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Abstract: Let Fq[t] be the polynomial ring over the finite field Fq of q elements. For N ∈ N,

let GN be the set of all polynomials in Fq[t] of degree less than N. Suppose that the characteristic

of Fq is greater than 2 and A ⊆ G2
N . If (d, d2) 6∈ A−A = {a− a′ : a, a′ ∈ A} for any d ∈ Fq[t] \ {0},

we prove that |A| ≤ Cq2N log N
N

, where the constant C depends only on q. By using this estimate,

we extend Sárközy’s theorem in function fields to the case of a finite family of polynomials of degree

less than 3.
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1 Introduction

Let N = {0, 1, 2, · · · } and write N+ for N \ {0}. For a subset A of an additive group, we
define the difference set A−A = {a− a′ : a, a′ ∈ A}. If A also is finite, we denote by |A| its
cardinality.

In the late 1970s, Furstenberg [1] and Sárközy [2] independently proved the following
conclusion. If A is a subset of positive upper density of Z, then there exist two distinct
elements of A whose difference is a perfect square. The latter also provided an explicit
estimate, but the former result is not quantitative. Sárközy’s theorem was later improved
by Pintz, Steiger and Szemerédi in [3], where they obtained the following theorem.

Theorem A There exists a constant D > 0 such that the following holds. Let N ∈ N+

and A ⊆ N ∩ [1, N ]. If (A−A) ∩ {n2 : n ∈ N+} = ∅, then we have

|A| ≤ DN(log N)−
1
12 log log log log N .

Remark 1 Balog, Pelikán, Pintz and Szemerédi [4] showed that one may replace 1
12

by 1
4

in the above bound. This estimate is the current best known bound.
In 1996, by extending the ideas of Furstenberg, Bergelson and Leibman [5] established

a far reaching qualitative result, the so-called Polynomial Szemerédi theorem. It is natural
to ask for a quantitative version of the Polynomial Szemerédi theorem. Recently, Lyall and
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Magyar [6] made some progress towards this problem. They first proved a higher dimensional
analogue of Sárközy’s theorem.

Theorem B For k ∈ N with k ≥ 2, there exists a constant D′ > 0 such that the
following holds. Let N ∈ N+ and A ⊆ Nk ∩ [1, N ]k. If (A − A) ∩ {

(n, n2, · · · , nk) : n ∈
Z \ {0}} = ∅, then we have

|A| ≤ D′Nk
( log log N

log N

) 1
k−1

.

Then by applying Theorem B, they established a quantitative result on the existence of
polynomial configurations of the type in the Polynomial Szemerédi theorem in the difference
set of sparse subsets of Z.

Theorem C Let l ∈ N+ and P1, · · · , Pl ∈ Z[x] with Pi(0) = 0 for i = 1, · · · , l. Suppose
that k = max

1≤i≤l
degPi ≥ 2. Then there exists a constant D′′ > 0 such that the following

inequality holds: let N ∈ N+ and A ⊆ N ∩ [1, N ]. If
{
P1(n), · · · , Pl(n)

}
* A − A for any

n ∈ Z \ {0}, then we have

|A| ≤ D′′N
( log log N

log N

) 1
(k−1)l

.

Remark 2 Theorems B and C were quoted from the revised version of [6], where the
authors improved the main results in the original edition.

By taking l = 1, P1 = x2 and k = 2, Sárközy’s theorem follows from Theorem C. Thus,
we may consider Theorem C to be Sárközy’s theorem for a family of polynomials.

Let Fq be the finite field of q elements. Let p denote the characteristic of Fq. We denote
by A = Fq[t] the polynomial ring over Fq and write A× = Fq[t] \ {0}. For N ∈ N, let GN be
the set of all polynomials in A of degree less than N.

By adapting part of the Pintz-Steiger-Szemerédi argument, Lê and Liu [7] obtained an
analogue of Theorem A in function fields.

Theorem D If p ≥ 3, then there exists a constant D′′′ > 0, depending only on q, such
that the following holds: let N ∈ N with N ≥ 2 and A ⊆ GN . If (A−A)∩{d2 : d ∈ A×} = ∅,
then we have

|A| ≤ D′′′qN (log N)7

N
.

In this paper, for the case k = 2, we consider the analogues of Theorems B and C
in function fields. First, by closely following the approach of Lyall and Magyar, which is
explained in detail by Rice [8], we prove a 2-dimensional version of Sárközy’s theorem in
function fields.

Theorem 1 If p ≥ 3, then there exists a constant C > 0, depending only on q, such that
the following holds: let N ∈ N with N ≥ 2 and A ⊆ G2

N . If (A−A)∩{(d, d2) : d ∈ A×} = ∅,
then we have

|A| ≤ Cq2N log N

N
.

By adapting the lifting argument in [6], we deduce the following analogue of Theorem
C from Theorem 1.
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Theorem 2 Let l ∈ N+ and P1, · · · , Pl ∈ A[x] with Pi(0) = 0 for i = 1, · · · , l. Suppose
that max

1≤i≤l
degPi ≤ 2 and p ≥ 3. Then there exists a constant C ′ > 0, depending only on

q, P1, · · · , Pl, such that the following inequality holds: let N ∈ N with N ≥ 2 and A ⊆ GN .

If
{
P1(d), · · · , Pl(d)

}
* A−A for any d ∈ A×, then we have |A| ≤ C ′qN

(
log N

N

) 1
l .

In particular, by taking l = 1 and P1 = x2 in Theorem 2, we obtain a slight improvement
of Theorem D.

In the general cases k ≥ 3, it is more difficult to establish a k-dimensional analogue
of Theorem B in function fields. The main obstruction is that we are not able to obtain
satisfactory exponential sum estimates on the minor arcs (for details of the circle method,
see [9]), i.e., suitable generalizations of Proposition 10. We intend to return to this topic in
the future.

2 Preliminaries

Let K = Fq(t) be the field of fractions of A. For a, b ∈ A with b 6= 0, we define
|a
b
| = qdega−degb. Then | · | is a valuation on K. The completion of K with respect to this

valuation is K∞ =
{ ∑

i≤r

cit
i : r ∈ Z and ci ∈ Fq (i ≤ r)

}
, the field of formal Laurent series

in 1
t
.

For ω =
∑
i≤r

cit
i ∈ K∞, if cr 6= 0, we define ordω = r. Also, we adopt the convention that

ord0 = −∞. Thus, we have |ω| = qordω. We define {ω} =
∑

i≤−1

cit
i to be the fractional part

of ω and we write [ω] for
∑
i≥0

cit
i. Then it follows that ω = [ω] + {ω}. We also write resω for

c−1 which is said to be the residue of ω.

