A 2－DIMENSIONAL ANALOGUE OF SÁRKÖZY＇S THEOREM IN FUNCTION FIELDS

LI Guo－quan，LIU Bao－qing，QIAN Kun，XU Gui－qiao
（School of Mathematics Science，Tianjin Normal University，Tianjin 300387，China）

Abstract

Let $\mathbb{F}_{q}[t]$ be the polynomial ring over the finite field \mathbb{F}_{q} of q elements．For $N \in \mathbb{N}$ ， let \mathbb{G}_{N} be the set of all polynomials in $\mathbb{F}_{q}[t]$ of degree less than N ．Suppose that the characteristic of \mathbb{F}_{q} is greater than 2 and $A \subseteq \mathbb{G}_{N}^{2}$ ．If $\left(d, d^{2}\right) \notin A-A=\left\{a-a^{\prime}: a, a^{\prime} \in A\right\}$ for any $d \in \mathbb{F}_{q}[t] \backslash\{0\}$ ， we prove that $|A| \leq C q^{2 N} \frac{\log N}{N}$ ，where the constant C depends only on q ．By using this estimate， we extend Sárközy＇s theorem in function fields to the case of a finite family of polynomials of degree less than 3.

Keywords：Sárközy＇s theorem；function fields；Hardy－Littlewood circle method
2010 MR Subject Classification：11P55；11T55
Document code：A Article ID：0255－7797（2019）05－0656－21

1 Introduction

Let $\mathbb{N}=\{0,1,2, \cdots\}$ and write \mathbb{N}_{+}for $\mathbb{N} \backslash\{0\}$ ．For a subset A of an additive group，we define the difference set $A-A=\left\{a-a^{\prime}: a, a^{\prime} \in A\right\}$ ．If A also is finite，we denote by $|A|$ its cardinality．

In the late 1970s，Furstenberg［1］and Sárközy［2］independently proved the following conclusion．If A is a subset of positive upper density of \mathbb{Z} ，then there exist two distinct elements of A whose difference is a perfect square．The latter also provided an explicit estimate，but the former result is not quantitative．Sárközy＇s theorem was later improved by Pintz，Steiger and Szemerédi in［3］，where they obtained the following theorem．

Theorem A There exists a constant $D>0$ such that the following holds．Let $N \in \mathbb{N}_{+}$ and $A \subseteq \mathbb{N} \cap[1, N]$ ．If $(A-A) \cap\left\{n^{2}: n \in \mathbb{N}_{+}\right\}=\emptyset$ ，then we have

$$
|A| \leq D N(\log N)^{-\frac{1}{12} \log \log \log \log N}
$$

Remark 1 Balog，Pelikán，Pintz and Szemerédi［4］showed that one may replace $\frac{1}{12}$ by $\frac{1}{4}$ in the above bound．This estimate is the current best known bound．

In 1996，by extending the ideas of Furstenberg，Bergelson and Leibman［5］established a far reaching qualitative result，the so－called Polynomial Szemerédi theorem．It is natural to ask for a quantitative version of the Polynomial Szemerédi theorem．Recently，Lyall and

[^0]Magyar [6] made some progress towards this problem. They first proved a higher dimensional analogue of Sárközy's theorem.

Theorem B For $k \in \mathbb{N}$ with $k \geq 2$, there exists a constant $D^{\prime}>0$ such that the following holds. Let $N \in \mathbb{N}_{+}$and $A \subseteq \mathbb{N}^{k} \cap[1, N]^{k}$. If $(A-A) \cap\left\{\left(n, n^{2}, \cdots, n^{k}\right): n \in\right.$ $\mathbb{Z} \backslash\{0\}\}=\emptyset$, then we have

$$
|A| \leq D^{\prime} N^{k}\left(\frac{\log \log N}{\log N}\right)^{\frac{1}{k-1}}
$$

Then by applying Theorem B, they established a quantitative result on the existence of polynomial configurations of the type in the Polynomial Szemerédi theorem in the difference set of sparse subsets of \mathbb{Z}.

Theorem C Let $l \in \mathbb{N}_{+}$and $P_{1}, \cdots, P_{l} \in \mathbb{Z}[x]$ with $P_{i}(0)=0$ for $i=1, \cdots, l$. Suppose that $k=\max _{1 \leq i \leq l} \operatorname{deg} P_{i} \geq 2$. Then there exists a constant $D^{\prime \prime}>0$ such that the following inequality holds: let $N \in \mathbb{N}_{+}$and $A \subseteq \mathbb{N} \cap[1, N]$. If $\left\{P_{1}(n), \cdots, P_{l}(n)\right\} \nsubseteq A-A$ for any $n \in \mathbb{Z} \backslash\{0\}$, then we have

$$
|A| \leq D^{\prime \prime} N\left(\frac{\log \log N}{\log N}\right)^{\frac{1}{(k-1) l}}
$$

Remark 2 Theorems B and C were quoted from the revised version of [6], where the authors improved the main results in the original edition.

By taking $l=1, P_{1}=x^{2}$ and $k=2$, Sárközy's theorem follows from Theorem C. Thus, we may consider Theorem C to be Sárközy's theorem for a family of polynomials.

Let \mathbb{F}_{q} be the finite field of q elements. Let p denote the characteristic of \mathbb{F}_{q}. We denote by $\mathbb{A}=\mathbb{F}_{q}[t]$ the polynomial ring over \mathbb{F}_{q} and write $\mathbb{A}^{\times}=\mathbb{F}_{q}[t] \backslash\{0\}$. For $N \in \mathbb{N}$, let \mathbb{G}_{N} be the set of all polynomials in \mathbb{A} of degree less than N.

By adapting part of the Pintz-Steiger-Szemerédi argument, Lê and Liu [7] obtained an analogue of Theorem A in function fields.

Theorem D If $p \geq 3$, then there exists a constant $D^{\prime \prime \prime}>0$, depending only on q, such that the following holds: let $N \in \mathbb{N}$ with $N \geq 2$ and $A \subseteq \mathbb{G}_{N}$. If $(A-A) \cap\left\{d^{2}: d \in \mathbb{A}^{\times}\right\}=\emptyset$, then we have

$$
|A| \leq D^{\prime \prime \prime} q^{N} \frac{(\log N)^{7}}{N}
$$

In this paper, for the case $k=2$, we consider the analogues of Theorems B and C in function fields. First, by closely following the approach of Lyall and Magyar, which is explained in detail by Rice [8], we prove a 2-dimensional version of Sárközy's theorem in function fields.

Theorem 1 If $p \geq 3$, then there exists a constant $C>0$, depending only on q, such that the following holds: let $N \in \mathbb{N}$ with $N \geq 2$ and $A \subseteq \mathbb{G}_{N}^{2}$. If $(A-A) \cap\left\{\left(d, d^{2}\right): d \in \mathbb{A}^{\times}\right\}=\emptyset$, then we have

$$
|A| \leq C q^{2 N} \frac{\log N}{N}
$$

By adapting the lifting argument in [6], we deduce the following analogue of Theorem C from Theorem 1.

Theorem 2 Let $l \in \mathbb{N}_{+}$and $P_{1}, \cdots, P_{l} \in \mathbb{A}[x]$ with $P_{i}(0)=0$ for $i=1, \cdots, l$. Suppose that $\max _{1 \leq i \leq l} \operatorname{deg} P_{i} \leq 2$ and $p \geq 3$. Then there exists a constant $C^{\prime}>0$, depending only on q, P_{1}, \cdots, P_{l}, such that the following inequality holds: let $N \in \mathbb{N}$ with $N \geq 2$ and $A \subseteq \mathbb{G}_{N}$. If $\left\{P_{1}(d), \cdots, P_{l}(d)\right\} \nsubseteq A-A$ for any $d \in \mathbb{A}^{\times}$, then we have $|A| \leq C^{\prime} q^{N}\left(\frac{\log N}{N}\right)^{\frac{1}{l}}$.

In particular, by taking $l=1$ and $P_{1}=x^{2}$ in Theorem 2 , we obtain a slight improvement of Theorem D.

In the general cases $k \geq 3$, it is more difficult to establish a k-dimensional analogue of Theorem B in function fields. The main obstruction is that we are not able to obtain satisfactory exponential sum estimates on the minor arcs (for details of the circle method, see [9]), i.e., suitable generalizations of Proposition 10. We intend to return to this topic in the future.

2 Preliminaries

Let $\mathbb{K}=\mathbb{F}_{q}(t)$ be the field of fractions of \mathbb{A}. For $a, b \in \mathbb{A}$ with $b \neq 0$, we define $\left|\frac{a}{b}\right|=q^{\operatorname{deg} a-\operatorname{deg} b}$. Then $|\cdot|$ is a valuation on \mathbb{K}. The completion of \mathbb{K} with respect to this valuation is $\mathbb{K}_{\infty}=\left\{\sum_{i \leq r} c_{i} t^{i}: r \in \mathbb{Z}\right.$ and $\left.c_{i} \in \mathbb{F}_{q}(i \leq r)\right\}$, the field of formal Laurent series in $\frac{1}{t}$.

For $\omega=\sum_{i \leq r} c_{i} t^{i} \in \mathbb{K}_{\infty}$, if $c_{r} \neq 0$, we define ord $\omega=r$. Also, we adopt the convention that ord $0=-\infty$. Thus, we have $|\omega|=q^{\text {ord } \omega}$. We define $\{\omega\}=\sum_{i \leq-1} c_{i} t^{i}$ to be the fractional part of ω and we write $[\omega]$ for $\sum_{i \geq 0} c_{i} t^{i}$. Then it follows that $\omega=[\omega]+\{\omega\}$. We also write res ω for c_{-1} which is said to be the residue of ω.
\mathbb{K}_{∞} is a locally compact field and $\mathbb{T}=\left\{\omega \in \mathbb{K}_{\infty}\right.$: ord $\left.\omega \leq-1\right\}$ is a compact subring of \mathbb{K}_{∞}. Let $d \omega$ be the Haar measure on \mathbb{K}_{∞} such that $\int_{\mathbb{T}} 1 d \omega=1$.

Let $\operatorname{tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ be the familiar trace map. For $c \in \mathbb{F}_{q}$, write $e_{q}(c)=\exp \left(\frac{2 \pi \sqrt{-1}}{p} \operatorname{tr}(c)\right)$. The exponential function $e: \mathbb{K}_{\infty} \rightarrow \mathbb{C}^{\times}$is defined by $e(\omega)=e_{q}($ res $\omega)$. Using this function, one can establish Fourier analysis in \mathbb{A}. In particular, $\mathbb{A}, \mathbb{K}, \mathbb{K}_{\infty}, \mathbb{T}$ play the roles of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R} / \mathbb{Z}$, respectively.

For $\omega \in \mathbb{K}_{\infty}$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \gamma^{\prime}=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right) \in \mathbb{K}_{\infty}^{2}$, write $\omega \gamma=\left(\omega \gamma_{1}, \omega \gamma_{2}\right)$ and $\gamma \gamma^{\prime}=$ $\gamma_{1} \gamma_{1}^{\prime}+\gamma_{2} \gamma_{2}^{\prime}$.

