

|%| = gdesa=degb Then | - | is a valuation on K. The completion of K with respect to this

valuation is Ko, = { YettireZandc € F, (i < r)}, the field of formal Laurent series
i<r

in %

;-
For w =Y ¢;t' € K, if ¢, # 0, we define ordw = 7. Also, we adopt the convention that

i<r
ord0 = —oco. Thus, we have |w| = ¢°“. We define {w} = > c¢;t’ to be the fractional part
i<—1
of w and we write [w] for > ¢;t". Then it follows that w = [w] + {w}. We also write resw for

i>0
c_1 which is said to be the residue of w.

K4 is a locally compact field and T = {w € Ky :ordw < 71} is a compact subring of
K. Let dw be the Haar measure on K., such that fnr ldw = 1.

Let tr : F;, — F,, be the familiar trace map. For ¢ € F,, write e,(c) = exp(%T\étr(c)).
The exponential function e : K, — C* is defined by e(w) = e4(res w). Using this func-
tion, one can establish Fourier analysis in A. In particular, A, K, K., T play the roles of
Z,Q,R,R/Z, respectively.

For w € Koo and v = (y1,%2),7" = (71,72) € K&, write wy = (wy1,wye) and vy =
M + 2%

Let f,g: A2 — C be functions with finite support sets. The Fourier transform f (T2 —
C of f is defined by f(a) = > f(m)e(ma). The convolution f x g: A% — C of f and g is

meA?
defined by

Frgm) =3 f(m)g(n—m).

meA2

Then it follows that

suppf * g C suppf + suppg and f * g(a) = f(a)d(a).
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Let da denote the product of Haar measures. For m € A2, we have the orthogonal relation

1, if m=0

da = ’ 2.1
/TQ e(am)da {0, otherwise. 2.1)

Lemmal For M € N, and w € K, we have

M if ord M
Ze(wd)_{q’ lor{‘j"}< )
d€Gar 0, otherwise.
Proof This is [10, Lemma 7].
Let a,b € A with b # 0 and ged(b, a) = 1. For m = (my,my) € A2, if ged(b, my,mso) = 1,
we define
a a —
G(pm)= D e(zmd),
d€Gordb
N
where d = (d,d?).

For N € N,, the exponential sum Sy : T? — C is defined by Sy(a) = > e(aE)).
deGn
Lemma2 Let N € N, and a = (ay,a0) € T2 Let b € A* and m = (my, my) € A? with

—m| < b7 and |ap — 72| < ¢! N[b| 7"

ng(bamth) =
Then we have

Sx(a) = |;G(i,m)ks*N(oé _ %m).
Proof Write 8= (61,02) = o — %m. Then
Sxla)= 3 e(%m?) S @b,

tEGoran sEGN —ordb

Let s € Gn_oragp and t € Gyrqp. Note that
ord (51 (sb +t) — f1sb) = ordf; + ordt < (—ordb — 1) + (ordb — 1) = —2,
we have e(01(sb+t)) = e(31sb). Similarly, since

ord(Ba(sb + t)* — B25?b?) < ordfB, + ordt + max{ordt,ordsb}
< (=N —ordb) + (ordb — 1)+ (N — 1)
= —27

it follows that e(B2(sb+ t)?) = e(B25%b*). Thus, we obtain

Swi) = Y elmT) Y e(osh)

tE€EGoran SEGN _ordb
1
= G(E,m> S e(ssh)
SEGN —ordb

= ‘b‘ Z Z e(Bsb + 1)

tEGorab SEGN —ordb
\b\(; b,m ~(0).
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This completes the proof of the lemma.

Lemma 3 Let 71,7 € N. Then for any a = (o, ) € T?, there exists (b, mi, my) € A3
with the following properties

(i) bis monic and ordb < ry + 7;

(11) ng(b7 m17m2) = 17

<g Pt 1<j<2).
Proof For 1 <j<2,let T; = {w €T:ordw < —r; — 1}. Then T; is a subgroup of T.
Also, }T/’]I‘j‘ =q'i.