K∞ is a locally compact field and T =
{
ω ∈ K∞ : ordω ≤ −1

}
is a compact subring of

K∞. Let dω be the Haar measure on K∞ such that
∫
T 1dω = 1.

Let tr : Fq → Fp be the familiar trace map. For c ∈ Fq, write eq(c) = exp( 2π
√−1
p

tr(c)).
The exponential function e : K∞ → C× is defined by e(ω) = eq(res ω). Using this func-
tion, one can establish Fourier analysis in A. In particular, A,K,K∞,T play the roles of
Z,Q,R,R/Z, respectively.

For ω ∈ K∞ and γ = (γ1, γ2), γ′ = (γ′1, γ
′
2) ∈ K2

∞, write ωγ = (ωγ1, ωγ2) and γγ′ =
γ1γ

′
1 + γ2γ

′
2.

Let f, g : A2 → C be functions with finite support sets. The Fourier transform f̂ : T2 →
C of f is defined by f̂(α) =

∑
m∈A2

f(m)e(mα). The convolution f ∗ g : A2 → C of f and g is

defined by

f ∗ g(n) =
∑

m∈A2

f(m)g(n−m).

Then it follows that

suppf ∗ g ⊆ suppf + suppg and f̂ ∗ g(α) = f̂(α)ĝ(α).
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Let dα denote the product of Haar measures. For m ∈ A2, we have the orthogonal relation
∫

T2

e(αm)dα =

{
1, if m = 0,

0, otherwise.
(2.1)

Lemma 1 For M ∈ N+ and ω ∈ K∞, we have

∑
d∈GM

e(ωd) =

{
qM , if ord{ω} < −M,

0, otherwise.

Proof This is [10, Lemma 7].
Let a, b ∈ A with b 6= 0 and gcd(b, a) = 1. For m = (m1,m2) ∈ A2, if gcd(b,m1,m2) = 1,

we define
G(

a

b
,m) =

∑
d∈Gordb

e(
a

b
m
−→
d ),

where
−→
d = (d, d2).

For N ∈ N+, the exponential sum SN : T2 → C is defined by SN (α) =
∑

d∈GN

e(α
−→
d ).

Lemma 2 Let N ∈ N+ and α = (α1, α2) ∈ T2. Let b ∈ A× and m = (m1,m2) ∈ A2 with
gcd(b,m1,m2) = 1. Suppose that ordb ≤ N,

∣∣α1 − m1
b

∣∣ < |b|−1 and
∣∣α2 − m2

b

∣∣ < q1−N |b|−1.

Then we have
SN (α) =

1
|b|G(

1
b
,m)SN (α− 1

b
m).

Proof Write β = (β1, β2) = α− 1
b
m. Then

SN (α) =
∑

t∈Gordb

e(
1
b
m
−→
t )

∑
s∈GN−ordb

e(β
−−−→
sb + t).

Let s ∈ GN−ordb and t ∈ Gordb. Note that

ord(β1(sb + t)− β1sb) = ordβ1 + ordt ≤ (−ordb− 1) + (ordb− 1) = −2,

we have e(β1(sb + t)) = e(β1sb). Similarly, since

ord(β2(sb + t)2 − β2s
2b2) ≤ ordβ2 + ordt + max{ordt, ordsb}

≤ (−N − ordb) + (ordb− 1) + (N − 1)

= −2,

it follows that e(β2(sb + t)2) = e(β2s
2b2). Thus, we obtain

SN (α) =
∑

t∈Gordb

e(
1
b
m
−→
t )

∑
s∈GN−ordb

e(β
−→
sb)

= G(
1
b
,m)

∑
s∈GN−ordb

e(β
−→
sb)

=
1
|b|G(

1
b
,m)

∑
t∈Gordb

∑
s∈GN−ordb

e(β
−−−→
sb + t)

=
1
|b|G(

1
b
,m)SN (β).
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This completes the proof of the lemma.

Lemma 3 Let r1, r2 ∈ N. Then for any α = (α1, α2) ∈ T2, there exists (b,m1,m2) ∈ A3

with the following properties

(i) b is monic and ordb ≤ r1 + r2;

(ii) gcd(b,m1,m2) = 1;

(iii) ordmj < ordb and
∣∣αj − mj

b

∣∣ < q−rj |b|−1 (1 ≤ j ≤ 2).

Proof For 1 ≤ j ≤ 2, let Tj =
{
ω ∈ T : ordω ≤ −rj − 1

}
. Then Tj is a subgroup of T.

Also,
∣∣T/Tj

∣∣ = qrj .

Note that
∣∣ 2∏

j=1

T/Tj

∣∣ = qr1+r2 < |Gr1+r2+1|, we can find two distinct elements d1, d2 of

Gr1+r2+1 such that

({d1α1}+ T1, {d1α2}+ T2

)
=

({d2α1}+ T1, {d2α2}+ T2

)
.

Write b′ = d2 − d1. Then we have b′ 6= 0 and ordb′ ≤ r1 + r2.

Let m′
j = [b′αj ]. Then ordm′

j ≤ ord(b′αj) = ordb′ + ordαj < ordb′.

Since ord(b′αj −m′
j) = ord{b′αj} = ord({d2αj} − {d1αj}) ≤ −rj − 1, we have

∣∣αj −
m′

j

b′
∣∣ < q−rj |b′|−1.

Let c be the leading coefficient of b′ and let a = gcd(b′,m′
1,m

′
2). By taking b = b′

ac
and

mj = m′
j

ac
, the lemma follows.

3 Estimate for G(a
b
,m)

In this section, we obtain an estimate for G(a
b
,m). Our arguments run in parallel with

the approach of Chen [11].

Lemma 4 Let a1, a2, b1, b2 ∈ A with b1, b2 6= 0 and gcd(b1, a1) = gcd(b2, a2) = 1. Let
m = (m1,m2) ∈ A2. Suppose that gcd(b1,m1,m2) = gcd(b2,m1,m2) = 1. If gcd(b1, b2) = 1,

then

G(
a1

b1

,m)G(
a2

b2

,m) = G(
a1b2 + a2b1

b1b2

,m).

Proof Since gcd(b1, b2) = 1, b2 + b1A is invertible in the ring H1 = A/b1A. Thus,

G(
a1

b1

,m) =
∑

d+b1A∈H1

e(
a1

b1

m
−→
d ) =

∑
d+b1A∈H1

e(
a1

b1

m
−→
b2d) =

∑
d∈Gordb1

e(
a1

b1

m
−→
b2d).