Let $f, g: \mathbb{A}^{2} \rightarrow \mathbb{C}$ be functions with finite support sets. The Fourier transform $\hat{f}: \mathbb{T}^{2} \rightarrow$ \mathbb{C} of f is defined by $\hat{f}(\alpha)=\sum_{m \in \mathbb{A}^{2}} f(m) e(m \alpha)$. The convolution $f * g: \mathbb{A}^{2} \rightarrow \mathbb{C}$ of f and g is defined by

$$
f * g(n)=\sum_{m \in \mathbb{A}^{2}} f(m) g(n-m)
$$

Then it follows that

$$
\operatorname{supp} f * g \subseteq \operatorname{supp} f+\operatorname{supp} g \text { and } \widehat{f * g}(\alpha)=\hat{f}(\alpha) \hat{g}(\alpha)
$$

Let $d \alpha$ denote the product of Haar measures. For $m \in \mathbb{A}^{2}$, we have the orthogonal relation

$$
\int_{\mathbb{T}^{2}} e(\alpha m) d \alpha= \begin{cases}1, & \text { if } m=0 \tag{2.1}\\ 0, & \text { otherwise }\end{cases}
$$

Lemma 1 For $M \in \mathbb{N}_{+}$and $\omega \in \mathbb{K}_{\infty}$, we have

$$
\sum_{d \in \mathbb{G}_{M}} e(\omega d)= \begin{cases}q^{M}, & \text { if } \operatorname{ord}\{\omega\}<-M \\ 0, & \text { otherwise }\end{cases}
$$

Proof This is [10, Lemma 7].
Let $a, b \in \mathbb{A}$ with $b \neq 0$ and $\operatorname{gcd}(b, a)=1$. For $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$, if $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$, we define

$$
G\left(\frac{a}{b}, m\right)=\sum_{d \in \mathbb{G}_{\text {ordb }}} e\left(\frac{a}{b} m \vec{d}\right)
$$

where $\vec{d}=\left(d, d^{2}\right)$.
For $N \in \mathbb{N}_{+}$, the exponential sum $S_{N}: \mathbb{T}^{2} \rightarrow \mathbb{C}$ is defined by $S_{N}(\alpha)=\sum_{d \in \mathbb{G}_{N}} e(\alpha \vec{d})$.
Lemma 2 Let $N \in \mathbb{N}_{+}$and $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{T}^{2}$. Let $b \in \mathbb{A}^{\times}$and $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$ with $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$. Suppose that $\operatorname{ord} b \leq N,\left|\alpha_{1}-\frac{m_{1}}{b}\right|<|b|^{-1}$ and $\left|\alpha_{2}-\frac{m_{2}}{b}\right|<q^{1-N}|b|^{-1}$. Then we have

$$
S_{N}(\alpha)=\frac{1}{|b|} G\left(\frac{1}{b}, m\right) S_{N}\left(\alpha-\frac{1}{b} m\right)
$$

Proof Write $\beta=\left(\beta_{1}, \beta_{2}\right)=\alpha-\frac{1}{b} m$. Then

$$
S_{N}(\alpha)=\sum_{t \in \mathbb{G}_{\text {ordb }}} e\left(\frac{1}{b} m \vec{t}\right) \sum_{s \in \mathbb{G}_{N-\text { ord } b}} e(\beta \overrightarrow{s b+t})
$$

Let $s \in \mathbb{G}_{N-\text { ord } b}$ and $t \in \mathbb{G}_{\text {ord } b}$. Note that

$$
\operatorname{ord}\left(\beta_{1}(s b+t)-\beta_{1} s b\right)=\operatorname{ord} \beta_{1}+\operatorname{ord} t \leq(-\operatorname{ord} b-1)+(\operatorname{ord} b-1)=-2
$$

we have $e\left(\beta_{1}(s b+t)\right)=e\left(\beta_{1} s b\right)$. Similarly, since

$$
\begin{aligned}
\operatorname{ord}\left(\beta_{2}(s b+t)^{2}-\beta_{2} s^{2} b^{2}\right) & \leq \operatorname{ord} \beta_{2}+\operatorname{ord} t+\max \{\operatorname{ord} t, \operatorname{ord} s b\} \\
& \leq(-N-\operatorname{ord} b)+(\operatorname{ord} b-1)+(N-1) \\
& =-2
\end{aligned}
$$

it follows that $e\left(\beta_{2}(s b+t)^{2}\right)=e\left(\beta_{2} s^{2} b^{2}\right)$. Thus, we obtain

$$
\begin{aligned}
S_{N}(\alpha) & =\sum_{t \in \mathbb{G}_{\text {ordb }}} e\left(\frac{1}{b} m \vec{t}\right) \sum_{s \in \mathbb{G}_{N-\text { ordb }}} e(\beta \overrightarrow{s b}) \\
& =G\left(\frac{1}{b}, m\right) \sum_{s \in \mathbb{G}_{N-\text { ordb }}} e(\beta \overrightarrow{s b}) \\
& =\frac{1}{|b|} G\left(\frac{1}{b}, m\right) \sum_{t \in \mathbb{G}_{\text {ordb }}} \sum_{s \in \mathbb{G}_{N-\text { ordb }}} e(\beta \overrightarrow{s b+t}) \\
& =\frac{1}{|b|} G\left(\frac{1}{b}, m\right) S_{N}(\beta)
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 3 Let $r_{1}, r_{2} \in \mathbb{N}$. Then for any $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{T}^{2}$, there exists $\left(b, m_{1}, m_{2}\right) \in \mathbb{A}^{3}$ with the following properties
(i) b is monic and ord $b \leq r_{1}+r_{2}$;
(ii) $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$;
(iii) $\operatorname{ord} m_{j}<\operatorname{ord} b$ and $\left|\alpha_{j}-\frac{m_{j}}{b}\right|<q^{-r_{j}}|b|^{-1}(1 \leq j \leq 2)$.

Proof For $1 \leq j \leq 2$, let $\mathbb{T}_{j}=\left\{\omega \in \mathbb{T}\right.$: ord $\left.\omega \leq-r_{j}-1\right\}$. Then \mathbb{T}_{j} is a subgroup of \mathbb{T}. Also, $\left|\mathbb{T} / \mathbb{T}_{j}\right|=q^{r_{j}}$.

Note that $\left|\prod_{j=1}^{2} \mathbb{T} / \mathbb{T}_{j}\right|=q^{r_{1}+r_{2}}<\left|\mathbb{G}_{r_{1}+r_{2}+1}\right|$, we can find two distinct elements d_{1}, d_{2} of $\mathbb{G}_{r_{1}+r_{2}+1}$ such that

$$
\left(\left\{d_{1} \alpha_{1}\right\}+\mathbb{T}_{1},\left\{d_{1} \alpha_{2}\right\}+\mathbb{T}_{2}\right)=\left(\left\{d_{2} \alpha_{1}\right\}+\mathbb{T}_{1},\left\{d_{2} \alpha_{2}\right\}+\mathbb{T}_{2}\right)
$$

Write $b^{\prime}=d_{2}-d_{1}$. Then we have $b^{\prime} \neq 0$ and ord $b^{\prime} \leq r_{1}+r_{2}$.
Let $m_{j}^{\prime}=\left[b^{\prime} \alpha_{j}\right]$. Then $\operatorname{ord} m_{j}^{\prime} \leq \operatorname{ord}\left(b^{\prime} \alpha_{j}\right)=\operatorname{ord} b^{\prime}+\operatorname{ord} \alpha_{j}<\operatorname{ord} b^{\prime}$.
Since $\operatorname{ord}\left(b^{\prime} \alpha_{j}-m_{j}^{\prime}\right)=\operatorname{ord}\left\{b^{\prime} \alpha_{j}\right\}=\operatorname{ord}\left(\left\{d_{2} \alpha_{j}\right\}-\left\{d_{1} \alpha_{j}\right\}\right) \leq-r_{j}-1$, we have

$$
\left|\alpha_{j}-\frac{m_{j}^{\prime}}{b^{\prime}}\right|<q^{-r_{j}}\left|b^{\prime}\right|^{-1}
$$

Let c be the leading coefficient of b^{\prime} and let $a=\operatorname{gcd}\left(b^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right)$. By taking $b=\frac{b^{\prime}}{a c}$ and $m_{j}=\frac{m_{j}^{\prime}}{a c}$, the lemma follows.

3 Estimate for $G\left(\frac{a}{b}, m\right)$

In this section, we obtain an estimate for $G\left(\frac{a}{b}, m\right)$. Our arguments run in parallel with the approach of Chen [11].

Lemma 4 Let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{A}$ with $b_{1}, b_{2} \neq 0$ and $\operatorname{gcd}\left(b_{1}, a_{1}\right)=\operatorname{gcd}\left(b_{2}, a_{2}\right)=1$. Let $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$. Suppose that $\operatorname{gcd}\left(b_{1}, m_{1}, m_{2}\right)=\operatorname{gcd}\left(b_{2}, m_{1}, m_{2}\right)=1$. If $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$, then

$$
G\left(\frac{a_{1}}{b_{1}}, m\right) G\left(\frac{a_{2}}{b_{2}}, m\right)=G\left(\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1} b_{2}}, m\right)
$$

Proof Since $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1, b_{2}+b_{1} \mathbb{A}$ is invertible in the ring $\mathbb{H}_{1}=\mathbb{A} / b_{1} \mathbb{A}$. Thus,

$$
G\left(\frac{a_{1}}{b_{1}}, m\right)=\sum_{d+b_{1} \mathbb{A} \in \mathbb{H}_{1}} e\left(\frac{a_{1}}{b_{1}} m \vec{d}\right)=\sum_{d+b_{1} \mathbb{A} \in \mathbb{H}_{1}} e\left(\frac{a_{1}}{b_{1}} m \overrightarrow{b_{2} d}\right)=\sum_{d \in \mathbb{G}_{\text {ord }} b_{1}} e\left(\frac{a_{1}}{b_{1}} m \overrightarrow{b_{2} d}\right) .
$$

Similarly, we have

$$
G\left(\frac{a_{2}}{b_{2}}, m\right)=\sum_{d \in \mathbb{G}_{\text {ord }}} e\left(\frac{a_{2}}{b_{2}} m \overrightarrow{b_{1} d}\right) .
$$

Combining the above two equalities, it follows that

$$
\begin{align*}
G\left(\frac{a_{1}}{b_{1}}, m\right) G\left(\frac{a_{2}}{b_{2}}, m\right) & =\sum_{d_{1} \in \mathbb{G}_{\text {ord }_{1}, d_{2} \in \mathbb{G}_{\text {ord }}^{2}}} e\left(\frac{a_{1}}{b_{1}} m \overrightarrow{b_{2} d_{1}}\right) e\left(\frac{a_{2}}{b_{2}} m \overrightarrow{b_{1} d_{2}}\right) \\
& =\sum_{d_{1} \in \mathbb{G}_{\text {ord }_{1}, d_{2} \in \mathbb{G}_{\text {orrd }_{2}}} e\left(\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1} b_{2}} m \overrightarrow{b_{1} d_{2}+b_{2} d_{1}}\right)} \\
& =\sum_{d \in \mathbb{G}_{\text {ord }_{1} b_{2}}} e\left(\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1} b_{2}} m \vec{d}\right) \tag{3.1}
\end{align*}
$$

Equality (3.1) follows since $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$.
Lemma 5 Let $a, b \in \mathbb{A}$ with $b \neq 0$ and $\operatorname{gcd}(b, a)=1$. Let $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$. Suppose that $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$. If $p \geq 3$ and b is irreducible, then we have

$$
\left|G\left(\frac{a}{b}, m\right)\right| \leq|b|^{\frac{1}{2}} .
$$

Proof Since b is irreducible and $\operatorname{gcd}(b, a)=1$, it follows that $a \neq 0$. We divide into two cases.