(iii) ordm; < ordb and ‘aj — %

2
Note that ’ II T/Tj| = ¢ < |Gy, 41p+1], we can find two distinct elements d;, dy of
j=1

Gy, 4,41 such thz;t
({dlal} + Ty, {dias} + TZ) = ({d20é1} + Ty, {deaa} + TQ)-

Write b/ = dy — di. Then we have b’ # 0 and ordd’ < ry + 7.
Let m/ = [b'a;]. Then ordm; < ord(b'a;) = ordd’ + ordey; < ordd’.
Since ord(V'a; — m}) = ord{b';} = ord({dacv;} — {d1a;}) < —r; — 1, we have

/
‘aj o %‘ < q—Tj|b/|—1.

Let ¢ be the leading coefficient of ¥" and let a = ged(d', m}, m}). By taking b = 2—; and

m; = %, the lemma follows.

3 Estimate for G(§,m)

In this section, we obtain an estimate for G(%,m). Our arguments run in parallel with
the approach of Chen [11].

Lemma 4 Let aq,a,b1,bs € A with by, by # 0 and ged(by,a1) = ged(bs,az) = 1. Let
m = (my,my) € A% Suppose that ged(by, my, mo) = ged(ba, my, mo) = 1. If ged(by, by) = 1,
then

aq a9 Cllbg +(12b1
G(2,m)G(22,m) = G(E2TT2 o).
(bl’m) (bQ’m) ( ble 7m)

Proof Since ged(by,by) = 1, by + b1 A is invertible in the ring Hy; = A/byA. Thus,

G(%,m)z SooePEmd)= Y e(Pmbd)= Y e(rmbyd).

b1 bl bl
d+biAcH, d+bi A€H;y dEGordbl

Similarly, we have

G(% m) = Z e(%mb_c)l).

by’ b
2 d€Goraby 2
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Combining the above two equalities, it follows that

aq ao ay > Ay
G(—,m)G(-—,m) = e(—mbad;)e(—mb1d
(G m)G(52 m) Y el mbd)e( b

d1€Goravy ;d2€Gordb,

- 3 o(abetazby b )
bibs

d1€Goravy ;d2€Gorab,

. arby +azby —
= > s, md). (3.1)

d€Gorany by

Equality (3.1) follows since ged(by,b2) = 1.
Lemma 5 Let a,b € A with b # 0 and ged(b,a) = 1. Let m = (my, ms) € A%, Suppose
that ged(b, my, mg) = 1. If p > 3 and b is irreducible, then we have

GG m)| < bl

Proof Since b is irreducible and ged(b,a) = 1, it follows that a # 0. We divide into two
cases.

Case 1 Suppose that b | mo. Since ged(b, my,m2) = 1, b4 my. By Lemma 1, we have

G(%,m) =¥ e(a’;“d) = 0.

d€Goran

Case 2 Suppose that b { my. Since b is irreducible, H = A/bA is a field. Note that
|H| = [b|, we can find an isomorphism T": F,; — H of fields.
Consider v : Fy — C* defined by v(c) = e($T'(c)). It follows from Lemma 1 that

ad
Y= Y «(®)=o
CGF“}‘ d€Goras
Thus, 1 is a non-trivial additive character of ;. Let P(t) = Z§:1 T~'(m; + bA)t/. Then
P is a polynomial of degree 2 in IF[t].
Note that

a _
G(Gm) = 3 $(PIHd+bA) = 3 (P(),
d€Goran c€F |y

by Weil’s theorem in [12], we have ‘G(%,m)‘ < |b]z.

Combining the above two cases, the lemma follows.

Lemma 6 Let a,b € A with b # 0 and ged(b,a) = 1. Let m = (my, ms) € A%. Suppose
that ged(b,my, my) = 1. If p > 3 and b is irreducible, then for any r € N, , we have

a T

Proof We will prove this lemma by induction on r.
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For r = 1, the lemma follows from Lemma 5.

Let r € N with » > 2. Suppose that the lemma holds for all ' € N, with ' < r. We

now prove that the statement is true for r.

Note that for d € Ggpqpr, there exist di € Ggoqpr—1 and dy € Ggrqp such that d =

dsb"~! + dy. This observation allows us to obtain

G(%,m): 3 (;mdg 3 e(%(ml—l—ngdl)dg).

d1€G gpr—1 d2€Goran

There are two cases.
Case 1 Suppose that b | my. Since b1 mq, by Lemma 1, we have

Z 6(5(m1+2m2d1)d2): Z e bldg)

d2€Goran d2€Gordb

y (3.2), we have
a

ﬁ?
Case 2 Suppose that b1 my. Then there exists unique dg € Geqp such that

G(—,m)=0.