Similarly, we have

G(
a2

b2

,m) =
∑

d∈Gordb2

e(
a2

b2

m
−→
b1d).
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Combining the above two equalities, it follows that

G(
a1

b1

,m)G(
a2

b2

,m) =
∑

d1∈Gordb1 ,d2∈Gordb2

e(
a1

b1

m
−−→
b2d1)e(

a2

b2

m
−−→
b1d2)

=
∑

d1∈Gordb1 ,d2∈Gordb2

e(
a1b2 + a2b1

b1b2

m
−−−−−−−→
b1d2 + b2d1)

=
∑

d∈Gordb1b2

e(
a1b2 + a2b1

b1b2

m
−→
d ). (3.1)

Equality (3.1) follows since gcd(b1, b2) = 1.

Lemma 5 Let a, b ∈ A with b 6= 0 and gcd(b, a) = 1. Let m = (m1,m2) ∈ A2. Suppose
that gcd(b,m1,m2) = 1. If p ≥ 3 and b is irreducible, then we have

∣∣G(
a

b
,m)

∣∣ ≤ |b| 12 .

Proof Since b is irreducible and gcd(b, a) = 1, it follows that a 6= 0. We divide into two
cases.

Case 1 Suppose that b | m2. Since gcd(b,m1,m2) = 1, b - m1. By Lemma 1, we have

G(
a

b
,m) =

∑
d∈Gordb

e(
am1

b
d) = 0.

Case 2 Suppose that b - m2. Since b is irreducible, H = A/bA is a field. Note that
|H| = |b|, we can find an isomorphism T : F|b| → H of fields.

Consider ψ : F|b| → C× defined by ψ(c) = e(a
b
T (c)). It follows from Lemma 1 that

∑
c∈F|b|

ψ(c) =
∑

d∈Gordb

e(
ad

b
) = 0.

Thus, ψ is a non-trivial additive character of F|b|. Let P (t) =
∑2

j=1 T−1(mj + bA)tj . Then
P is a polynomial of degree 2 in F|b|[t].

Note that

G(
a

b
,m) =

∑
d∈Gordb

ψ(P (T−1(d + bA))) =
∑

c∈F|b|
ψ(P (c)),

by Weil’s theorem in [12], we have
∣∣G(a

b
,m)

∣∣ ≤ |b| 12 .

Combining the above two cases, the lemma follows.
Lemma 6 Let a, b ∈ A with b 6= 0 and gcd(b, a) = 1. Let m = (m1,m2) ∈ A2. Suppose

that gcd(b,m1,m2) = 1. If p ≥ 3 and b is irreducible, then for any r ∈ N+, we have

∣∣G(
a

br
,m)

∣∣ ≤ |b| r
2 .

Proof We will prove this lemma by induction on r.
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For r = 1, the lemma follows from Lemma 5.
Let r ∈ N with r ≥ 2. Suppose that the lemma holds for all r′ ∈ N+ with r′ < r. We

now prove that the statement is true for r.

Note that for d ∈ Gordbr , there exist d1 ∈ Gordbr−1 and d2 ∈ Gordb such that d =
d2b

r−1 + d1. This observation allows us to obtain

G(
a

br
,m) =

∑
d1∈Gordbr−1

e(
a

br
m
−→
d1)

∑
d2∈Gordb

e
(a

b
(m1 + 2m2d1)d2

)
. (3.2)

There are two cases.
Case 1 Suppose that b | m2. Since b - m1, by Lemma 1, we have

∑
d2∈Gordb

e
(a

b
(m1 + 2m2d1)d2

)
=

∑
d2∈Gordb

e(
am1

b
d2) = 0.

By (3.2), we have
G(

a

br
,m) = 0.

Case 2 Suppose that b - m2. Then there exists unique d0 ∈ Gordb such that

m1 + 2m2d0 ≡ 0 (mod b).

For any d1 ∈ Gordbr−1 , it follows from Lemma 1 that

∑
d2∈Gordb

e
(a

b
(m1 + 2m2d1)d2

)
=

{
|b|, if d1 ≡ d0 (mod b),
0, otherwise.

Write
Λ =

{
d ∈ Gordbr−1 : d ≡ d0 (mod b)

}
.

By (3.2), we have
G(

a

br
,m) =

∑
d1∈Λ

|b|e( a

br
m
−→
d1).

If r = 2, then
|G(

a

br
,m)| =

∣∣|b|e( a

b2
m
−→
d0)

∣∣ = |b| r
2 .

If r ≥ 3, then
G(

a

br
,m) =

∑
d∈Gordbr−2

|b|e( a

br
m
−−−−→
db + d0

)
. (3.3)

Let m′
1 = m1+2m2d0

b
, then m′

1 ∈ A. Write m′ = (m′
1,m2). Note that

m
−−−−→
db + d0 −m

−→
d0 = b2m′−→d ,

we deduce from (3.3) that

G(
a

br
,m) = |b|e( a

br
m
−→
d0

)
G(

a

br−2
,m′).
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By the induction hypothesis, it follows that
∣∣G(

a

br
,m)

∣∣ = |b|
∣∣G(

a

br−2
,m′)

∣∣ ≤ |b| r
2 .

By combining the above two cases, we complete the proof of the lemma.
Proposition 7 Let a, b ∈ A with b 6= 0 and gcd(b, a) = 1. Let m = (m1,m2) ∈ A2.

Suppose that gcd(b,m1,m2) = 1. If p ≥ 3, then we have
∣∣G(

a

b
,m)

∣∣ ≤ |b| 12 .

Proof Without loss of generality, we assume that a 6= 0 and ordb ≥ 1. Also, b is monic.
There exist ι, j1, · · · , jι ∈ N+ and distinct monic irreducible polynomials σ1, · · · , σι in A such

that b =
ι∏

i=1

σji

i . We prove the lemma by induction on ι.

For ι = 1, the lemma follows from Lemma 6.
Let ι ∈ N with ι ≥ 2. Suppose that the lemma is true for ι− 1. We now prove that the

claim holds for ι. Since gcd(b, a) = 1, we can find al, a
′ ∈ A× such that

a∏ι

i=1 σji

i

=
al

σjl

l

+
a′∏ι−1

i=1 σji

i

and gcd(σjl

l , al) = gcd(
ι−1∏
i=1

σji

i , a′) = 1.

By Lemmas 4 and 6, we have

∣∣G(
a∏ι

i=1 σji

i

,m)
∣∣ =

∣∣G(
al

σjl

l

,m)
∣∣
∣∣∣G(

a′∏ι−1

i=1 σji

i

,m)
∣∣∣ ≤ |σl|

jl
2

∣∣∣G(
a′∏ι−1

i=1 σji

i

,m)
∣∣∣.

By the induction hypothesis, the proposition follows.

4 Estimates for SN

For the present, we fix N ∈ N+ and A ⊆ GN ×G2N with |A| = δq3N . Throughout this
section, we assume that the following hypothesis holds.