Case 1 Suppose that $b \mid m_{2}$. Since $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1, b \nmid m_{1}$. By Lemma 1, we have

$$
G\left(\frac{a}{b}, m\right)=\sum_{d \in \mathbb{G}_{\text {ord }}} e\left(\frac{a m_{1}}{b} d\right)=0 .
$$

Case 2 Suppose that $b \nmid m_{2}$. Since b is irreducible, $\mathbb{H}=\mathbb{A} / b \mathbb{A}$ is a field. Note that $|\mathbb{H}|=|b|$, we can find an isomorphism $T: \mathbb{F}_{|b|} \rightarrow \mathbb{H}$ of fields.

Consider $\psi: \mathbb{F}_{|b|} \rightarrow \mathbb{C}^{\times}$defined by $\psi(c)=e\left(\frac{a}{b} T(c)\right)$. It follows from Lemma 1 that

$$
\sum_{c \in \mathbb{F}_{|b|}} \psi(c)=\sum_{d \in \mathbb{G}_{\text {ordb }}} e\left(\frac{a d}{b}\right)=0
$$

Thus, ψ is a non-trivial additive character of $\mathbb{F}_{|b|}$. Let $P(t)=\sum_{j=1}^{2} T^{-1}\left(m_{j}+b \mathbb{A}\right) t^{j}$. Then P is a polynomial of degree 2 in $\mathbb{F}_{|b|}[t]$.

Note that

$$
G\left(\frac{a}{b}, m\right)=\sum_{d \in \mathbb{G}_{\text {ord } b}} \psi\left(P\left(T^{-1}(d+b \mathbb{A})\right)\right)=\sum_{c \in \mathbb{F}_{|b|}} \psi(P(c)),
$$

by Weil's theorem in [12], we have $\left|G\left(\frac{a}{b}, m\right)\right| \leq|b|^{\frac{1}{2}}$.
Combining the above two cases, the lemma follows.
Lemma 6 Let $a, b \in \mathbb{A}$ with $b \neq 0$ and $\operatorname{gcd}(b, a)=1$. Let $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$. Suppose that $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$. If $p \geq 3$ and b is irreducible, then for any $r \in \mathbb{N}_{+}$, we have

$$
\left|G\left(\frac{a}{b^{r}}, m\right)\right| \leq|b|^{\frac{r}{2}} .
$$

Proof We will prove this lemma by induction on r.

For $r=1$, the lemma follows from Lemma 5.
Let $r \in \mathbb{N}$ with $r \geq 2$. Suppose that the lemma holds for all $r^{\prime} \in \mathbb{N}_{+}$with $r^{\prime}<r$. We now prove that the statement is true for r.

Note that for $d \in \mathbb{G}_{\text {ord } b^{r}}$, there exist $d_{1} \in \mathbb{G}_{\text {ord } b^{r-1}}$ and $d_{2} \in \mathbb{G}_{\text {ordb }}$ such that $d=$ $d_{2} b^{r-1}+d_{1}$. This observation allows us to obtain

$$
\begin{equation*}
G\left(\frac{a}{b^{r}}, m\right)=\sum_{d_{1} \in \mathbb{G}_{\text {ordb }}{ }^{r-1}} e\left(\frac{a}{b^{r}} m \overrightarrow{d_{1}}\right) \sum_{d_{2} \in \mathbb{G}_{\text {ord }}} e\left(\frac{a}{b}\left(m_{1}+2 m_{2} d_{1}\right) d_{2}\right) \tag{3.2}
\end{equation*}
$$

There are two cases.
Case 1 Suppose that $b \mid m_{2}$. Since $b \nmid m_{1}$, by Lemma 1, we have

$$
\sum_{d_{2} \in \mathbb{G}_{\text {ordb }}} e\left(\frac{a}{b}\left(m_{1}+2 m_{2} d_{1}\right) d_{2}\right)=\sum_{d_{2} \in \mathbb{G}_{\text {ordb }}} e\left(\frac{a m_{1}}{b} d_{2}\right)=0 .
$$

By (3.2), we have

$$
G\left(\frac{a}{b^{r}}, m\right)=0 .
$$

Case 2 Suppose that $b \nmid m_{2}$. Then there exists unique $d_{0} \in \mathbb{G}_{\text {ord } b}$ such that

$$
m_{1}+2 m_{2} d_{0} \equiv 0(\bmod b) .
$$

For any $d_{1} \in \mathbb{G}_{\text {ordb } b^{r-1}}$, it follows from Lemma 1 that

$$
\sum_{d_{2} \in \mathbb{G}_{\text {ordb }}} e\left(\frac{a}{b}\left(m_{1}+2 m_{2} d_{1}\right) d_{2}\right)= \begin{cases}|b|, & \text { if } d_{1} \equiv d_{0}(\bmod b) \\ 0, & \text { otherwise }\end{cases}
$$

Write

$$
\Lambda=\left\{d \in \mathbb{G}_{\text {ord }^{r-1}}: d \equiv d_{0}(\bmod b)\right\}
$$

By (3.2), we have

$$
G\left(\frac{a}{b^{r}}, m\right)=\sum_{d_{1} \in \Lambda}|b| e\left(\frac{a}{b^{r}} m \overrightarrow{d_{1}}\right)
$$

If $r=2$, then

$$
\left|G\left(\frac{a}{b^{r}}, m\right)\right|=\left||b| e\left(\frac{a}{b^{2}} m \overrightarrow{d_{0}}\right)\right|=|b|^{\frac{r}{2}} .
$$

If $r \geq 3$, then

$$
\begin{equation*}
G\left(\frac{a}{b^{r}}, m\right)=\sum_{d \in \mathbb{G}_{\text {ord }^{r}-2}}|b| e\left(\frac{a}{b^{r}} m \overrightarrow{d b+d_{0}}\right) . \tag{3.3}
\end{equation*}
$$

Let $m_{1}^{\prime}=\frac{m_{1}+2 m_{2} d_{0}}{b}$, then $m_{1}^{\prime} \in \mathbb{A}$. Write $m^{\prime}=\left(m_{1}^{\prime}, m_{2}\right)$. Note that

$$
m \overrightarrow{d b+d_{0}}-m \overrightarrow{d_{0}}=b^{2} m^{\prime} \vec{d}
$$

we deduce from (3.3) that

$$
G\left(\frac{a}{b^{r}}, m\right)=|b| e\left(\frac{a}{b^{r}} m \overrightarrow{d_{0}}\right) G\left(\frac{a}{b^{r-2}}, m^{\prime}\right) .
$$

By the induction hypothesis, it follows that

$$
\left|G\left(\frac{a}{b^{r}}, m\right)\right|=|b|\left|G\left(\frac{a}{b^{r-2}}, m^{\prime}\right)\right| \leq|b|^{\frac{r}{2}} .
$$

By combining the above two cases, we complete the proof of the lemma.
Proposition 7 Let $a, b \in \mathbb{A}$ with $b \neq 0$ and $\operatorname{gcd}(b, a)=1$. Let $m=\left(m_{1}, m_{2}\right) \in \mathbb{A}^{2}$. Suppose that $\operatorname{gcd}\left(b, m_{1}, m_{2}\right)=1$. If $p \geq 3$, then we have

$$
\left|G\left(\frac{a}{b}, m\right)\right| \leq|b|^{\frac{1}{2}}
$$

Proof Without loss of generality, we assume that $a \neq 0$ and ord $b \geq 1$. Also, b is monic. There exist $\iota, j_{1}, \cdots, j_{\iota} \in \mathbb{N}_{+}$and distinct monic irreducible polynomials $\sigma_{1}, \cdots, \sigma_{\iota}$ in \mathbb{A} such that $b=\prod_{i=1}^{\iota} \sigma_{i}^{j_{i}}$. We prove the lemma by induction on ι.

For $\iota=1$, the lemma follows from Lemma 6.
Let $\iota \in \mathbb{N}$ with $\iota \geq 2$. Suppose that the lemma is true for $\iota-1$. We now prove that the claim holds for ι. Since $\operatorname{gcd}(b, a)=1$, we can find $a_{l}, a^{\prime} \in \mathbb{A}^{\times}$such that

$$
\frac{a}{\prod_{i=1}^{\iota} \sigma_{i}^{j_{i}}}=\frac{a_{l}}{\sigma_{l}^{j_{l}}}+\frac{a^{\prime}}{\prod_{i=1}^{\iota-1} \sigma_{i}^{j_{i}}} \text { and } \operatorname{gcd}\left(\sigma_{l}^{j_{l}}, a_{l}\right)=\operatorname{gcd}\left(\prod_{i=1}^{\iota-1} \sigma_{i}^{j_{i}}, a^{\prime}\right)=1
$$

By Lemmas 4 and 6, we have

$$
\left|G\left(\frac{a}{\prod_{i=1}^{\iota} \sigma_{i}^{j_{i}}}, m\right)\right|=\left|G\left(\frac{a_{l}}{\sigma_{l}^{j_{l}}}, m\right)\right|\left|G\left(\frac{a^{\prime}}{\prod_{i=1}^{\iota-1} \sigma_{i}^{j_{i}}}, m\right)\right| \leq\left|\sigma_{l}\right|^{\frac{j_{l}}{2}}\left|G\left(\frac{a^{\prime}}{\prod_{i=1}^{\iota-1} \sigma_{i}^{j_{i}}}, m\right)\right| .
$$

By the induction hypothesis, the proposition follows.

4 Estimates for S_{N}

For the present, we fix $N \in \mathbb{N}_{+}$and $A \subseteq \mathbb{G}_{N} \times \mathbb{G}_{2 N}$ with $|A|=\delta q^{3 N}$. Throughout this section, we assume that the following hypothesis holds.

Hypothesis A $p \geq 3,(A-A) \cap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$ and $\delta \geq q^{1-\frac{N}{12}}$.
Take $\theta \in \mathbb{N}_{+}$with $q^{-\theta}<\delta \leq q^{1-\theta}$. Then $N \geq 12 \theta$. Write $M=N-6 \theta$.
The characteristic function $1_{A}: \mathbb{A}^{2} \rightarrow \mathbb{R}$ of A is defined by

$$
1_{A}(m)= \begin{cases}1, & \text { if } m \in A \\ 0, & \text { otherwise }\end{cases}
$$

Write $\Gamma_{N}=\mathbb{G}_{N} \times \mathbb{G}_{2 N}$. We define the balanced function $f_{A}: \mathbb{A}^{2} \rightarrow \mathbb{R}$ of A to be $f_{A}=$ $1_{A}-\delta 1_{\Gamma_{N}}$.