my + 2mady = 0 (mod b).
For any d; € Ggpqpr-1, it follows from Lemma 1 that

a ||, if dy = dp (mod b),
- 2mady)dy) =
Z e(b(m1—|— mad:) 2) { 0, otherwise.

d2€Gorap

Write
A= {d € Goapr—1 : d =dy (mod b)}.

bT, = > Ible( md1

dieA

By (3.2), we have

If r = 2, then

M

G (=, m

o)l = [le(mdg)] = bl

If r > 3, then
a
G5 m) = > ble (57 ©mdb+ dy).

deG 4pr—2

Let m} = %’”2‘1‘3, then m} € A. Write m’ = (m/, my). Note that
B — N
mdb + dg — mdy = b"m’ d,

we deduce from (3.3) that

a

G(ﬁ

,m) = |b|e(—md0)G(bT—_2, m').

(3.2)

(3.3)
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By the induction hypothesis, it follows that
a
b
By combining the above two cases, we complete the proof of the lemma.
Proposition 7 Let a,b € A with b # 0 and ged(b,a) = 1. Let m = (my,mg) € A%
Suppose that ged (b, my, ms2) = 1. If p > 3, then we have

a r
P,m/)’§|b|2-

Grem)| = G

G(Gm)| < Jbl?.

Proof Without loss of generality, we assume that a # 0 and ordb > 1. Also, b is monic.
There exist ¢, j1,--- , 7, € Ny and distinct monic irreducible polynomials o1, - - - , o, in A such
that b = J] ¢*. We prove the lemma by induction on ¢.

=1
For + = 1, the lemma follows from Lemma 6.

Let ¢« € N with ¢ > 2. Suppose that the lemma is true for « — 1. We now prove that the
claim holds for ¢. Since ged(b,a) = 1, we can find a;,a’ € A* such that
a a ’ —1

a ; 3
- = —; + ==, and ged(of', a;) = gcd(H ol',a')=1.

L Ji Ju =1 g
Hi:1 0 0 Hi:l a; i=1

By Lemmas 4 and 6, we have

~m)| = |6 ml 6 )| < ol # |G

Hi:l 0; 1 Hi;i Uzji Hi:l Uzji

By the induction hypothesis, the proposition follows.

a/

|G

4 Estimates for Sy

For the present, we fix N € N, and A C Gy x Goyn with |A| = §¢*N. Throughout this
section, we assume that the following hypothesis holds.

Hypothesis A p>3, (A—A)N{d:dec A} =0andé>q' 5.

Take # € N, with ¢ < 6§ < ¢'=%. Then N > 120. Write M = N — 66.

The characteristic function 14 : A2 — R of A is defined by

lA(m):{ 1, if me A,

0, otherwise.

Write 'y = Gy x Gan. We define the balanced function f4 : A2 — R of A to be f4 =
1qa —0lp,.
Let b € A* with b monic. Write

Ay = {(al,ag) € A? : ged(b,ay,az) =1, orda; < ordb (1 <j < 2)}
For (ay,as) € Ay, we define the Farey arc F'(b, a1, as) to be

a; . _ )
F(b,ay,ay) = {(al,ag) €T?: |a; — zj\ <qg7MpTt 1< < 2)}
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Also, we define

F, = U F(bﬂhaz)-

(a1,a2)EA

We say F(b,ay,az) is major if ordb < 260 4+ 3 and minor if ordd > 26 + 3. Let
B = {be A" :bmonic, ordb < 20 + 3}.
We define the major arcs 9t and the minor arcs m as follows:

M= | J F, and m = T2\ 9.

beB

Lemma 8 Let b, b’ € B. Suppose that (aq,a2) € A, and (a),a) € Ay. If (b,a1,a2) #
(V',al,al), then we have
F(b7 ai, a2) N F(b/v allv a'/2) = @

Proof To prove the lemma, we suppose the contrary. Then there exists
(a1, a0) € F(b,ar,a2) N F(V,al,al).

Let 1 <5 < 2. Since

4

b

!
{%‘ a;
)

——} Smax{|ozj —

!/
T o= I} <M ma 0 1),

it follows that
lajb’ — a’b| < ¢ 7™ max{[p], [V'|} < ¢*P M <¢70 < L.

Thus a;b" = ab. Let A;, B; € A with B; monic such that

A a: a’

It is easy to see that b = lem(B, By) = ¥'. It follows that a; = aj. This leads to a contra-
diction, and the lemma follows.