Hypothesis A p ≥ 3, (A−A) ∩ {−→d : d ∈ A×} = ∅ and δ ≥ q1− N
12 .

Take θ ∈ N+ with q−θ < δ ≤ q1−θ. Then N ≥ 12θ. Write M = N − 6θ.

The characteristic function 1A : A2 → R of A is defined by

1A(m) =

{
1, if m ∈ A,

0, otherwise.

Write ΓN = GN × G2N . We define the balanced function fA : A2 → R of A to be fA =
1A − δ1ΓN

.

Let b ∈ A× with b monic. Write

Ab =
{
(a1, a2) ∈ A2 : gcd(b, a1, a2) = 1, ordaj < ordb (1 ≤ j ≤ 2)

}
.

For (a1, a2) ∈ Ab, we define the Farey arc F (b, a1, a2) to be

F (b, a1, a2) =
{

(α1, α2) ∈ T2 : |αj − aj

b
| < q−jM |b|−1 (1 ≤ j ≤ 2)

}
.
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Also, we define
Fb =

⋃

(a1,a2)∈Ab

F (b, a1, a2).

We say F (b, a1, a2) is major if ordb ≤ 2θ + 3 and minor if ordb > 2θ + 3. Let

B = {b ∈ A× : b monic, ordb ≤ 2θ + 3}.

We define the major arcs M and the minor arcs m as follows:

M =
⋃
b∈B

Fb and m = T2 \M.

Lemma 8 Let b, b′ ∈ B. Suppose that (a1, a2) ∈ Ab and (a′1, a
′
2) ∈ Ab′ . If (b, a1, a2) 6=

(b′, a′1, a
′
2), then we have

F (b, a1, a2) ∩ F (b′, a′1, a
′
2) = ∅.

Proof To prove the lemma, we suppose the contrary. Then there exists

(α1, α2) ∈ F (b, a1, a2) ∩ F (b′, a′1, a
′
2).

Let 1 ≤ j ≤ 2. Since

∣∣aj

b
− a′j

b′
∣∣ ≤ max

{∣∣αj − aj

b

∣∣, ∣∣αj −
a′j
b′

∣∣} < q−jM max
{|b|−1, |b′|−1

}
,

it follows that

|ajb
′ − a′jb| < q−jM max{|b|, |b′|} ≤ q2θ+3−M ≤ q−θ < 1.

Thus ajb
′ = a′jb. Let Aj , Bj ∈ A with Bj monic such that

gcd(Bj , Aj) = 1 and
Aj

Bj

=
aj

b
=

a′j
b′

.

It is easy to see that b = lcm(B1, B2) = b′. It follows that aj = a′j . This leads to a contra-
diction, and the lemma follows.

Proposition 9 If b ∈ B, then for any α ∈ Fb, we have

|SN (α)| ≤ qN |b|−1/2.

Proof Write (α1, α2) = α. Take a = (a1, a2) ∈ Ab such that α ∈ F (b, a1, a2). Since

|α2 − a2

b
| < q−2M |b|−1 ≤ q−N |b|−1 and ordb ≤ 2θ + 3 < N,

by Lemma 2, we have

SN (α) =
1
|b|G(

1
b
, a)SN (α− 1

b
a).
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It follows from Proposition 7 that

|SN (α)| ≤ |b|− 1
2 |SN (α− 1

b
a)| ≤ |GN ||b|−1/2.

Proposition 10 For any α ∈ m, we have

|SN (α)| ≤ δ

4
qN .

Proof Write α = (α1, α2). By using Lemma 3 for r1 = 0 and r2 = N, we can find a
monic polynomial b in A× and a = (a1, a2) ∈ A2 such that

ordb ≤ N, gcd(b, a1, a2) = 1, ordaj < ordb and
∣∣αj − aj

b

∣∣ < q−(j−1)N |b|−1 (1 ≤ j ≤ 2).

Write β = (β1, β2) = α− 1
b
a. If ordb ≥ 2θ + 4, by Lemma 2 and Proposition 7, we have

|SN (α)| ≤ |b|−1|G(
1
b
, a)||SN (β)| ≤ |b|− 1

2 |SN (β)| ≤ q−θ−2|GN | ≤ δ

4
qN .

In the following, we assume that ordb ≤ 2θ + 3. Consider the following estimate

∣∣SN (β)
∣∣2 =

∑
d,d′∈GN

e
(
β1(d− d′) + β2(d + d′)(d− d′)

)

=
∑

d,d′∈GN

e(β1d + β2dd′)

≤
∑

d∈GN

∣∣∣
∑

d′∈GN

e(β2dd′)
∣∣∣.

For d ∈ GN , since

ord(β2d) = ordβ2 + ordd ≤ (−N − ordb− 1) + (N − 1) ≤ −2,

it follows that {β2d} = β2d. By Lemma 1, we have

∣∣SN (β)
∣∣2 ≤

∑

d∈GN ,ord(β2d)<−N

qN ≤ |β2|−1.

Combining Lemma 2 and Proposition 7 with the above inequality, it follows that

|SN (α)| ≤ |b|−1|G(
1
b
, a)||SN (β)| ≤ |b|− 1

2 |SN (β)| ≤ |b|− 1
2 |β2|− 1

2 . (4.1)

Since α /∈ M, there are two cases.
Case 1 Suppose that |β2| ≥ q−2M |b|−1. By (4.1), we have

|SN (α)| ≤ qM = qN−6θ ≤ δ

4
qN .

Case 2 Suppose that |β1| ≥ q−M |b|−1 and |β2| < q−2M |b|−1.
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If ordβ2 ≥ 1−N + ordβ1, then by (4.1), we have

|SN (α)| ≤ |b|− 1
2 |β1|− 1

2 q
N−1

2 ≤ q
M+N−1

2 ≤ qN−3θ ≤ δ

4
qN .

Thus, it remains to estimate |SN (α)| under the additional assumption ordβ2 ≤ ordβ1 −N.

Write L1 = −ordβ1, then 1 ≤ L1 ≤ M + ordb; write L2 = −ordβ2, then L2 ≥ 1 + 2M +
ordb; write K = bL1+N

2
c, since L1 ≤ M + 2θ + 3 < N, we have L1 ≤ K ≤ N − 1.

For j ∈ N, write Cj = {d ∈ A : ordd = j}, then

SN (β) =
∑

d∈GK

e(β
−→
d ) +

N−1∑
j=K

∑
d∈Cj

e(β
−→
d ).

Let d ∈ GK . By the assumption ordβ2 ≤ ordβ1 −N, we have

ord(β2d
2) = 2ordd− L2 ≤ 2(K − 1) + (−N − L1) ≤ −2.