Let $b \in \mathbb{A}^{\times}$with b monic. Write

$$
\mathcal{A}_{b}=\left\{\left(a_{1}, a_{2}\right) \in \mathbb{A}^{2}: \operatorname{gcd}\left(b, a_{1}, a_{2}\right)=1, \quad \operatorname{ord} a_{j}<\operatorname{ord} b(1 \leq j \leq 2)\right\}
$$

For $\left(a_{1}, a_{2}\right) \in \mathcal{A}_{b}$, we define the Farey arc $F\left(b, a_{1}, a_{2}\right)$ to be

$$
F\left(b, a_{1}, a_{2}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{T}^{2}:\left|\alpha_{j}-\frac{a_{j}}{b}\right|<q^{-j M}|b|^{-1}(1 \leq j \leq 2)\right\}
$$

Also, we define

$$
F_{b}=\bigcup_{\left(a_{1}, a_{2}\right) \in \mathcal{A}_{b}} F\left(b, a_{1}, a_{2}\right)
$$

We say $F\left(b, a_{1}, a_{2}\right)$ is major if ord $b \leq 2 \theta+3$ and minor if ord $b>2 \theta+3$. Let

$$
\mathcal{B}=\left\{b \in \mathbb{A}^{\times}: b \text { monic }, \text { ord } b \leq 2 \theta+3\right\} .
$$

We define the major arcs \mathfrak{M} and the minor arcs \mathfrak{m} as follows:

$$
\mathfrak{M}=\bigcup_{b \in \mathcal{B}} F_{b} \text { and } \mathfrak{m}=\mathbb{T}^{2} \backslash \mathfrak{M}
$$

Lemma 8 Let $b, b^{\prime} \in \mathcal{B}$. Suppose that $\left(a_{1}, a_{2}\right) \in \mathcal{A}_{b}$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}\right) \in \mathcal{A}_{b^{\prime}}$. If $\left(b, a_{1}, a_{2}\right) \neq$ $\left(b^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right)$, then we have

$$
F\left(b, a_{1}, a_{2}\right) \cap F\left(b^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right)=\emptyset .
$$

Proof To prove the lemma, we suppose the contrary. Then there exists

$$
\left(\alpha_{1}, \alpha_{2}\right) \in F\left(b, a_{1}, a_{2}\right) \cap F\left(b^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}\right) .
$$

Let $1 \leq j \leq 2$. Since

$$
\left|\frac{a_{j}}{b}-\frac{a_{j}^{\prime}}{b^{\prime}}\right| \leq \max \left\{\left|\alpha_{j}-\frac{a_{j}}{b}\right|,\left|\alpha_{j}-\frac{a_{j}^{\prime}}{b^{\prime}}\right|\right\}<q^{-j M} \max \left\{|b|^{-1},\left|b^{\prime}\right|^{-1}\right\}
$$

it follows that

$$
\left|a_{j} b^{\prime}-a_{j}^{\prime} b\right|<q^{-j M} \max \left\{|b|,\left|b^{\prime}\right|\right\} \leq q^{2 \theta+3-M} \leq q^{-\theta}<1
$$

Thus $a_{j} b^{\prime}=a_{j}^{\prime} b$. Let $A_{j}, B_{j} \in \mathbb{A}$ with B_{j} monic such that

$$
\operatorname{gcd}\left(B_{j}, A_{j}\right)=1 \text { and } \frac{A_{j}}{B_{j}}=\frac{a_{j}}{b}=\frac{a_{j}^{\prime}}{b^{\prime}} .
$$

It is easy to see that $b=\operatorname{lcm}\left(B_{1}, B_{2}\right)=b^{\prime}$. It follows that $a_{j}=a_{j}^{\prime}$. This leads to a contradiction, and the lemma follows.

Proposition 9 If $b \in \mathcal{B}$, then for any $\alpha \in F_{b}$, we have

$$
\left|S_{N}(\alpha)\right| \leq q^{N}|b|^{-1 / 2}
$$

Proof Write $\left(\alpha_{1}, \alpha_{2}\right)=\alpha$. Take $a=\left(a_{1}, a_{2}\right) \in \mathcal{A}_{b}$ such that $\alpha \in F\left(b, a_{1}, a_{2}\right)$. Since

$$
\left|\alpha_{2}-\frac{a_{2}}{b}\right|<q^{-2 M}|b|^{-1} \leq q^{-N}|b|^{-1} \text { and ord } b \leq 2 \theta+3<N
$$

by Lemma 2, we have

$$
S_{N}(\alpha)=\frac{1}{|b|} G\left(\frac{1}{b}, a\right) S_{N}\left(\alpha-\frac{1}{b} a\right)
$$

It follows from Proposition 7 that

$$
\left|S_{N}(\alpha)\right| \leq|b|^{-\frac{1}{2}}\left|S_{N}\left(\alpha-\frac{1}{b} a\right)\right| \leq\left|\mathbb{G}_{N}\right||b|^{-1 / 2}
$$

Proposition 10 For any $\alpha \in \mathfrak{m}$, we have

$$
\left|S_{N}(\alpha)\right| \leq \frac{\delta}{4} q^{N}
$$

Proof Write $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$. By using Lemma 3 for $r_{1}=0$ and $r_{2}=N$, we can find a monic polynomial b in \mathbb{A}^{\times}and $a=\left(a_{1}, a_{2}\right) \in \mathbb{A}^{2}$ such that

$$
\operatorname{ord} b \leq N, \operatorname{gcd}\left(b, a_{1}, a_{2}\right)=1, \operatorname{ord} a_{j}<\operatorname{ord} b \text { and }\left|\alpha_{j}-\frac{a_{j}}{b}\right|<q^{-(j-1) N}|b|^{-1}(1 \leq j \leq 2)
$$

Write $\beta=\left(\beta_{1}, \beta_{2}\right)=\alpha-\frac{1}{b} a$. If ord $b \geq 2 \theta+4$, by Lemma 2 and Proposition 7, we have

$$
\left|S_{N}(\alpha)\right| \leq|b|^{-1}\left|G\left(\frac{1}{b}, a\right)\right|\left|S_{N}(\beta)\right| \leq|b|^{-\frac{1}{2}}\left|S_{N}(\beta)\right| \leq q^{-\theta-2}\left|\mathbb{G}_{N}\right| \leq \frac{\delta}{4} q^{N}
$$

In the following, we assume that ord $b \leq 2 \theta+3$. Consider the following estimate

$$
\begin{aligned}
\left|S_{N}(\beta)\right|^{2} & =\sum_{d, d^{\prime} \in \mathbb{G}_{N}} e\left(\beta_{1}\left(d-d^{\prime}\right)+\beta_{2}\left(d+d^{\prime}\right)\left(d-d^{\prime}\right)\right) \\
& =\sum_{d, d^{\prime} \in \mathbb{G}_{N}} e\left(\beta_{1} d+\beta_{2} d d^{\prime}\right) \\
& \leq \sum_{d \in \mathbb{G}_{N}}\left|\sum_{d^{\prime} \in \mathbb{G}_{N}} e\left(\beta_{2} d d^{\prime}\right)\right| .
\end{aligned}
$$

For $d \in \mathbb{G}_{N}$, since

$$
\operatorname{ord}\left(\beta_{2} d\right)=\operatorname{ord} \beta_{2}+\operatorname{ord} d \leq(-N-\operatorname{ord} b-1)+(N-1) \leq-2
$$

it follows that $\left\{\beta_{2} d\right\}=\beta_{2} d$. By Lemma 1, we have

$$
\left|S_{N}(\beta)\right|^{2} \leq \sum_{d \in \mathbb{G}_{N}, \operatorname{ord}\left(\beta_{2} d\right)<-N} q^{N} \leq\left|\beta_{2}\right|^{-1}
$$

Combining Lemma 2 and Proposition 7 with the above inequality, it follows that

$$
\begin{equation*}
\left|S_{N}(\alpha)\right| \leq|b|^{-1}\left|G\left(\frac{1}{b}, a\right)\right|\left|S_{N}(\beta)\right| \leq|b|^{-\frac{1}{2}}\left|S_{N}(\beta)\right| \leq|b|^{-\frac{1}{2}}\left|\beta_{2}\right|^{-\frac{1}{2}} \tag{4.1}
\end{equation*}
$$

Since $\alpha \notin \mathfrak{M}$, there are two cases.
Case 1 Suppose that $\left|\beta_{2}\right| \geq q^{-2 M}|b|^{-1}$. By (4.1), we have

$$
\left|S_{N}(\alpha)\right| \leq q^{M}=q^{N-6 \theta} \leq \frac{\delta}{4} q^{N}
$$

Case 2 Suppose that $\left|\beta_{1}\right| \geq q^{-M}|b|^{-1}$ and $\left|\beta_{2}\right|<q^{-2 M}|b|^{-1}$.

If $\operatorname{ord} \beta_{2} \geq 1-N+\operatorname{ord} \beta_{1}$, then by (4.1), we have

$$
\left|S_{N}(\alpha)\right| \leq|b|^{-\frac{1}{2}}\left|\beta_{1}\right|^{-\frac{1}{2}} q^{\frac{N-1}{2}} \leq q^{\frac{M+N-1}{2}} \leq q^{N-3 \theta} \leq \frac{\delta}{4} q^{N} .
$$

Thus, it remains to estimate $\left|S_{N}(\alpha)\right|$ under the additional assumption $\operatorname{ord} \beta_{2} \leq \operatorname{ord} \beta_{1}-N$.
Write $L_{1}=-\operatorname{ord} \beta_{1}$, then $1 \leq L_{1} \leq M+\operatorname{ord} b$; write $L_{2}=-\operatorname{ord} \beta_{2}$, then $L_{2} \geq 1+2 M+$ $\operatorname{ord} b$; write $K=\left\lfloor\frac{L_{1}+N}{2}\right\rfloor$, since $L_{1} \leq M+2 \theta+3<N$, we have $L_{1} \leq K \leq N-1$.