Proposition 9 If b € B, then for any a € F;,, we have
S ()] < g™[p| 712
Proof Write (ay, o) = . Take a = (ay,a2) € A, such that o € F(b,ay,as). Since
lag — %2| <q M7t < ¢~V b7" and ordb < 20 +3 < N,

by Lemma 2, we have

1 1 1
Sn(a) = mG(g,a)SN(oz - ga).
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It follows from Proposition 7 that
1 1 _
[Sx(@)] < [b]7%[S (@ = 3 a)| < |Gw|lb] 7>
Proposition 10 For any o € m, we have

0
Sn()] < 30"

Proof Write a@ = (a1, @3). By using Lemma 3 for r; = 0 and r, = N, we can find a

monic polynomial b in AX and a = (ay, ay) € A% such that
ordb < N, ged(b,a1,a5) = 1, orda; < ordb and |a; — %\ < g DN (1< < 2).
Write 8 = (81, 02) = o — %a. If ordb > 20 + 4, by Lemma 2 and Proposition 7, we have

1 1 _o— d
[Sn(a)| < |b|_1|G(57a)||SN(ﬂ)\ <[]z |Sn(B)] < ¢ ?GN]| < ZqN-

In the following, we assume that ordb < 26 + 3. Consider the following estimate

}SN(ﬁ)‘Q = Z 6(51(d—d/)+52(d+d’)(d—d’))
d,d' eGn
= Y e(Bid+ pydd)
d,d'€G

IN

S elpodd)].

deGny d'eGn

For d € Gy, since
ord(fzd) = ordfy + ordd < (=N —ordb — 1) + (N — 1) < =2,
it follows that {32d} = f2d. By Lemma 1, we have

1Sn(8)|" < > ¢~ < || 7L

deGn,ord(B2d)<—N

Combining Lemma 2 and Proposition 7 with the above inequality, it follows that

1 1 1 1
[Sn(a)] < Ibl_llG(g,a)IISN(ﬁﬂ < o[ [SNn(B)] < [b]72]Ba] 2. (4.1)

Since a ¢ M, there are two cases.
Case 1 Suppose that |3s] > ¢ 2|b|=L. By (4.1), we have

1)
|Sn ()] < g™ =¢g"N75 < ZqN-

Case 2 Suppose that |3;] > ¢~ [b|=! and |32 < ¢~ 2M|b| 7.
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If ordB; > 1 — N + ordf;, then by (4.1), we have

1 _1 N-1 MiN—1 _ )
|Sn(@)| < o] 721817 2q T <q” 2 <V 3"§Z(JN-

Thus, it remains to estimate |Sy(a))| under the additional assumption ordf; < ordf; — N.
Write L1 = —ordf;, then 1 < Ly < M + ordb; write Ly = —ord(,, then Ly > 1+ 2M +
ordb; write K = || since Ly < M +20 +3 < N, we have L; < K < N — 1.
For j € N, write C; = {d € A : ordd = j}, then

Sx(B) = S e3d) + 3 3 (5 d),

deGk j=K dec,

Let d € Gg. By the assumption ordfy; < ordf; — N, we have
ord(fyd?) = 2ordd — Ly < 2(K — 1)+ (=N — L;) < —2.

It follows that e(82d?) = 1. Note that ord{3;} = —L; > —K, by Lemma 1, we have
—
D e(Bd)=> e(Bd) =0.
deGk deGk

Thus Vo1
Sn(B) =3 > e d). (4.2)

I=K deC;
Take the sequences { /zi}i_:Ljoo and { Vj}j_:Lioo in IF, such that
01 = Z pitt and By = Z vt
i<—Ly Jj<—L2

I
Let K <I < N-landd € Cr. Take cg, c1, -+ ,cr € Fy with ¢; # 0 such that d = 3 ¢;t".
i=0
Then

I 2f
res(ﬁ?): Z i 1C; + Z V_j_1 Z CiCj.

i=L1—1 I=Lp—1 0<i,j<I,i+j=l

For 0<i,j <I,ifi+j > Ly — 1, by the assumption ordf3; < ord3; — N, we have
min{i,j} > Lo —1—-1>(N+L;)—1—(N—-1)= L.