It follows that e(β2d
2) = 1. Note that ord{β1} = −L1 ≥ −K, by Lemma 1, we have

∑
d∈GK

e(β
−→
d ) =

∑
d∈GK

e(β1d) = 0.

Thus

SN (β) =
N−1∑
I=K

∑
d∈CI

e(β
−→
d ). (4.2)

Take the sequences
{
µi

}−L1

i=−∞ and
{
νj

}−L2

j=−∞ in Fq such that

β1 =
∑

i≤−L1

µit
i and β2 =

∑
j≤−L2

νjt
j .

Let K ≤ I ≤ N−1 and d ∈ CI . Take c0, c1, · · · , cI ∈ Fq with cI 6= 0 such that d =
I∑

i=0

cit
i.

Then

res(β
−→
d ) =

I∑
i=L1−1

µ−i−1ci +
2I∑

l=L2−1

ν−l−1

∑
0≤i,j≤I,i+j=l

cicj .

For 0 ≤ i, j ≤ I, if i + j ≥ L2 − 1, by the assumption ordβ2 ≤ ordβ1 −N, we have

min{i, j} ≥ L2 − 1− I ≥ (N + L1)− 1− (N − 1) = L1.

Thus, there exists the polynomial QI(t1, · · · , tI−L1+1) of (I −L1 + 1) variables over Fq such
that

res(β
−→
d ) = µ−L1cL1−1 + QI(cL1 , cL1+1, · · · , cI).

Substituting this into the definition of the function e(·), and noting that µ−L1 6= 0, we have
∑
d∈CI

e(β
−→
d ) =

∑
j 6=L1−1,0≤j≤I−1

∑
cj∈Fq

∑

cI∈F×q

eq

(
QI(cL1 , · · · , cI)

) ∑
cL1−1∈Fq

eq

(
µ−L1cL1−1

)
= 0.
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It follows from (4.2) that SN (β) = 0. Finally, by Lemma 2, we have SN (α) = 0.

Combining the above two cases, we complete the proof of the proposition.

5 Density Increment

In this section, we continue to fix N ∈ N+ and A ⊆ ΓN with |A| = δq3N . Also, we
assume that Hypothesis A holds.

Lemma 11 ∫

T2

|f̂A(α)|2|SN (α)|dα ≥ 1
2
δ2q4N .

Proof Write I =
∑

d∈GN ,m∈A2

fA(m)fA(m +
−→
d ). By (2.1), we have

I =
∑

d∈GN ,m,n∈A2

fA(m)fA(n)
∫

T2

e(α(m +
−→
d − n))dα =

∫

T2

|f̂A(α)|2SN (α)dα. (5.1)

If d ∈ GN , then
−→
d ∈ ΓN . Thus ΓN +

−→
d = ΓN −−→d = ΓN . It follows that (A−A)∩{−→d : d ∈

A×} = ∅ from Hypothesis A. Thus

I =
∑

m∈A2

1A(m)− δ
∑

d∈GN ,m∈A2

1A(m)
(
1ΓN

(m +
−→
d ) + 1ΓN

(m−−→d )
)

+δ2
∑

d∈GN ,m∈A2

1ΓN
(m)1ΓN

(m +
−→
d )

= |A| − δ
∑

d∈GN

(∣∣A ∩ (ΓN −−→d )
∣∣ +

∣∣A ∩ (ΓN +
−→
d )

∣∣
)

+ δ2
∑

d∈GN

∣∣ΓN ∩ (ΓN −−→d )
∣∣

= |A| − 2δ|A|
∣∣GN

∣∣ + δ2
∣∣GN

∣∣∣∣ΓN

∣∣

= −δ2q4N
(
1− 1

δqN

)
.

By Hypothesis A, we have δqN ≥ q1+ 11N
12 ≥ 2. It follows that

I ≤ −1
2
δ2q4N . (5.2)

Finally, by (5.1) and (5.2), we obtain

∫

T2

|f̂A(α)|2|SN (α)|dα ≥ |I| ≥ 1
2
δ2q4N .

Lemma 12 There exists a monic polynomial b0 in G2θ+4 such that
∫

Fb0

|f̂A(α)|2dα ≥ cδ3q3N ,

where 0 < c < 1 is a constant depending only on q.



668 Journal of Mathematics Vol. 39

Proof By Proposition 10, we have
∫

m

|f̂A(α)|2|SN (α)|dα ≤ δ

4
qN

∫

m

|f̂A(α)|2dα

≤ δ

4
qN

∑

m∈A2

|fA(m)|2

≤ δ2

4
q4N .

Write
II =

∫

M

|f̂A(α)|2|SN (α)|dα.

Combining the above inequality with Lemma 11, it follows that

II ≥
∫

T2

|f̂A(α)|2|SN (α)|dα− δ2

4
q4N ≥ δ2

4
q4N . (5.3)

For j ∈ N, write Oj = {b ∈ A× : b monic, ordb = j}. By Lemma 8 and Proposition 9, we
have

II =
2θ+3∑
j=0

∑
b∈Oj

∫

Fb

|f̂A(α)|2|SN (α)|dα ≤
2θ+3∑
j=0

qN− j
2

∑
b∈Oj

∫

Fb

|f̂A(α)|2dα.

Take a monic polynomial b0 in G2θ+4 such that
∫

Fb0

|f̂A(α)|2dα = max
0≤j≤2θ+3,b∈Oj

∫

Fb

|f̂A(α)|2dα.

It follows from the above inequality that

II ≤
∫

Fb0

|f̂A(α)|2dα

2θ+3∑
j=0

∣∣Oj

∣∣qN− j
2 =

∫

Fb0

|f̂A(α)|2dα

2θ+3∑
j=0

qN+ j
2 .

Since δ ≤ q1−θ, we can find a constant c′ > 1, depending only on q, such that

II ≤ c′

δ
qN

∫

Fb0

|f̂A(α)|2dα.

By taking c = 1
4c′ , the lemma follows from (5.3).

Lemma 13 There exists n0 ∈ ΓN such that

|A ∩ (n0 + b0ΓM )| ≥ δ(1 +
c

2
δ)q3M ,

where b0ΓM =
{
b0m : m ∈ ΓM

}
.

Proof Write P = b0ΓM . Let m = (m1,m2) ∈ ΓM and 1 ≤ j ≤ 2. Since

ord(b0mj) = ordb0 + ordmj ≤ (2θ + 3) + (jM − 1) ≤ jN − 1,
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we have b0m ∈ ΓN . Thus, P ⊆ ΓN . Also, we have

suppfA ∗ 1−P ⊆ suppfA + supp1−P ⊆ ΓN + (−P ) = ΓN .