For $j \in \mathbb{N}$, write $\mathcal{C}_{j}=\{d \in \mathbb{A}: \operatorname{ord} d=j\}$, then

$$
S_{N}(\beta)=\sum_{d \in \mathbb{G}_{K}} e(\beta \vec{d})+\sum_{j=K}^{N-1} \sum_{d \in \mathcal{C}_{j}} e(\beta \vec{d})
$$

Let $d \in \mathbb{G}_{K}$. By the assumption $\operatorname{ord} \beta_{2} \leq \operatorname{ord} \beta_{1}-N$, we have

$$
\operatorname{ord}\left(\beta_{2} d^{2}\right)=2 \operatorname{ord} d-L_{2} \leq 2(K-1)+\left(-N-L_{1}\right) \leq-2
$$

It follows that $e\left(\beta_{2} d^{2}\right)=1$. Note that ord $\left\{\beta_{1}\right\}=-L_{1} \geq-K$, by Lemma 1 , we have

$$
\sum_{d \in \mathbb{G}_{K}} e(\beta \vec{d})=\sum_{d \in \mathbb{G}_{K}} e\left(\beta_{1} d\right)=0
$$

Thus

$$
\begin{equation*}
S_{N}(\beta)=\sum_{I=K}^{N-1} \sum_{d \in \mathcal{C}_{I}} e(\beta \vec{d}) \tag{4.2}
\end{equation*}
$$

Take the sequences $\left\{\mu_{i}\right\}_{i=-\infty}^{-L_{1}}$ and $\left\{\nu_{j}\right\}_{j=-\infty}^{-L_{2}}$ in \mathbb{F}_{q} such that

$$
\beta_{1}=\sum_{i \leq-L_{1}} \mu_{i} t^{i} \text { and } \beta_{2}=\sum_{j \leq-L_{2}} \nu_{j} t^{j}
$$

Let $K \leq I \leq N-1$ and $d \in \mathcal{C}_{I}$. Take $c_{0}, c_{1}, \cdots, c_{I} \in \mathbb{F}_{q}$ with $c_{I} \neq 0$ such that $d=\sum_{i=0}^{I} c_{i} t^{i}$. Then

$$
\operatorname{res}(\beta \vec{d})=\sum_{i=L_{1}-1}^{I} \mu_{-i-1} c_{i}+\sum_{l=L_{2}-1}^{2 I} \nu_{-l-1} \sum_{0 \leq i, j \leq I, i+j=l} c_{i} c_{j}
$$

For $0 \leq i, j \leq I$, if $i+j \geq L_{2}-1$, by the assumption $\operatorname{ord} \beta_{2} \leq \operatorname{ord} \beta_{1}-N$, we have

$$
\min \{i, j\} \geq L_{2}-1-I \geq\left(N+L_{1}\right)-1-(N-1)=L_{1} .
$$

Thus, there exists the polynomial $Q_{I}\left(t_{1}, \cdots, t_{I-L_{1}+1}\right)$ of $\left(I-L_{1}+1\right)$ variables over \mathbb{F}_{q} such that

$$
\operatorname{res}(\beta \vec{d})=\mu_{-L_{1}} c_{L_{1}-1}+Q_{I}\left(c_{L_{1}}, c_{L_{1}+1}, \cdots, c_{I}\right)
$$

Substituting this into the definition of the function $e(\cdot)$, and noting that $\mu_{-L_{1}} \neq 0$, we have

$$
\sum_{d \in \mathcal{C}_{I}} e(\beta \vec{d})=\sum_{j \neq L_{1}-1,0 \leq j \leq I-1} \sum_{c_{j} \in \mathbb{F}_{q}} \sum_{c_{I} \in \mathbb{F}_{q}^{\times}} e_{q}\left(Q_{I}\left(c_{L_{1}}, \cdots, c_{I}\right)\right) \sum_{c_{L_{1}-1} \in \mathbb{F}_{q}} e_{q}\left(\mu_{-L_{1}} c_{L_{1}-1}\right)=0
$$

It follows from (4.2) that $S_{N}(\beta)=0$. Finally, by Lemma 2, we have $S_{N}(\alpha)=0$.
Combining the above two cases, we complete the proof of the proposition.

5 Density Increment

In this section, we continue to fix $N \in \mathbb{N}_{+}$and $A \subseteq \Gamma_{N}$ with $|A|=\delta q^{3 N}$. Also, we assume that Hypothesis A holds.

Lemma 11

$$
\int_{\mathbb{T}^{2}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| d \alpha \geq \frac{1}{2} \delta^{2} q^{4 N}
$$

Proof Write $\mathrm{I}=\sum_{d \in \mathbb{G}_{N}, m \in \mathbb{A}^{2}} f_{A}(m) f_{A}(m+\vec{d})$. By (2.1), we have

$$
\begin{equation*}
\mathrm{I}=\sum_{d \in \mathbb{G}_{N}, m, n \in \mathbb{A}^{2}} f_{A}(m) f_{A}(n) \int_{\mathbb{T}^{2}} e(\alpha(m+\vec{d}-n)) d \alpha=\int_{\mathbb{T}^{2}}\left|\widehat{f_{A}}(\alpha)\right|^{2} S_{N}(\alpha) \mathrm{d} \alpha \tag{5.1}
\end{equation*}
$$

If $d \in \mathbb{G}_{N}$, then $\vec{d} \in \Gamma_{N}$. Thus $\Gamma_{N}+\vec{d}=\Gamma_{N}-\vec{d}=\Gamma_{N}$. It follows that $(A-A) \cap\{\vec{d}: d \in$ $\left.\mathbb{A}^{\times}\right\}=\emptyset$ from Hypothesis A. Thus

$$
\begin{aligned}
\mathrm{I}= & \sum_{m \in \mathbb{A}^{2}} 1_{A}(m)-\delta \sum_{d \in \mathbb{G}_{N}, m \in \mathbb{A}^{2}} 1_{A}(m)\left(1_{\Gamma_{N}}(m+\vec{d})+1_{\Gamma_{N}}(m-\vec{d})\right) \\
& +\delta^{2} \sum_{d \in \mathbb{G}_{N}, m \in \mathbb{A}^{2}} 1_{\Gamma_{N}}(m) 1_{\Gamma_{N}}(m+\vec{d}) \\
= & |A|-\delta \sum_{d \in \mathbb{G}_{N}}\left(\left|A \cap\left(\Gamma_{N}-\vec{d}\right)\right|+\left|A \cap\left(\Gamma_{N}+\vec{d}\right)\right|\right)+\delta^{2} \sum_{d \in \mathbb{G}_{N}}\left|\Gamma_{N} \cap\left(\Gamma_{N}-\vec{d}\right)\right| \\
= & |A|-2 \delta|A|\left|\mathbb{G}_{N}\right|+\delta^{2}\left|\mathbb{G}_{N}\right|\left|\Gamma_{N}\right| \\
= & -\delta^{2} q^{4 N}\left(1-\frac{1}{\delta q^{N}}\right) .
\end{aligned}
$$

By Hypothesis A, we have $\delta q^{N} \geq q^{1+\frac{11 N}{12}} \geq 2$. It follows that

$$
\begin{equation*}
\mathrm{I} \leq-\frac{1}{2} \delta^{2} q^{4 N} \tag{5.2}
\end{equation*}
$$

Finally, by (5.1) and (5.2), we obtain

$$
\int_{\mathbb{T}^{2}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| d \alpha \geq|\mathrm{I}| \geq \frac{1}{2} \delta^{2} q^{4 N}
$$

Lemma 12 There exists a monic polynomial b_{0} in $\mathbb{G}_{2 \theta+4}$ such that

$$
\int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} d \alpha \geq c \delta^{3} q^{3 N}
$$

where $0<c<1$ is a constant depending only on q.

Proof By Proposition 10, we have

$$
\begin{aligned}
\int_{\mathfrak{m}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| d \alpha & \leq \frac{\delta}{4} q^{N} \int_{\mathfrak{m}}\left|\widehat{f_{A}}(\alpha)\right|^{2} d \alpha \\
& \leq \frac{\delta}{4} q^{N} \sum_{m \in \mathbb{A}^{2}}\left|f_{A}(m)\right|^{2} \\
& \leq \frac{\delta^{2}}{4} q^{4 N}
\end{aligned}
$$

Write

$$
\mathrm{II}=\int_{\mathfrak{M}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| d \alpha
$$

Combining the above inequality with Lemma 11, it follows that

$$
\begin{equation*}
\mathrm{II} \geq \int_{\mathbb{T}^{2}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| \mathrm{d} \alpha-\frac{\delta^{2}}{4} q^{4 N} \geq \frac{\delta^{2}}{4} q^{4 N} \tag{5.3}
\end{equation*}
$$

For $j \in \mathbb{N}$, write $\mathcal{O}_{j}=\left\{b \in \mathbb{A}^{\times}: b\right.$ monic, ord $\left.b=j\right\}$. By Lemma 8 and Proposition 9 , we have

$$
\mathrm{II}=\sum_{j=0}^{2 \theta+3} \sum_{b \in \mathcal{O}_{j}} \int_{F_{b}}\left|\widehat{f_{A}}(\alpha)\right|^{2}\left|S_{N}(\alpha)\right| d \alpha \leq \sum_{j=0}^{2 \theta+3} q^{N-\frac{j}{2}} \sum_{b \in \mathcal{O}_{j}} \int_{F_{b}}\left|\widehat{f_{A}}(\alpha)\right|^{2} d \alpha
$$

Take a monic polynomial b_{0} in $\mathbb{G}_{2 \theta+4}$ such that

$$
\int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} \mathrm{~d} \alpha=\max _{0 \leq j \leq 2 \theta+3, b \in \mathcal{O}_{j}} \int_{F_{b}}\left|\widehat{f_{A}}(\alpha)\right|^{2} \mathrm{~d} \alpha
$$

It follows from the above inequality that

$$
\mathrm{II} \leq \int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} \mathrm{~d} \alpha \sum_{j=0}^{2 \theta+3}\left|\mathcal{O}_{j}\right| q^{N-\frac{j}{2}}=\int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} \mathrm{~d} \alpha \sum_{j=0}^{2 \theta+3} q^{N+\frac{j}{2}} .
$$

Since $\delta \leq q^{1-\theta}$, we can find a constant $c^{\prime}>1$, depending only on q, such that

$$
\mathrm{II} \leq \frac{c^{\prime}}{\delta} q^{N} \int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} d \alpha
$$

By taking $c=\frac{1}{4 c^{\prime}}$, the lemma follows from (5.3).
Lemma 13 There exists $n_{0} \in \Gamma_{N}$ such that

$$
\left|A \cap\left(n_{0}+b_{0} \Gamma_{M}\right)\right| \geq \delta\left(1+\frac{c}{2} \delta\right) q^{3 M}
$$

where $b_{0} \Gamma_{M}=\left\{b_{0} m: m \in \Gamma_{M}\right\}$.
Proof Write $P=b_{0} \Gamma_{M}$. Let $m=\left(m_{1}, m_{2}\right) \in \Gamma_{M}$ and $1 \leq j \leq 2$. Since

$$
\operatorname{ord}\left(b_{0} m_{j}\right)=\operatorname{ord} b_{0}+\operatorname{ord} m_{j} \leq(2 \theta+3)+(j M-1) \leq j N-1
$$

we have $b_{0} m \in \Gamma_{N}$. Thus, $P \subseteq \Gamma_{N}$. Also, we have

$$
\operatorname{supp} f_{A} * 1_{-P} \subseteq \operatorname{supp} f_{A}+\operatorname{supp} 1_{-P} \subseteq \Gamma_{N}+(-P)=\Gamma_{N}
$$

For $n \in \Gamma_{N}$, we have

$$
\begin{align*}
f_{A} * 1_{-P}(n) & =\sum_{m \in \mathbb{A}^{2}} 1_{A}(m) 1_{P}(m-n)-\delta \sum_{m \in \mathbb{A}^{2}} 1_{\Gamma_{N}}(m) 1_{P}(m-n) \\
& =|A \cap(n+P)|-\delta\left|\Gamma_{N} \cap(n+P)\right| \\
& =|A \cap(n+P)|-\delta|P| \tag{5.4}
\end{align*}
$$

If there exists $n_{0} \in \Gamma_{N}$ such that $f_{A} * 1_{-P}\left(n_{0}\right) \geq \delta|P|$, then

$$
\left|A \cap\left(n_{0}+P\right)\right|=f_{A} * 1_{-P}\left(n_{0}\right)+\delta|P| \geq 2 \delta|P| \geq \delta\left(1+\frac{c}{2} \delta\right) q^{3 M}
$$

Thus, in the following, we assume that $f_{A} * 1_{-P}(n) \leq \delta|P|$ for all $n \in \Gamma_{N}$. It follows from (5.4) that

$$
\begin{equation*}
\left|f_{A} * 1_{-P}(n)\right| \leq \delta|P| \tag{5.5}
\end{equation*}
$$

Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in F_{b_{0}}$. Take $a=\left(a_{1}, a_{2}\right) \in \mathcal{A}_{b_{0}}$ such that $\alpha \in F\left(b_{0}, a_{1}, a_{2}\right)$. Since

$$
\begin{aligned}
\operatorname{ord}\left(m_{j}\left(b_{0} \alpha_{j}-a_{j}\right)\right) & =\operatorname{ord} m_{j}+\operatorname{ord} b_{0}+\operatorname{ord}\left(\alpha_{j}-\frac{a_{j}}{b_{0}}\right) \\
& \leq(j M-1)+\operatorname{ord} b_{0}+\left(-j M-\operatorname{ord} b_{0}-1\right)=-2
\end{aligned}
$$

we have $e\left(b_{0} m_{j} \alpha_{j}\right)=e\left(m_{j} a_{j}\right)=1$. Thus, $\widehat{1_{-P}}(\alpha)=|P|$. It follows from (5.5) that

$$
\begin{aligned}
\int_{F_{b_{0}}}\left|\widehat{f_{A}}(\alpha)\right|^{2} d \alpha & =\frac{1}{|P|^{2}} \int_{F_{b_{0}}}\left|\widehat{f_{A} * 1_{-P}}(\alpha)\right|^{2} d \alpha \\
& \leq \frac{1}{|P|^{2}} \sum_{n \in \mathbb{A}^{2}}\left|f_{A} * 1_{-P}(n)\right|^{2} \\
& \leq \frac{\delta}{|P|} \sum_{n \in \mathbb{A}^{2}}\left|f_{A} * 1_{-P}(n)\right|
\end{aligned}
$$

By Lemma 12, we have

$$
\sum_{n \in \mathbb{A}^{2}}\left|f_{A} * 1_{-P}(n)\right| \geq c \delta^{2} q^{3(M+N)}
$$

Note that $\sum_{n \in \mathbb{A}^{2}} f_{A}(n)=0$, we have

$$
\sum_{n \in \mathbb{A}^{2}}\left(f_{A} * 1_{-P}\right)_{+}(n) \geq \frac{c}{2} \delta^{2} q^{3(M+N)}
$$

Take $n_{0} \in \Gamma_{N}$ such that

$$
f_{A} * 1_{-P}\left(n_{0}\right)=\max _{n \in \Gamma_{N}} f_{A} * 1_{-P}(n)
$$

By (5.4), we have

$$
\left|A \cap\left(n_{0}+P\right)\right|=\delta|P|+f_{A} * 1_{-P}\left(n_{0}\right) \geq \delta|P|+\frac{1}{\left|\Gamma_{N}\right|} \sum_{n \in \mathbb{A}^{2}}\left(f_{A} * 1_{-P}\right)_{+}(n) \geq \delta\left(1+\frac{c}{2} \delta\right) q^{3 M}
$$

Proposition 14 There exist $N^{\prime} \in \mathbb{N}_{+}$and $A^{\prime} \subseteq \Gamma_{N^{\prime}}$ with $\left|A^{\prime}\right|=\delta^{\prime} q^{3 N^{\prime}}$ such that
(i) $\left(A^{\prime}-A^{\prime}\right) \cap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$;
(ii) $\delta^{\prime} \geq \delta\left(1+\frac{c}{2} \delta\right)$;
(iii) $N^{\prime} \geq N-11 \log _{q}\left(\frac{q}{\delta}\right)$, where $\log _{q} x=\log x / \log q$.

Proof Write $L=\operatorname{ord} b_{0}$ and $T=\left|b_{0}\right|$. Then $0 \leq L \leq 2 \theta+3$. By taking $N^{\prime}=M-L$, property (iii) follows. Take $d_{1}, \cdots, d_{T} \in \mathbb{G}_{M}$ and $d_{1}^{\prime}, \cdots, d_{T}^{\prime} \in \mathbb{G}_{2 M-L}$ such that

$$
\begin{equation*}
\mathbb{G}_{M}=\bigcup_{i=1}^{T}\left(d_{i}+\mathbb{G}_{N^{\prime}}\right) \text { and } \mathbb{G}_{2 M-L}=\bigcup_{i=1}^{T}\left(d_{i}^{\prime}+\mathbb{G}_{2 N^{\prime}}\right) . \tag{5.6}
\end{equation*}
$$

For $d \in \mathbb{G}_{L}$ and $1 \leq i, j \leq T$, write

$$
\Upsilon_{d, i, j}=n_{0}+\left(0, b_{0} d\right)+\overrightarrow{b_{0}} \odot\left(d_{i}, d_{j}^{\prime}\right)+\overrightarrow{b_{0}} \odot \Gamma_{N^{\prime}}
$$

where

$$
\overrightarrow{b_{0}} \odot\left(d_{i}, d_{j}^{\prime}\right)=\left(b_{0} d_{i}, b_{0}^{2} d_{j}^{\prime}\right) \text { and } \overrightarrow{b_{0}} \odot \Gamma_{N^{\prime}}=\left\{\overrightarrow{b_{0}} \odot m: m \in \Gamma_{N^{\prime}}\right\}
$$

Let $m=\left(m_{1}, m_{2}\right) \in \Gamma_{M}$. Take $d \in \mathbb{G}_{L}$ and $d^{\prime} \in \mathbb{G}_{2 M-L}$ such that $m_{2}=d+b_{0} d^{\prime}$. By (5.6), we can find $1 \leq i, j \leq T$ such that $\left(m_{1}, d^{\prime}\right) \in\left(d_{i}, d_{j}^{\prime}\right)+\Gamma_{N^{\prime}}$. Then we have

$$
n_{0}+b_{0} m=n_{0}+\left(0, b_{0} d\right)+\overrightarrow{b_{0}} \odot\left(m_{1}, d^{\prime}\right) \in \Upsilon_{d, i, j}
$$

Thus, we see that

$$
n_{0}+b_{0} \Gamma_{M}=\bigcup_{d \in \mathbb{G}_{L}, 1 \leq i, j \leq T} \Upsilon_{d, i, j} .
$$

Take $d_{0} \in \mathbb{G}_{L}$ and $1 \leq i_{0}, j_{0} \leq T$ such that

$$
\left|A \cap \Upsilon_{d_{0}, i_{0}, j_{0}}\right|=\max _{d \in \mathbb{G}_{L}, 1 \leq i, j \leq T}\left|A \cap \Upsilon_{d, i, j}\right| .
$$

By Lemma 13, we have

$$
\left|A \cap \Upsilon_{d_{0}, i_{0}, j_{0}}\right| \geq \frac{1}{T^{3}} \sum_{d \in \mathbb{G}_{L}, 1 \leq i, j \leq T}\left|A \cap \Upsilon_{d, i, j}\right|=\frac{1}{T^{3}}\left|A \cap\left(n_{0}+b_{0} \Gamma_{M}\right)\right| \geq \delta\left(1+\frac{c}{2} \delta\right) q^{3 N^{\prime}}
$$

Consider the bijection $f: \Gamma_{N^{\prime}} \rightarrow \Upsilon_{d_{0}, i_{0}, j_{0}}$ defined by

$$
f(t)=n_{0}+\left(0, b_{0} d_{0}\right)+\overrightarrow{b_{0}} \odot\left(d_{i_{0}}, d_{j_{0}}^{\prime}\right)+\overrightarrow{b_{0}} \odot t
$$

By taking $A^{\prime}=f^{-1}\left(A \cap \Upsilon_{d_{0}, i_{0}, j_{0}}\right)$, property (ii) follows. To prove property (i), we suppose the contrary. Then there exist $t_{1}, t_{2} \in A^{\prime}$ and $d \in \mathbb{A}^{\times}$such that $t_{2}-t_{1}=\vec{d}$. It follows that

$$
f\left(t_{2}\right)-f\left(t_{1}\right)=\overrightarrow{b_{0}} \odot \vec{d}=\overrightarrow{b_{0} d} \in A-A
$$

which contradicts Hypothesis A. This completes the proof of the proposition.

6 Proof of Theorem 1

Proposition 15 If $p \geq 3$, then there exists a constant $C_{1}>0$, depending only on q, such that the following inequality holds. Let $N \in \mathbb{N}$ with $N \geq 2$ and $A \subseteq \mathbb{G}_{N} \times \mathbb{G}_{2 N}$. If $(A-A) \bigcap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$, then we have

$$
|A| \leq C_{1} q^{3 N} \frac{\log N}{N}
$$

Remark 3 Note that $d \in \mathbb{G}_{N} \Leftrightarrow d^{2} \in \mathbb{G}_{2 N}$, the form of Proposition 15 is more natural than of Theorem 1.

Proof Write $|A|=\delta q^{3 N}$. If $\delta \leq q^{1-\frac{N}{12}}$, then by taking

$$
C_{1}=\sup _{N \geq 2} q^{1-N / 12} \frac{N}{\log N}
$$

the proposition follows. Thus in the following, we assume that $\delta \geq q^{1-\frac{N}{12}}$.
Now, we recursively define a sequence of triples $\left(N_{i}, A_{i}, \delta_{i}\right)$ with $N_{i} \in \mathbb{N}_{+}, A_{i} \subseteq \Gamma_{N_{i}}$ and $\left|A_{i}\right|=\delta_{i} q^{3 N_{i}}$ as follows. Take $\left(N_{0}, A_{0}, \delta_{0}\right)=(N, A, \delta)$. Let $i \in \mathbb{N}$. Suppose that $\left(N_{i}, A_{i}, \delta_{i}\right)$ is defined. If $\delta_{i}<q^{1-\frac{N_{i}}{12}}$, we stop the definition. If $\delta_{i} \geq q^{1-\frac{N_{i}}{12}}$, by Proposition 14, we can find $N_{i+1} \in \mathbb{N}_{+}$and $A_{i+1} \subseteq \Gamma_{N_{i+1}}$ with $\left|A_{i+1}\right|=\delta_{i+1} q^{3 N_{i+1}}$ such that
(i) $\left(A_{i+1}-A_{i+1}\right) \cap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$;
(ii) $\delta_{i+1} \geq \delta_{i}\left(1+\frac{c}{2} \delta_{i}\right)$;
(iii) $N_{i+1} \geq N_{i}-11 \log _{q}\left(\frac{q}{\delta_{i}}\right)$.