Thus, there exists the polynomial Q(¢1,--- ,t;—p,+1) of (I — Ly + 1) variables over F, such
that

RN
res(Bd) = p_r,cr,—1 + Qr(cr,,cr, 41, ,¢1).
Substituting this into the definition of the function e(-), and noting that p_r, # 0, we have

S eBd) = > D> e@ilenven) Y eq(porien 1) =0.

deCy J#L1—1,0<j<I—1¢c;€Fq ¢ eF) cL;—1€Fg
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It follows from (4.2) that Sy(8) = 0. Finally, by Lemma 2, we have Sy(a) = 0.

Combining the above two cases, we complete the proof of the proposition.

5 Density Increment

In this section, we continue to fix N € N, and A C I'y with |[A| = 6¢*V. Also, we
assume that Hypothesis A holds.
Lemma 11

[ Ba@Pisy(alda = 6%
T2

Proof WriteI= Y fa(m)fa(m+ E)) By (2.1), we have

deGn ,meA?

= > famfat) A2e<a<m+7—n>>da= AQ|ﬁ<a>|2sN<a>da. (5.1)

deGn,m,neA?

— — — —
Ifd e Gy, then d € T'y. ThusI'y+ d =Ty — d =Ty. It follows that (A—A)N{d :d €
A*} =0 from Hypothesis A. Thus

L= Y wm-s Y 1A(m)(1pN(m+3)+1pN(mf7))

meEA? deGn,meA?

+57 Y Iy (m)lrg(m+ d)

deGn,meA?

SNy (]Am(FN—E))}+\Aﬂ(PN+7)D+52 S TN (@y—d)
deGyn deGy

= |4] - 26|4||Gw] + 8°| G |||

1

_ _52(]41\7(1_ W)

By Hypothesis A, we have ¢V > ¢'T*z° > 2. It follows that
Lo un
Finally, by (5.1) and (5.2), we obtain
— 1
By (aida = 1 = 5o
’H‘Q

Lemma 12 There exists a monic polynomial by in Gog,4 such that

/ Fa(@)Pda > 8™,
Fy

0

where 0 < ¢ < 1 is a constant depending only on q.
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Proof By Proposition 10, we have

[ Fa@Pisy(@lda < 30" [ [Fate)fda
é
< 17 7" Z |fa(m
meA2
52
<
- 4

Write
1= / Fa(@)2ISw (@)lda
M

Combining the above inequality with Lemma 11, it follows that

52
—q*V. (5.3)

— 52
1> [ [Fale)PISx(allda - o™ = %
T2

For j € N, write O; = {b € A* : b monic, ordb = j}. By Lemma 8 and Proposition 9, we

have
20+3 20+3
H—ZZ/ Fa(a)Sx(a |da<2q 3 [ i)
7=0 bEO; beO,

Take a monic polynomial by in Gogyy4 such that

T 23 _ T 2
| epe = max [ (Fae) o
bo b

It follows from the above inequality that

20+3 20+3

i< [ f@pda Y |ofet = [ Fa@da 3 e,
Fb() j=0 F oo

bo
Since § < ¢'7?, we can find a constant ¢/ > 1, depending only on ¢, such that
d N T2
II<—q | fa(e)["dex.
0 Fuy

By taking ¢ = the lemma follows from (5.3).

4 )
Lemma 13 There exists ng € I'y such that

|Am@m+anﬂzéu+%®fM

where bol'y; = {bom :m € I‘M}.
Proof Write P = by'ys. Let m = (mq,ms) € Ty and 1 < j < 2. Since

ord(bym;) = ordby + ordm; < (260 +3) + (jM —1) < jN —1,
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we have bym € I'y. Thus, P C I'y. Also, we have

suppfa * 1_p C suppfa +suppl_p C 'y + (—P) =T'y.

For n € I'y, we have

faxlopn) = > 1am)ip(m—n) =3 Y Ir,(m)lp(m—n)

meA? meA?
= |[AN(n+P)|—4|CxyN(n+P)|
= |ANn(n+ P)|—6|P| (5.4)

If there exists ng € I'y such that fa *x1_p(ng) > 6|P|, then
AN (no+ P)| = fa 1-p(no) +0|P| = 26|P| = 6(1 + Z8)g™".