For n ∈ ΓN , we have

fA ∗ 1−P (n) =
∑

m∈A2

1A(m)1P (m− n)− δ
∑

m∈A2

1ΓN
(m)1P (m− n)

= |A ∩ (n + P )| − δ
∣∣ΓN ∩ (n + P )

∣∣
= |A ∩ (n + P )| − δ|P |. (5.4)

If there exists n0 ∈ ΓN such that fA ∗ 1−P (n0) ≥ δ|P |, then

|A ∩ (n0 + P )| = fA ∗ 1−P (n0) + δ|P | ≥ 2δ|P | ≥ δ(1 +
c

2
δ)q3M .

Thus, in the following, we assume that fA ∗ 1−P (n) ≤ δ|P | for all n ∈ ΓN . It follows from
(5.4) that ∣∣fA ∗ 1−P (n)

∣∣ ≤ δ|P |. (5.5)

Let α = (α1, α2) ∈ Fb0 . Take a = (a1, a2) ∈ Ab0 such that α ∈ F (b0, a1, a2). Since

ord
(
mj(b0αj − aj)

)
= ordmj + ordb0 + ord(αj − aj

b0

)

≤ (jM − 1) + ordb0 + (−jM − ordb0 − 1) = −2,

we have e(b0mjαj) = e(mjaj) = 1. Thus, 1̂−P (α) = |P |. It follows from (5.5) that
∫

Fb0

|f̂A(α)|2dα =
1
|P |2

∫

Fb0

| ̂fA ∗ 1−P (α)|2dα

≤ 1
|P |2

∑

n∈A2

|fA ∗ 1−P (n)|2

≤ δ

|P |
∑

n∈A2

|fA ∗ 1−P (n)|.

By Lemma 12, we have ∑

n∈A2

|fA ∗ 1−P (n)| ≥ cδ2q3(M+N).

Note that
∑

n∈A2

fA(n) = 0, we have

∑

n∈A2

(
fA ∗ 1−P

)
+
(n) ≥ c

2
δ2q3(M+N).

Take n0 ∈ ΓN such that

fA ∗ 1−P (n0) = max
n∈ΓN

fA ∗ 1−P (n).
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By (5.4), we have

|A ∩ (n0 + P )| = δ|P |+ fA ∗ 1−P (n0) ≥ δ|P |+ 1
|ΓN |

∑

n∈A2

(
fA ∗ 1−P

)
+
(n) ≥ δ(1 +

c

2
δ)q3M .

Proposition 14 There exist N ′ ∈ N+ and A′ ⊆ ΓN ′ with |A′| = δ′q3N ′
such that

(i) (A′ −A′) ∩ {−→
d : d ∈ A×}

= ∅;
(ii) δ′ ≥ δ(1 + c

2
δ);

(iii) N ′ ≥ N − 11 logq

(
q
δ

)
, where logq x = log x/ log q.

Proof Write L = ordb0 and T = |b0|. Then 0 ≤ L ≤ 2θ + 3. By taking N ′ = M − L,

property (iii) follows. Take d1, · · · , dT ∈ GM and d′1, · · · , d′T ∈ G2M−L such that

GM =
T⋃

i=1

(
di +GN ′

)
and G2M−L =

T⋃
i=1

(
d′i +G2N ′

)
. (5.6)

For d ∈ GL and 1 ≤ i, j ≤ T, write

Υd,i,j = n0 + (0, b0d) +
−→
b0 ¯ (di, d

′
j) +

−→
b0 ¯ ΓN ′ ,

where −→
b0 ¯ (di, d

′
j) = (b0di, b

2
0d
′
j) and

−→
b0 ¯ ΓN ′ =

{−→
b0 ¯m : m ∈ ΓN ′

}
.

Let m = (m1,m2) ∈ ΓM . Take d ∈ GL and d′ ∈ G2M−L such that m2 = d + b0d
′. By

(5.6), we can find 1 ≤ i, j ≤ T such that (m1, d
′) ∈ (di, d

′
j) + ΓN ′ . Then we have

n0 + b0m = n0 + (0, b0d) +
−→
b0 ¯ (m1, d

′) ∈ Υd,i,j .

Thus, we see that
n0 + b0ΓM =

⋃
d∈GL,1≤i,j≤T

Υd,i,j .

Take d0 ∈ GL and 1 ≤ i0, j0 ≤ T such that
∣∣A ∩Υd0,i0,j0

∣∣ = max
d∈GL,1≤i,j≤T

∣∣A ∩Υd,i,j

∣∣.

By Lemma 13, we have

∣∣A ∩Υd0,i0,j0

∣∣ ≥ 1
T 3

∑
d∈GL,1≤i,j≤T

∣∣A ∩Υd,i,j

∣∣ =
1
T 3
|A ∩ (n0 + b0ΓM )| ≥ δ(1 +

c

2
δ)q3N ′

.

Consider the bijection f : ΓN ′ → Υd0,i0,j0 defined by

f(t) = n0 + (0, b0d0) +
−→
b0 ¯ (di0 , d

′
j0

) +
−→
b0 ¯ t.

By taking A′ = f−1(A ∩ Υd0,i0,j0), property (ii) follows. To prove property (i), we suppose
the contrary. Then there exist t1, t2 ∈ A′ and d ∈ A× such that t2 − t1 =

−→
d . It follows that

f(t2)− f(t1) =
−→
b0 ¯−→d =

−→
b0d ∈ A−A,
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which contradicts Hypothesis A. This completes the proof of the proposition.

6 Proof of Theorem 1

Proposition 15 If p ≥ 3, then there exists a constant C1 > 0, depending only on q,

such that the following inequality holds. Let N ∈ N with N ≥ 2 and A ⊆ GN × G2N . If
(A−A)

⋂{−→
d : d ∈ A×}

= ∅, then we have

|A| ≤ C1q
3N log N

N
.

Remark 3 Note that d ∈ GN ⇔ d2 ∈ G2N , the form of Proposition 15 is more natural
than of Theorem 1.

Proof Write |A| = δq3N . If δ ≤ q1− N
12 , then by taking

C1 = sup
N≥2

q1−N/12 N

log N
,

the proposition follows. Thus in the following, we assume that δ ≥ q1− N
12 .

Now, we recursively define a sequence of triples (Ni, Ai, δi) with Ni ∈ N+, Ai ⊆ ΓNi
and

|Ai| = δiq
3Ni as follows. Take (N0, A0, δ0) = (N, A, δ). Let i ∈ N. Suppose that (Ni, Ai, δi) is

defined. If δi < q1−Ni
12 , we stop the definition. If δi ≥ q1−Ni

12 , by Proposition 14, we can find
Ni+1 ∈ N+ and Ai+1 ⊆ ΓNi+1 with |Ai+1| = δi+1q

3Ni+1 such that
(i) (Ai+1 −Ai+1) ∩

{−→
d : d ∈ A×}

= ∅;
(ii) δi+1 ≥ δi(1 + c

2
δi);

(iii) Ni+1 ≥ Ni − 11 logq

(
q
δi

)
.