Write $c^{\prime}=\frac{c}{2}$. It follows from (ii) that $\delta_{i+1}-\delta_{i} \geq c^{\prime} \delta^{2}$. Since $\delta_{i+1} \leq 1$, this process produces a finite sequence $\left\{\left(N_{i}, A_{i}, \delta_{i}\right)\right\}_{i=1}^{J}$. Then for any $0 \leq i \leq J-1$, the triple $\left(N_{i+1}, A_{i+1}, \delta_{i+1}\right)$ satisfies the above conditions (i)-(iii). Also, we have

$$
\begin{equation*}
\delta_{J}<q^{1-\frac{N_{J}}{12}} \tag{6.1}
\end{equation*}
$$

Claim 1 For $j \in \mathbb{N}$, write $I_{j}=\left\lceil\frac{1}{2^{j} c^{\prime} \delta}\right\rceil$. If $i \geq \sum_{l=0}^{j} I_{l}$, then $\delta_{i} \geq 2^{j+1} \delta$.
Proof We prove the claim by induction on j. For $j=0$, we have $I_{j} \geq \frac{1}{c^{\prime} \delta}$. It follows from (ii) that

$$
\delta_{i} \geq \delta_{0}+c^{\prime} i \delta_{0}^{2}
$$

Thus if $i \geq I_{0}$, then $\delta_{i} \geq 2 \delta$.
Suppose that the claim holds for j. We now prove that the statement is true for $j+1$.
Write $k=\sum_{l=0}^{j} I_{l}$. Let $i>k$. By (ii), we have $\delta_{i} \geq \delta_{k}+(i-k) c^{\prime} \delta_{k}^{2}$. Thus, if $i \geq \sum_{l=0}^{j+1} I_{l}$, it follows from the induction hypothesis that

$$
\delta_{i} \geq 2^{j+1} \delta+c^{\prime} I_{j+1}\left(2^{j+1} \delta\right)^{2} \geq 2^{j+2} \delta
$$

This completes the proof of the claim.
Take $j_{0} \in \mathbb{N}$ such that $2^{j_{0}} \delta \leq 1<2^{j_{0}+1} \delta$. Then we have

$$
J<\sum_{0 \leq i \leq j_{0}} I_{i} \leq \frac{2}{c^{\prime} \delta} \sum_{i \in \mathbb{N}} 2^{-i}=\frac{4}{c^{\prime} \delta}
$$

It follows from (iii) that

$$
N_{J} \geq N-11 J \log _{q}\left(\frac{q}{\delta}\right) \geq N-\frac{44}{c^{\prime} \delta} \log _{q}\left(\frac{q}{\delta}\right)
$$

By (6.1), we have

$$
\delta \leq \delta_{J} \leq q^{1-\frac{N}{12}}\left(\frac{q}{\delta}\right)^{\frac{11}{3 c^{\prime} \delta}}
$$

Thus, there exists a constant $C_{1}>1$, depending only on q, such that

$$
2 N \leq \frac{C_{1}}{\delta} \log \frac{C_{1}}{\delta}
$$

Note that the function $x \log x$ on $[1,+\infty)$ is increasing, and the proposition follows since

$$
\frac{2 N}{\log 2 N} \log \left(\frac{2 N}{\log 2 N}\right) \leq 2 N
$$

Proof of Theorem 1 Write $|A|=\delta q^{2 N}$. If $N \leq 7$, by taking $C=\frac{7}{\log 7}$, the theorem follows. In the following, we assume that $N \geq 8$. Write

$$
N^{\prime}=\left\lfloor\frac{N}{4}\right\rfloor, S=q^{N-N^{\prime}} \text { and } T=q^{N-2 N^{\prime}}
$$

For $1 \leq i \leq S$ and $1 \leq j \leq T$, take $d_{i}, d_{j}^{\prime} \in \mathbb{G}_{N}$ such that

$$
\mathbb{G}_{N}=\bigcup_{i=1}^{S}\left(d_{i}+\mathbb{G}_{N^{\prime}}\right)=\bigcup_{j=1}^{T}\left(d_{j}^{\prime}+\mathbb{G}_{2 N^{\prime}}\right)
$$

Then, we have

$$
\mathbb{G}_{N}^{2}=\bigcup_{1 \leq i \leq S, 1 \leq j \leq T}\left(d_{i}+\mathbb{G}_{N^{\prime}}\right) \times\left(d_{j}^{\prime}+\mathbb{G}_{2 N^{\prime}}\right)=\bigcup_{1 \leq i \leq S, 1 \leq j \leq T}\left(\left(d_{i}, d_{j}^{\prime}\right)+\Gamma_{N^{\prime}}\right) .
$$

Write

$$
A_{i, j}=A \bigcap\left(\left(d_{i}, d_{j}^{\prime}\right)+\Gamma_{N^{\prime}}\right)
$$

Take $1 \leq i_{0} \leq S$ and $1 \leq j_{0} \leq T$ such that

$$
\left|A_{i_{0}, j_{0}}\right|=\max _{1 \leq i \leq S, 1 \leq j \leq T}\left|A_{i, j}\right|
$$

Write $A^{\prime}=A_{i_{0}, j_{0}}$. Then we have $\left(A^{\prime}-A^{\prime}\right) \bigcap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$ and

$$
\left|A^{\prime}\right| \geq \frac{1}{S T} \sum_{1 \leq i \leq S, 1 \leq j \leq T}\left|A_{i, j}\right| \geq \frac{1}{S T}\left|\bigcup_{1 \leq i \leq S, 1 \leq j \leq T} A_{i, j}\right|=\frac{1}{S T}|A|=\delta q^{3 N^{\prime}}
$$

Define $f: \Gamma_{N^{\prime}} \rightarrow\left(d_{i_{0}}, d_{j_{0}}^{\prime}\right)+\Gamma_{N^{\prime}}$ to be $f(m)=\left(d_{i_{0}}, d_{j_{0}}^{\prime}\right)+m$. Then f is a bijection. Take $B=f^{-1}\left(A^{\prime}\right)$. Since $B-B=A^{\prime}-A^{\prime}$, we have $(B-B) \bigcap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset$. It follows from Proposition 15 that

$$
|B| \leq C_{1} q^{3 N^{\prime}} \frac{\log N^{\prime}}{N^{\prime}} \leq C_{1} \frac{N}{N / 4-1} q^{3 N^{\prime}} \frac{\log N}{N}
$$

Note that $N \geq 8$ and $\delta \leq|B| q^{-3 N^{\prime}}$, by taking $C=8 C_{1}$, the theorem follows.

7 Proof of Theorem 2

For $1 \leq s \leq l$, take $c_{s 1}, c_{s 2} \in \mathbb{A}$ such that $P_{s}(x)=c_{s 1} x+c_{s 2} x^{2}$. Write $\mathcal{P}=\left(c_{s j}\right)_{1 \leq s \leq l, 1 \leq j \leq 2}$. Denote by r the rank of the matrix \mathcal{P}. Then $1 \leq r \leq 2$. Thus, we divide into two case.

Case 1 Suppose that $r=2$. Without loss of generality, we assume that $\left(c_{11}, c_{12}\right)$ and $\left(c_{21}, c_{22}\right)$ are linearly independent. Write $\mathcal{R}=\left(c_{i j}\right)_{1 \leq i, j \leq 2}, e_{1}=(1,0)$ and $e_{2}=(0,1)$. For $1 \leq i \leq 2$, take $\xi_{i}^{\prime} \in \mathbb{K}^{2}$ such that $\mathcal{R} \xi_{i}^{\prime}=e_{i}$. When $l \geq 3$, take $\mathcal{D}=\left(d_{t j}^{\prime}\right)_{1 \leq t \leq l-2,1 \leq j \leq 2}$ such that

$$
\left(c_{t^{\prime} j}\right)_{3 \leq t^{\prime} \leq l, 1 \leq j \leq 2}=\mathcal{D} \mathcal{R}
$$

Take $S \in \mathbb{N}$ with $S \geq 4$ and $D \in \mathbb{A}^{\times}$such that

$$
D, c_{i j} \in \mathbb{G}_{S}, \quad \xi_{i}=D \xi_{i}^{\prime} \in \mathbb{G}_{S}^{2} \quad(1 \leq i, j \leq 2)
$$

If $l \geq 3$, we also require

$$
d_{t j}=D d_{t j}^{\prime} \in \mathbb{G}_{S}(1 \leq t \leq l-2,1 \leq j \leq 2)
$$

If $N \leq S$, by taking $C^{\prime}=\left(\frac{S}{\log S}\right)^{\frac{1}{l}}$, the theorem follows. Thus, we assume that $N \geq S+1$.
Claim 2 For $m \in \mathbb{G}_{S}^{2}$, write $B_{m}^{\prime}=\left\{b \in \mathbb{G}_{N+S}^{2}: \mathcal{R} b+m \in A^{2}\right\}$. Then there exists $\underline{m} \in \mathbb{G}_{S}^{2}$ such that

$$
\left|B_{\underline{m}}^{\prime}\right| \geq q^{-2 S}|A|^{2}
$$

Proof Let $a=\left(a_{1}, a_{2}\right) \in A^{2}$. For $1 \leq i \leq 2$, take $a_{i}^{\prime} \in \mathbb{G}_{N-\operatorname{ord} D}$ and $a_{i}^{\prime \prime} \in \mathbb{G}_{\text {ord } D}$ such that $a_{i}=D a_{i}^{\prime}+a_{i}^{\prime \prime}$. Write $b=\sum_{i=1}^{2} a_{i}^{\prime} \xi_{i}$ and $m^{\prime}=\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$. Then we have

$$
b \in \mathbb{G}_{N+S}^{2}, m^{\prime} \in \mathbb{G}_{S}^{2} \text { and } \mathcal{R} b=a-m^{\prime}
$$

It follows that $a \in \mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+m^{\prime}$. Thus, we see that

$$
\begin{equation*}
A^{2} \subseteq \bigcup_{m \in \mathbb{G}_{S}^{2}}\left(\mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+m\right) \tag{7.1}
\end{equation*}
$$

Take $\underline{m} \in \mathbb{G}_{S}^{2}$ such that $\left|B_{\underline{m}}^{\prime}\right|=\max _{m \in \mathbb{G}_{S}^{2}}\left|B_{m}^{\prime}\right|$. By (7.1), we have

$$
\left|B_{\underline{m}}^{\prime}\right| \geq \frac{1}{q^{2 S}} \sum_{m \in \mathbb{G}_{S}^{2}}\left|B_{m}^{\prime}\right| \geq \frac{1}{q^{2 S}}\left|\bigcup_{m \in \mathbb{G}_{S}^{2}}\left(\left(\mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+m\right) \cap A^{2}\right)\right|=\frac{1}{q^{2 S}}\left|A^{2}\right|
$$

This completes the proof of the claim.
Claim 3 Suppose that $l \geq 3$. For $m \in \mathbb{G}_{N+3 S}^{l-2}$, write $B_{m}^{\prime \prime}=\left\{b \in B_{\underline{m}}^{\prime}: \mathcal{D} \mathcal{R} b+m \in A^{l-2}\right\}$. Then there exists $\underline{m^{\prime}} \in \mathbb{G}_{N+3 S}^{l-2}$ such that

$$
\left|B_{\underline{m}^{\prime}}^{\prime \prime}\right| \geq q^{-(l-2) N-(3 l-4) S}|A|^{l} .
$$

Proof Let $n \in \mathbb{A}^{l-2}$ and $b \in B_{\underline{m}}^{\prime}$. If $n+\mathcal{D} \mathcal{R} b \in A^{l-2}$, then $n \in \mathbb{G}_{N+3 S}^{l-2}$. Thus

$$
\begin{equation*}
\sum_{n \in \mathbb{G}_{N+3 S}^{l-2}} \sum_{b \in B_{\underline{m}}^{\prime}} 1_{A^{l-2}}(n+\mathcal{D} \mathcal{R} b)=\sum_{b \in B_{\underline{m}}^{\prime}} \sum_{n \in \mathbb{A}^{l-2}} 1_{A^{l-2}}(n+\mathcal{D \mathcal { R }} b)=\left|B_{\underline{m}}^{\prime} \| A\right|^{l-2} . \tag{7.2}
\end{equation*}
$$