Thus, in the following, we assume that f4 *x 1_p(n) < §|P| for all n € T'y. It follows from
(5.4) that
|fa*1_p(n)| < 6|P]. (5.5)

Let a = (ay, ) € Fy,. Take a = (a1,a2) € Ay, such that a € F(bg, a1, as). Since
ord(m;(boa; — a;)) = ordmy; + ordby + ord(a; — -7
< (jM — 1) + ordby + (—jM — ordby — 1) = —2,
we have e(bym;a;) = e(mja;) = 1. Thus, 1_p(a) = |P|. It follows from (5.5) that
T2 1 1 2
| @ = o [ 15T s P
. PE J,,

b0

1
< PP Z |fax1_p(n)?
neA2
1)
< Z] > fax1op(n)l.
neA?

By Lemma 12, we have
Z [fax1_p(n)| > c8?g* M+,

neA?

Note that > fa(n) =0, we have

neA2

Z (fA * 17P)+(n) > 352(]3(M+N).

neA?

Take ng € I'y such that

fa*x1_p(ng) = max fa*1_p(n).
nel'n



670 Journal of Mathematics Vol. 39

By (5.4), we have
1

|AN (ng 4 P)| = |P| + fax1_p(ng) > 0| P| + Txl
N

> (faxip) (n) =501+ g(;)qw.
neA?

Proposition 14 There exist N’ € Ny and A’ C T'y/ with |A'| = §¢*N" such that

i) (A —A)yn{d :denrx} =10

(i) & > 5(1+ £0);

(iii) N'> N —11log, (%), where log, © = log z/ log g.

Proof Write L = ordby and T' = |by|. Then 0 < L < 20 + 3. By taking N' = M — L,
property (iii) follows. Take dy, - ,dy € Gy and d,--- ,d’, € Gapr— such that

T T

GM: U (dl-f—GN/) and GQM,L :U(di-f—GQN/) (56)

i=1 i=1

For d € Gy and 1 < 14,5 < T, write

— , —
Tdﬂ"j = No + (O,bod) + bo ® (dz,d]) + bo O) FN/,

where

— , 2 — —
by ® (dl,d]) = (bodi,bodj) and bg © 'y = {bo Om:m & FN’}-

Let m = (my,my) € T'yy. Take d € G and d' € Gapy_p such that my = d + bod’. By
(5.6), we can find 1 <4,j < T such that (mq,d’) € (d;, ;) + I'yv. Then we have

no + bom = ng + (0, bod) + b—0> © (mq,d’) € T 5.

Thus, we see that
no + bol'yr = U Yaij

deGp,1<4,j<T

Take dy € Gy and 1 < ig,jg < T such that

AN Y4y i0h0| =  max |ANTg ;]
0,%0,J0 deGp,1<i,j<T gy

By Lemma 13, we have

1 1 C o\ 3N’
A0 Yaioio 2 75 Do AN Taug| = 5140 (0 +bolan)| 2 6(1+ 58)g*"

deGr,1<4,j<T

Consider the bijection f : I'n» — Y4, ..., defined by

f(t) =ng+ (0,bodp) + b_(; ® (diy, d; ) + b_J ot

Jo

By taking A’ = f~'(AN Y4, ), property (ii) follows. To prove property (i), we suppose
—
the contrary. Then there exist t1,t, € A" and d € A* such that t; —t; = d . It follows that

f(t2) = f(t) =bo & d =bpd € A— 4,
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which contradicts Hypothesis A. This completes the proof of the proposition.

6 Proof of Theorem 1

Proposition 15 If p > 3, then there exists a constant C; > 0, depending only on g,
such that the following inequality holds. Let N € N with NV > 2 and A C Gy X Goy. If
—
(A—A)N{d :deA*} =0, then we have

log N

|A| < Cg*N N

Remark 3 Note that d € Gy < d? € Gy, the form of Proposition 15 is more natural
than of Theorem 1.
Proof Write |A| = 6¢*N. If § < ¢'~ 12, then by taking

N
C, = 1—N/127,
ARt lgN

the proposition follows. Thus in the following, we assume that § > ¢'~ 2.

Now, we recursively define a sequence of triples (N;, 4;,9;) with NV; € N, A; C 'y, and
|A;| = 6;¢*Ni as follows. Take (N, Ag,d9) = (NN, A, 6). Let i € N. Suppose that (N;, A;,d;) is
defined. If §; < ql_%, we stop the definition. If §; > ql_%, by Proposition 14, we can find
Nit1 € Ny and A, C Ty, with |A;14] = 8;41¢°N+1 such that

(i) (A1 — Aip) N {d :de AX} =0

(ii) dir1 > 6i(1+ 504);

(iii) Nig1 > N; —11log, ().