Write c′ = c
2
. It follows from (ii) that δi+1 − δi ≥ c′δ2. Since δi+1 ≤ 1, this pro-

cess produces a finite sequence
{
(Ni, Ai, δi)

}J

i=1
. Then for any 0 ≤ i ≤ J − 1, the triple

(Ni+1, Ai+1, δi+1) satisfies the above conditions (i)–(iii). Also, we have

δJ < q1−NJ
12 . (6.1)

Claim 1 For j ∈ N, write Ij = d 1
2jc′δ e. If i ≥

j∑
l=0

Il, then δi ≥ 2j+1δ.

Proof We prove the claim by induction on j. For j = 0, we have Ij ≥ 1
c′δ . It follows

from (ii) that
δi ≥ δ0 + c′iδ2

0 .

Thus if i ≥ I0, then δi ≥ 2δ.

Suppose that the claim holds for j. We now prove that the statement is true for j + 1.

Write k =
j∑

l=0

Il. Let i > k. By (ii), we have δi ≥ δk + (i− k)c′δ2
k. Thus, if i ≥

j+1∑
l=0

Il, it

follows from the induction hypothesis that

δi ≥ 2j+1δ + c′Ij+1(2j+1δ)2 ≥ 2j+2δ.
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This completes the proof of the claim.
Take j0 ∈ N such that 2j0δ ≤ 1 < 2j0+1δ. Then we have

J <
∑

0≤i≤j0

Ii ≤ 2
c′δ

∑
i∈N

2−i =
4

c′δ
.

It follows from (iii) that

NJ ≥ N − 11J logq

(q

δ

) ≥ N − 44
c′δ

logq

(q

δ

)
.

By (6.1), we have

δ ≤ δJ ≤ q1− N
12

(q

δ

) 11
3c′δ .

Thus, there exists a constant C1 > 1, depending only on q, such that

2N ≤ C1

δ
log

C1

δ
.

Note that the function x log x on [1,+∞) is increasing, and the proposition follows since

2N

log 2N
log

( 2N

log 2N

) ≤ 2N.

Proof of Theorem 1 Write |A| = δq2N . If N ≤ 7, by taking C = 7
log 7

, the theorem
follows. In the following, we assume that N ≥ 8. Write

N ′ =
⌊N

4
⌋
, S = qN−N ′

and T = qN−2N ′
.

For 1 ≤ i ≤ S and 1 ≤ j ≤ T, take di, d
′
j ∈ GN such that

GN =
S⋃

i=1

(di +GN ′) =
T⋃

j=1

(d′j +G2N ′).

Then, we have

G2
N =

⋃
1≤i≤S,1≤j≤T

(di +GN ′)× (d′j +G2N ′) =
⋃

1≤i≤S,1≤j≤T

(
(di, d

′
j) + ΓN ′

)
.

Write
Ai,j = A

⋂(
(di, d

′
j) + ΓN ′

)
.

Take 1 ≤ i0 ≤ S and 1 ≤ j0 ≤ T such that
∣∣Ai0,j0

∣∣ = max
1≤i≤S,1≤j≤T

∣∣Ai,j

∣∣.

Write A′ = Ai0,j0 . Then we have (A′ −A′)
⋂{−→

d : d ∈ A×}
= ∅ and

|A′| ≥ 1
ST

∑
1≤i≤S,1≤j≤T

|Ai,j | ≥ 1
ST

∣∣∣
⋃

1≤i≤S,1≤j≤T

Ai,j

∣∣∣ =
1

ST
|A| = δq3N ′

.
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Define f : ΓN ′ → (di0 , d
′
j0

) + ΓN ′ to be f(m) = (di0 , d
′
j0

) + m. Then f is a bijection. Take
B = f−1(A′). Since B−B = A′−A′, we have (B−B)

⋂{−→
d : d ∈ A×}

= ∅. It follows from
Proposition 15 that

|B| ≤ C1q
3N ′ log N ′

N ′ ≤ C1
N

N/4− 1
q3N ′ log N

N
.

Note that N ≥ 8 and δ ≤ |B|q−3N ′
, by taking C = 8C1, the theorem follows.

7 Proof of Theorem 2

For 1 ≤ s ≤ l, take cs1, cs2 ∈ A such that Ps(x) = cs1x+cs2x
2. Write P =

(
csj

)
1≤s≤l,1≤j≤2

.

Denote by r the rank of the matrix P. Then 1 ≤ r ≤ 2. Thus, we divide into two case.
Case 1 Suppose that r = 2. Without loss of generality, we assume that

(
c11, c12

)
and(

c21, c22

)
are linearly independent. Write R =

(
cij

)
1≤i,j≤2

, e1 = (1, 0) and e2 = (0, 1). For
1 ≤ i ≤ 2, take ξ′i ∈ K2 such that Rξ′i = ei. When l ≥ 3, take D =

(
d′tj

)
1≤t≤l−2,1≤j≤2

such
that (

ct′j
)
3≤t′≤l,1≤j≤2

= DR.

Take S ∈ N with S ≥ 4 and D ∈ A× such that

D, cij ∈ GS , ξi = Dξ′i ∈ G2
S (1 ≤ i, j ≤ 2).

If l ≥ 3, we also require

dtj = Dd′tj ∈ GS (1 ≤ t ≤ l − 2, 1 ≤ j ≤ 2).

If N ≤ S, by taking C ′ =
(

S
log S

) 1
l , the theorem follows. Thus, we assume that N ≥ S + 1.

Claim 2 For m ∈ G2
S , write B′

m =
{
b ∈ G2

N+S : Rb + m ∈ A2
}
. Then there exists

m ∈ G2
S such that ∣∣B′

m

∣∣ ≥ q−2S |A|2.
Proof Let a = (a1, a2) ∈ A2. For 1 ≤ i ≤ 2, take a′i ∈ GN−ordD and a′′i ∈ GordD such

that ai = Da′i + a′′i . Write b =
2∑

i=1

a′iξi and m′ = (a′′1 , a′′2). Then we have

b ∈ G2
N+S , m′ ∈ G2

S and Rb = a−m′.