Take $\underline{m^{\prime}} \in \mathbb{G}_{N+3 S}^{l-2}$ such that $\left|B_{\underline{m^{\prime}}}^{\prime \prime}\right|=\max _{m \in \mathbb{G}_{N+3 S}^{l-2}}\left|B_{m}^{\prime \prime}\right|$. Then we have

$$
\left|B_{\underline{m^{\prime}}}^{\prime \prime}\right| \geq \frac{1}{q^{(l-2)(N+3 S)}} \sum_{m \in \mathbb{G}_{N+3 S}^{l-2}}\left|B_{m}^{\prime \prime}\right|=\frac{1}{q^{(l-2)(N+3 S)}} \sum_{m \in \mathbb{G}_{N+3 S}^{l-2}} \sum_{b \in B_{\underline{m}}^{\prime}} 1_{A^{l-2}}(m+\mathcal{D} \mathcal{R} b)
$$

The claim follows from (7.2) and Claim 2.
Write

$$
\bar{m}= \begin{cases}\underline{m}, & \text { if } l=2, \\ \left(\underline{m}, \underline{m^{\prime}}\right), & \text { if } l \geq 3\end{cases}
$$

Define $B=\left\{b \in \mathbb{G}_{N+S}^{2}: \mathcal{P} b+\bar{m} \in A^{l}\right\}$. Then by Claims 2 and 3, we have

$$
\begin{equation*}
|B| \geq q^{-(l-2) N-(3 l-4) S}|A|^{l} . \tag{7.3}
\end{equation*}
$$

Suppose that there exists $d \in \mathbb{A}$ suth that $b^{\prime}-b=\vec{d}$ for some $b, b^{\prime} \in B$. Since

$$
\mathcal{P} \vec{d}=\mathcal{P} b^{\prime}-\mathcal{P} b \in A^{l}-A^{l}
$$

we have

$$
\left\{P_{1}(d), \cdots, P_{l}(d)\right\} \subseteq(A-A)
$$

from which it follows that $d=0$. Thus, we obtain

$$
(B-B) \bigcap\left\{\vec{d}: d \in \mathbb{A}^{\times}\right\}=\emptyset
$$

By Theorem 1, we have

$$
|B| \leq C q^{2(N+S)} \frac{\log (N+S)}{N+S} \leq C q^{2(N+S)} \frac{\log N}{N}
$$

By taking $C^{\prime}=C^{\frac{1}{l}} q^{\frac{(3 l-2) S}{l}}$, the theorem follows from (7.3).
Case 2 Suppose that $r=1$. Without loss of generality, we assume that $\mathcal{R}=\left(c_{11}, c_{12}\right) \neq$ 0 . Take $\xi^{\prime} \in \mathbb{K}^{2}$ such that $\mathcal{R} \xi^{\prime}=1$. When $l \geq 2$, take $\mathcal{D}=\left(d_{1}^{\prime}, \cdots, d_{l-1}^{\prime}\right)$ such that $\left(c_{t^{\prime} j}\right)_{2 \leq t^{\prime} \leq l, 1 \leq j \leq 2}=\mathcal{D} \mathcal{R}$.

Take $S \in \mathbb{N}$ with $S \geq 4$ and $D \in \mathbb{A}^{\times}$such that

$$
D, c_{1 j} \in \mathbb{G}_{S}(1 \leq j \leq 2), \xi=D \xi^{\prime} \in \mathbb{G}_{S}^{2}
$$

If $l \geq 2$, we also require

$$
d_{t}=D d_{t}^{\prime} \in \mathbb{G}_{S}(1 \leq t \leq l-1)
$$

If $N \leq S$, by taking $C^{\prime}=\left(\frac{S}{\log S}\right)^{\frac{1}{t}}$, the theorem follows. Thus we assume that $N \geq S+1$.
Claim 4 For $m \in \mathbb{G}_{S}$, write $B_{m}^{\prime}=\left\{b \in \mathbb{G}_{N+S}^{2}: \mathcal{R} b+m \in A\right\}$. Then there exists $\underline{m} \in \mathbb{G}_{S}$ such that

$$
\left|B_{\underline{m}}^{\prime}\right| \geq q^{N-S}|A| .
$$

Proof Let $a \in A$. Take $a^{\prime} \in \mathbb{G}_{N-\operatorname{ord} D}$ and $a^{\prime \prime} \in \mathbb{G}_{\text {ord } D}$ such that $a=D a^{\prime}+a^{\prime \prime}$. Write $b=a^{\prime} \xi$. Then we have

$$
b \in \mathbb{G}_{N+S}^{2}, a^{\prime \prime} \in \mathbb{G}_{S} \text { and } \mathcal{R} b=a-a^{\prime \prime}
$$

It follows that $a \in \mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+a^{\prime \prime}$. Thus, we see that

$$
\begin{equation*}
A \subseteq \bigcup_{m \in \mathbb{G}_{S}}\left(\mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+m\right) \tag{7.4}
\end{equation*}
$$

For $m \in \mathbb{G}_{S}$, write $A_{m}=A \bigcap\left(\mathcal{R}\left(\mathbb{G}_{N+S}^{2}\right)+m\right)$. For each $a \in A_{m}$, we fix a $\hat{a} \in \mathbb{G}_{N+S}^{2}$ such that $\mathcal{R} \hat{a}+m=a$. Since

$$
\left\{\hat{a}+d\left(-c_{12}, c_{11}\right): a \in A_{m}, d \in \mathbb{G}_{N}\right\} \subseteq B_{m}^{\prime}
$$

it follows that $\left|B_{m}^{\prime}\right| \geq q^{N}\left|A_{m}\right|$. Take $\underline{m} \in \mathbb{G}_{S}$ such that $\left|B_{\underline{m}}^{\prime}\right|=\max _{m \in \mathbb{G}_{S}}\left|B_{m}^{\prime}\right|$. By (7.4), we have

$$
\left|B_{\underline{m}}^{\prime}\right| \geq \frac{1}{q^{S}} \sum_{m \in \mathbb{G}_{S}}\left|B_{m}^{\prime}\right| \geq q^{N-S} \sum_{m \in \mathbb{G}_{S}}\left|A_{m}\right| \geq q^{N-S}\left|\bigcup_{m \in \mathbb{G}_{S}} A_{m}\right|=q^{N-S}|A|
$$

This completes the proof of the claim.
Claim 5 Suppose that $l \geq 2$. For $m \in \mathbb{G}_{N+3 S}^{l-1}$, write $B_{m}^{\prime \prime}=\left\{b \in B_{\underline{m}}^{\prime}: \mathcal{D} \mathcal{R} b+m \in A^{l-1}\right\}$. Then there exists $\underline{m^{\prime}} \in \mathbb{G}_{N+3 S}^{l-1}$ such that

$$
\left|B_{\underline{m}^{\prime}}^{\prime \prime}\right| \geq q^{-(l-2) N-(3 l-2) S}|A|^{l} .
$$

Proof The claim follows from the similar argument as in Claim 3.
Write

$$
\bar{m}= \begin{cases}\underline{m}, & \text { if } l=1 \\ \left(\underline{m}, \underline{m^{\prime}}\right), & \text { if } l \geq 2\end{cases}
$$

Define $B=\left\{b \in \mathbb{G}_{N+S}^{2}: \mathcal{P} b+\bar{m} \in A^{l}\right\}$. Then by Claims 4 and 5 , we have

$$
\begin{equation*}
|B| \geq q^{-(l-2) N-(3 l-2) S}|A|^{l} \tag{7.5}
\end{equation*}
$$

By using similar arguments as in Case 1, we obtain $|B| \leq C q^{2(N+S)} \frac{\log N}{N}$. By taking $C^{\prime}=$ $C^{\frac{1}{7}} q^{3 S}$, the theorem follows from (7.5).

Combining the above two cases, the proof of the theorem is completed.

References

［1］Furstenberg H．Ergodic behavier of diagonal measures and a theorem of Szemerédi on arithmetic progressions［J］．J．d＇Analyse Math．，1977，31：204－256．
［2］Sárközy A．On difference sets of sequences of integers III［J］．Acta．Math．Hungar．，1978，31：355－386．
［3］Pintz J，Steiger W L，Szemerédi E．On sets of natural numbers whose difference set contains no squares［J］．J．London Math．Soc．，1988，37：219－231．
［4］Balog A，Pelikán J，Pintz J，Szemerédi E．Difference sets without κ－th powers［J］．Acta Math．Hung．， 1994，65：165－187．
［5］Bergelson V，Leibman A．Polynomial extensions of van der Waerden＇s and Szemerédi＇s theorems［J］． J．Amer．Math．Soc．，1996，9：725－753．
［6］Lyall N，Magyar Á．Polynomials configurations in difference sets［J］．J．Number Theory，2009，129： 439－450．
［7］Lê T H，Liu Y R．On sets of polynomials whose difference set contains no squares［J］．Acta．Arith．， 2013，161：127－143．
［8］Rice A J．Improvements and extensions of two theorems of Sárközy［D］．Georgia：University of Georgia， 2012.
［9］Vaughan R C．The Hardy－Littlewood method［M］．Cambridge：Cambridge University Press， 1997.
［10］Kubota R．Waring＇s problem for $\mathbb{F}_{q}[x][J]$ ．Diss．Math．，1974，117：1－60．
［11］Chen J R．On Professor Hua＇s estimate of exponential sums［J］．Sci．Sinica．，1977，20：711－719．
［12］Weil A．On some exponential sums［J］．Proc．Nat．Acad．Sci．U．S．A．，1948，34：47－62．

函数域中Sárközy定理的 2 －维相似品

李国全，刘宝庆，钱 锟，许贵桥
（天津师范大学数学科学学院，天津 300387）

摘要： $\mathbb{F}_{q}[t]$ 为含有 q 个元的有限域 \mathbb{F}_{q} 上的多项式环。对 $N \in \mathbb{N}$ ，设 \mathbb{G}_{N} 为由 $\mathbb{F}_{q}[t]$ 中一切次数严格小于 N 的多项式所形成的集合。假定 \mathbb{F}_{q} 的特征严格大于 2 ，并且 $A \subseteq \mathbb{G}_{N}^{2}$ 。如果对任何 $d \in \mathbb{F}_{q}[t] \backslash\{0\}$ 都有 $\left(d, d^{2}\right) \notin A-A=\left\{a-a^{\prime}: a, a^{\prime} \in A\right\}$ 。本文证明了 $|A| \leq C q^{2 N} \frac{\log N}{N}$ ，此处常数 C 只依赖于 q 。应用这个估计，本文把函数域中的Sárközy定理推广到了次数严格小于 3 的多项式的有限族的情形．

关键词：Sárközy定理；函数域；Hardy－Littlewood圆法
$\operatorname{MR}(2010)$ 主题分类号：11P55；11T55 中图分类号：O156

[^0]: ＊Received date：2018－05－08 Accepted date：2018－12－24
 Foundation item：Supported by National Natural Science Foundation of China（11671271）．
 Biography：Li Guoquan（1969－），male，born at Yanzhou，Shandong，professor，major in analytic number theory and harmonic analysis．