Write ¢ = §. It follows from (ii) that d;41 — &; > c§%. Since §;;; < 1, this pro-
cess produces a finite sequence {(Ni,Ai,(Si)};;l. Then for any 0 < ¢ < J — 1, the triple

(Nit1,Air1,0;11) satisfies the above conditions (i)—(iii). Also, we have

1-
oy < q T2, (6.1)

J _
Claim 1 For j € N, write [; = [57]. If i > Y I;, then §; > 27716.
1=0
Proof We prove the claim by induction on j. For j = 0, we have I; > %. It follows

from (ii) that
8 > 0o + clidy.
Thus if i > I, then §; > 29.
Suppose that the claim holds for j. We now prove that the statement is true for j + 1.

J Jj+1
Write k = > I;. Let i > k. By (ii), we have 6; > 6 + (i — k)c/87. Thus, if i > > I;, it
=0 =0

follows from the induction hypothesis that

8 > 2 + T (27116)% > 27126,
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This completes the proof of the claim.
Take jo € N such that 270§ < 1 < 2/0+1§, Then we have

2 4
0<i<jo i€N
It follows from (iii) that

14
Ny > N =117 log, (§) = N = —log, ().

By (6.1), we have

520, < g H ()T

Thus, there exists a constant C; > 1, depending only on g, such that
C C
2N < —log —.
=75 %%
Note that the function zlogx on [1,400) is increasing, and the proposition follows since

2N 2N

log 2N 108 (log o) < 2N

Proof of Theorem 1 Write |A| = §¢°N. If N < 7, by taking C = é, the theorem

follows. In the following, we assume that N > 8. Write

N = g

Forlgz'gSand1§j§T,takedi,d;-

J, S=¢" N and T = ¢V 2V,

€ Gy such that

s T
GN - U(dz + GN/) - U(d; + GQNI).
i=1 j=1
Then, we have
Gi= U @+Gy)x@+Gw)= |J  ((did)+Tw).
1<i<S,1<<T 1<i<S,1<5<T

Write
Take 1 <ip < S and 1 < jy < T such that

‘A4 ; ‘ = max ‘A- ‘
20,J0 1<i<8,1<<T 2]

Write A" = A, j,. Then we have (4" — A’) {E) :de AX} = () and

L1 1
Az > Mulzgsl U 4y

1<i<8,1<5<T 1<i<S,1<<T

1 .
— —_|A| = 68N,
STlI q
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Define f : I'ny — (d;,,d5 ) + I'ne to be f(m) = (d;,, d’; )+ m. Then f is a bijection. Take

109 Jo 109 Jo
B = f"!1(A"). Since B— B =A"— A’, we have (B — B)[) {d d € A*} = 0. It follows from
Proposition 15 that

log N’ N sy’ log N
<Cy

B| < C1¢*N
18] N’ N4—1T TN

Note that N > 8 and 6 < |B|g3N’, by taking C' = 8C, the theorem follows.

7 Proof of Theorem 2

For 1 < s <, take c41, cso € A such that Py(z) = cqz+cgoz?. Write P = (CSj)lgsgl,lng’
Denote by r the rank of the matrix P. Then 1 < r < 2. Thus, we divide into two case.

Case 1 Suppose that r = 2. Without loss of generality, we assume that (011, 012) and
(021,022) are linearly independent. Write R = (Cij)lgi,jgz’ e1 = (1,0) and ey = (0,1). For
1 <i <2, take & € K? such that RE, = e;. When [ > 3, take D =

that

!
(dtj) 1<t<1-2,1<5<2 such

=DR.

(v5) s<pr <1<
Take S € N with S > 4 and D € A* such that

D,cij €Gs, &=DgeGy (1<i,j<2).
If [ > 3, we also require

dij=Ddi; €Gs (1<t<1-2,1<5<2).

=

If N < S, by taking C" = (logs)

, the theorem follows. Thus, we assume that N > S + 1.

Claim 2 For m € G%, write B], = {b € G%,5 : Rb+m € A?}. Then there exists
m € G% such that
|Bia| 2 a7 14
Proof Let a = (a1,a2) € A% For 1 <i < 2, take a} € Gy_oap and @) € Goap such
2

that a; = Da} + af/. Write b = )" a}§; and m’ = (af,ay). Then we have

=1

beGi,g, m' €GEand Rb=a—m'.