It follows that a ∈ R(
G2

N+S

)
+ m′. Thus, we see that

A2 ⊆
⋃

m∈G2
S

(
R(
G2

N+S

)
+ m

)
. (7.1)

Take m ∈ G2
S such that

∣∣B′
m

∣∣ = max
m∈G2

S

∣∣B′
m

∣∣. By (7.1), we have

∣∣B′
m

∣∣ ≥ 1
q2S

∑

m∈G2
S

∣∣B′
m

∣∣ ≥ 1
q2S

∣∣∣
⋃

m∈G2
S

((R(
G2

N+S

)
+ m

) ∩A2
)∣∣∣ =

1
q2S

|A2|.
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This completes the proof of the claim.
Claim 3 Suppose that l ≥ 3. For m ∈ Gl−2

N+3S , write B′′
m =

{
b ∈ B′

m : DRb+m ∈ Al−2
}
.

Then there exists m′ ∈ Gl−2
N+3S such that

∣∣B′′
m′

∣∣ ≥ q−(l−2)N−(3l−4)S |A|l.

Proof Let n ∈ Al−2 and b ∈ B′
m. If n +DRb ∈ Al−2, then n ∈ Gl−2

N+3S . Thus

∑

n∈Gl−2
N+3S

∑
b∈B′m

1Al−2

(
n +DRb

)
=

∑
b∈B′m

∑

n∈Al−2

1Al−2

(
n +DRb

)
= |B′

m||A|l−2. (7.2)

Take m′ ∈ Gl−2
N+3S such that

∣∣B′′
m′

∣∣ = max
m∈Gl−2

N+3S

∣∣B′′
m

∣∣. Then we have

∣∣B′′
m′

∣∣ ≥ 1
q(l−2)(N+3S)

∑

m∈Gl−2
N+3S

|B′′
m| =

1
q(l−2)(N+3S)

∑

m∈Gl−2
N+3S

∑
b∈B′m

1Al−2

(
m +DRb

)
.

The claim follows from (7.2) and Claim 2.
Write

m =

{
m, if l = 2,

(m,m′), if l ≥ 3.

Define B =
{
b ∈ G2

N+S : Pb + m ∈ Al
}
. Then by Claims 2 and 3, we have

|B| ≥ q−(l−2)N−(3l−4)S |A|l. (7.3)

Suppose that there exists d ∈ A suth that b′ − b =
−→
d for some b, b′ ∈ B. Since

P−→d = Pb′ − Pb ∈ Al −Al,

we have {
P1(d), · · · , Pl(d)

} ⊆ (A−A),

from which it follows that d = 0. Thus, we obtain

(B −B)
⋂{−→

d : d ∈ A×}
= ∅.

By Theorem 1, we have

|B| ≤ Cq2(N+S) log(N + S)
N + S

≤ Cq2(N+S) log N

N
.

By taking C ′ = C
1
l q

(3l−2)S
l , the theorem follows from (7.3).

Case 2 Suppose that r = 1. Without loss of generality, we assume thatR =
(
c11, c12

) 6=
0. Take ξ′ ∈ K2 such that Rξ′ = 1. When l ≥ 2, take D =

(
d′1, · · · , d′l−1

)
such that(

ct′j
)
2≤t′≤l,1≤j≤2

= DR.
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Take S ∈ N with S ≥ 4 and D ∈ A× such that

D, c1j ∈ GS (1 ≤ j ≤ 2), ξ = Dξ′ ∈ G2
S .

If l ≥ 2, we also require
dt = Dd′t ∈ GS (1 ≤ t ≤ l − 1).

If N ≤ S, by taking C ′ =
(

S
log S

) 1
l , the theorem follows. Thus we assume that N ≥ S + 1.

Claim 4 For m ∈ GS , write B′
m =

{
b ∈ G2

N+S : Rb + m ∈ A
}
. Then there exists

m ∈ GS such that ∣∣B′
m

∣∣ ≥ qN−S |A|.
Proof Let a ∈ A. Take a′ ∈ GN−ordD and a′′ ∈ GordD such that a = Da′ + a′′. Write

b = a′ξ. Then we have
b ∈ G2

N+S , a′′ ∈ GS and Rb = a− a′′.

It follows that a ∈ R(
G2

N+S

)
+ a′′. Thus, we see that

A ⊆
⋃

m∈GS

(
R(
G2

N+S

)
+ m

)
. (7.4)

For m ∈ GS , write Am = A
⋂(R(

G2
N+S

)
+ m

)
. For each a ∈ Am, we fix a â ∈ G2

N+S such
that Râ + m = a. Since

{
â + d(−c12, c11) : a ∈ Am, d ∈ GN

} ⊆ B′
m,

it follows that |B′
m| ≥ qN |Am|. Take m ∈ GS such that

∣∣B′
m

∣∣ = max
m∈GS

∣∣B′
m

∣∣. By (7.4), we have

∣∣B′
m

∣∣ ≥ 1
qS

∑
m∈GS

∣∣B′
m

∣∣ ≥ qN−S
∑

m∈GS

∣∣Am

∣∣ ≥ qN−S
∣∣∣

⋃
m∈GS

Am

∣∣∣ = qN−S |A|.

This completes the proof of the claim.
Claim 5 Suppose that l ≥ 2. For m ∈ Gl−1

N+3S , write B′′
m =

{
b ∈ B′

m : DRb+m ∈ Al−1
}
.

Then there exists m′ ∈ Gl−1
N+3S such that

∣∣B′′
m′

∣∣ ≥ q−(l−2)N−(3l−2)S |A|l.
Proof The claim follows from the similar argument as in Claim 3.
Write

m =

{
m, if l = 1,

(m,m′), if l ≥ 2.

Define B =
{
b ∈ G2

N+S : Pb + m ∈ Al
}
. Then by Claims 4 and 5, we have

|B| ≥ q−(l−2)N−(3l−2)S |A|l. (7.5)

By using similar arguments as in Case 1, we obtain |B| ≤ Cq2(N+S) log N
N

. By taking C ′ =
C

1
l q3S , the theorem follows from (7.5).

Combining the above two cases, the proof of the theorem is completed.
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函数域中Sárközy定理的2-维相似品

李国全,刘宝庆,钱 锟,许贵桥

(天津师范大学数学科学学院, 天津 300387)

摘要: Fq[t]为含有q个元的有限域Fq上的多项式环. 对N ∈ N, 设GN为由Fq[t]中一切次数严格小

于N的多项式所形成的集合. 假定Fq的特征严格大于2, 并且A ⊆ G2
N . 如果对任何d ∈ Fq[t] \ {0}都

有(d, d2) 6∈ A− A = {a− a′ : a, a′ ∈ A}. 本文证明了|A| ≤ Cq2N log N
N

, 此处常数C只依赖于q. 应用这个估

计, 本文把函数域中的Sárközy定理推广到了次数严格小于3的多项式的有限族的情形.
关键词: Sárközy定理; 函数域; Hardy-Littlewood圆法
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