It follows that a € R(GN+S) + m/. Thus, we see that

ac | ( (G2 ) +m) (7.1)

meG

Take m € G% such that |B},| = max |B},|. By (7.1), we have
- meG%

Z’ m|> gs’ U ((R(G?\q_s)-f—m)ﬂAQ)

meG2 meGE,

1
= qu|A2|-
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This completes the proof of the claim.
Claim 3 Suppose that [ > 3. Form € G'y7;g, write B/, = {b € B} : DRb+m € A'2}.

Then there exists m’ € Gy 2,4 such that
‘B//,‘ > qf(lfQ)N7(3l74)S|A|l.
m' | =

Proof Let n € A'"? and b € B,,.

S > dae(n+DRE) = Y Y du(n+DRb) = |B,,||AI2 (7.2)

If n+DRb € A'=2, then n € G 7,5. Thus

neGh 25 b€Bm bEB,, nehl—2
Take m' € Gl]\?i?)s such that }B;H = max ’Bm Then we have
o mEGlzv7+235
|B// >; Z |B//|_; Z Zl (m+DRb)
m’| = q(l—2)(N+3S) ml — q(l—2)(N+3S) Al—2 .
meCy fas meGl; 2, bEBY,

The claim follows from (7.2) and Claim 2.
Write
_ m, if [ =2,
m =
(m,m), if 1>3.

Define B = {b € G%,g: Pb+m € A'}. Then by Claims 2 and 3, we have
‘B| > qf(l72)N7(3l74)S|A|l' (73)
Suppose that there exists d € A suth that b’ — b = d for some b,b' € B. Since
- 1 1
Pd =PV —-Pbe A — A,

we have

{Pi(d),-- ,R(d)} C (A-A),
from which it follows that d = 0. Thus, we obtain
(B-B)({d:dearr}=0.
By Theorem 1, we have
IB| < C2N+5) log(N + 5) < C«q2(N+S)M‘

N+S N

(31—-2)8

By taking C' = C'1q~ 7, the theorem follows from (7.3).

Case 2 Suppose that r = 1. Without loss of generality, we assume that R = (cn, 012) #*
0. Take ¢ € K? such that R¢ = 1. When | > 2, take D = (d},---,d]_,) such that
DR.

(v5) et cincges =
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Take S € N with S >4 and D € A* such that
D.ci; €Gs (1<j<2), £ =D¢ €Gy.

If [ > 2, we also require
dt:DdQEGS 1<t<l-1).

If N < S, by taking C’ = (logS) , the theorem follows. Thus we assume that N > S + 1.
Claim 4 For m € Gg, write B), = {b € G s : Rb+m e A}. Then there exists
m € Gg such that
Bl = a"*14]

Proof Let a € A. Take d’ € Gy_orap and a” € Gerap such that a = Da’ + a”. Write
b= d’¢. Then we have

be Gy g, a" € Ggand Rb=a—a".
It follows that a € R(G%_.g) + a”. Thus, we see that
ac | ( G, o +m). (7.4)
meGg

For m € Gg, write A4,, = AN (R(G?\,+S) + m) For each a € A,,, we fix a a € G&, 4 such
that Ra +m = a. Since

{& + d(—Clg,Cu) ra e Am, de GN} - B;n,
it follows that | B},| > ¢"|A,,|. Take m € Gg such that |B;n} = max |B;n} By (7.4), we have
m| = e

Bl 2 5 3 1Bl 20" 3 JAn] 2| U 4| = 0" 0141

meGg meGg meGg

This completes the proof of the claim.
Claim 5 Suppose that [ > 2. Form € Gy} 34, write B, = {b € B, : DRb+m € A'~'}.
Then there exists m’ € Gy} ;5 such that

‘Bgﬂ‘ > g~ (=DN=G=2)S g1,

Proof The claim follows from the similar argument as in Claim 3.

Write
_ m, ifl=1,
m =
(m,m’), if 1 > 2.

Define B={bc G%_,:Pb+m € A'}. Then by Claims 4 and 5, we have
N+s
|B| > ¢~ mIN=BI=25 4|1, (7.5)

By using similar arguments as in Case 1, we obtain |B| < Cqg?(W+9)lgN By taking ¢ =
C'1¢35, the theorem follows from (7.5).

Combining the above two cases, the proof of the theorem is completed.
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