
Vol. 39 ( 2019 )
No. 5

数 学 杂 志
J. of Math. (PRC)

MULTIPLICITY OF POSITIVE SOLUTIONS FOR

QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING

CONCAVE-CONVEX NONLINEARITY AND

SOBOLEV-HARDY TERM

DU Ming, LIU Xiao-chun
(School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

Abstract: In this paper, we investigate the quasi-linear elliptic equations involving concave-

convex nonlinearity and Sobolev-Hardy term. By using the theory of the Lusternik-Schnirelmann

category and the relationship between the Nehari manifold and fibering maps, we get some im-

provement on existence and multiplicity of positive solution.

Keywords: subcritical Sobolev-Hardy exponent; Nehari manifold; sign-changing weight;

concave-convex nonlinearity

2010 MR Subject Classification: 35J30; 35J75

Document code: A Article ID: 0255-7797(2019)05-0633-23

1 Introduction

In this paper, we consider the following equation



− div(|x|−ap|∇u|p−2∇u)− λ

|u|p−2u

|x|p(a+1)
= fµ(x)|u|q−2u + g(x)|u|r−2u,

u ∈ W1,p
a (RN ),

(1.1)

where N > 3, 1 < p < N , 0 6 a < N−p
p

, 1 6 q < p < r < p∗[a] = Np
N−p(a+1)

, and p∗[a] is the
critical Sobolev-Hardy exponent. The parameter λ satisfies 0 6 λ < λ = (N−p

p
− a)p, µ > 0,

and W1,p
a (RN ) will be explained later. The weight functions fµ(x) = µf+(x) + f−(x) and

g(x) = g1(x) + g2(x) satisfy the following conditions
(A1) f ∈ Lq∗(RN )(q∗ = r

r−q
) with f±(x) = ±max{±f(x), 0} 6≡ 0 and there exists a

positive constant rf such that

f−(x) > −cf |x|−rf for some cf > 0 and for all x ∈ RN ;
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(A2) g ∈ C(RN ) with g0 = max
x∈RN

g(x) and there exists constants rg1 , rg2 with 0 < rg2 <

min{rf −N, rg1 −N} such that

1 > g1(x) > 1− cg1 |x|−rg1 for some cg1 < 1 and for all x ∈ RN

and
g2(x) > cg2 |x|−rg2 for some cg2 > 0 and for all x ∈ RN .

Such kind of problem arised from various fields of geometry and physics and was widely
used in the applied sciences. We refer to [1–3] for details on the description about the
background.

Elliptic problems on bounded domains involving concave-convex nonlinearity were stud-
ied extensively since Ambrosetti, Brezis and Cerami [4] considered the following equation





−∆u = µuq−1 + up−1 in Ω,

u > 0 in Ω,

u ∈ H1
0 (Ω),

(1.2)

where 1 < q < 2 < p 6 2∗, µ > 0. They found that there exists µ0 > 0 such that (1.2)
admits at least two positive solutions for µ ∈ (0, µ0), a positive solution for µ = µ0 and
no positive solution exists for µ > µ0 (see also Ambrosetti, Azorero and Peral [5, 6] for
more references therein). In recent years, several authors studied semilinear or quasilinear
problems with the help of Nehari manifold (see [7–9]). In particular, Lin [9] studied the
following critical problem




− div(|x|−2a∇u)− λ

u

|x|2(a+1)
=
|u|2∗(a,b)−2u

|x|b2∗(a,b)
+ µ|u|q−2u in Ω\{0},

u = 0 on ∂Ω,

(1.3)

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary, 0 6 a < N−2
2

, a 6 b <

a + 1, 2∗(a, b) = 2N
N−2(a+1−b)

, 0 6 λ < λ = (N−2(a+1))2

4
, µ > 0, and 1 < q < 2. He found that

(1.3) admits at least two positive and one sign-changing solutions.
Actually, Fan and Liu [10] established multiple positive solutions of standard p-Laplacian

elliptic equations without Hardy term on a bounded domain Ω in RN . Some other theorems
for p-Laplacian elliptic equations without Hardy term can be found in [11, 12]. Hsu and Lin
[13] studied the following critical problem via generalized Mountain Pass Theorem [14]




− div(|x|−ap|∇u|p−2∇u)− λ

|u|p−2u

|x|p(a+1)
=
|u|p∗(a,b)−2u

|x|bp∗(a,b)
+ µ

|u|q−2u

|x|dp∗(a,d)
in Ω,

u = 0 on ∂Ω,

(1.4)

where a 6 b, d < a + 1, p∗(a, b) = Np
N−p(a+1−b)

is the critical Sobolev-Hardy exponent. They
found that (1.4) admits at least two positive solutions.
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However, little is done on RN for the operator −div(|x|−ap|∇ · |p−2∇·) − λ |·|p−2·
|x|p(a+1) in-

volving the concave-convex nonlinearity. Since the embedding is not compact on RN and
the weight functions f and g are sign-changing, we will discuss the concentration behavior
of solutions on the corresponding Nehari manifold to overcome these difficulties. Moreover,
we get some improvement on multiplicity of positive solutions via the theory of Lusternik-
Schnirelmann category (see [15]).

Throughout our paper, we denote by W1,p
a (RN ) the completion of C∞

0 (RN ) with respect

to the standard norm (
∫

RN

|x|−ap|∇u|pdx)
1
p . The function u ∈ W1,p

a (RN ) is said to be a

solution of problem (1.1) if u satisfies
∫

RN

(|x|−ap|∇u|p−2∇u∇v − λ
|u|p−2uv

|x|p(a+1)
− fµ|u|q−2uv − g|u|r−2uv)dx = 0 (1.5)

for all v ∈ W1,p
a (RN ). It is well known that the nontrivial solution of problem (1.1) is

equivalent to the corresponding nonzero critical point of the energy functional

Iµ(u) =
1
p

∫

RN

(|x|−ap|∇u|p − λ
|u|p

|x|p(a+1)
)dx− 1

q

∫

RN

fµ|u|qdx− 1
r

∫

RN

g|u|rdx. (1.6)

Then Iµ(u) is well-defined on W1,p
a (RN ) and belongs to C1(W1,p

a (RN ),R).
Problem (1.1) is related to well-known Caffarelli-Kohn-Nirenberg inequality in [16]

(∫

RN

|u|p∗(a,b)

|x|bp∗(a,b)
dx

) p
p∗(a,b)

6 C

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0 (RN ). (1.7)

If b = a + 1, then p∗(a, b) = p and the following Hardy inequality holds [17]
∫

RN

|u|p
|x|p(a+1)

dx 6 1
λ

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0 (RN ), (1.8)

where λ = (N−p
p
− a)p is the best Hardy constant. Consequently, for λ < λ, we endow the

space W1,p
a (RN ) with the following norm

‖u‖ = ‖u‖W1,p
a (RN ) = (

∫

RN

(|x|−ap|∇u|p − λ
|u|p

|x|p(a+1)
)dx)

1
p , (1.9)

which is equivalent to the usual norm (
∫

RN

|x|−ap|∇u|pdx)
1
p .

We get our main result as follows.
Theorem 1.1 Suppose that the functions f and g satisfy condition (A1) and (A2). Let

L2 =
q

p

(
r − p

r − q

)(
p− q

g0(r − q)

) p−q
r−p S

r−q
r−p

λ

‖f+‖Lq∗
, (1.10)

where Sλ is the best Sobolev constant for the embedding of W1,p
a (RN ) into Lr(RN ) and

defined by

Sλ := inf
u∈W1,p

a (RN )\{0}

‖u‖p

(
∫

RN

|u|rdx)
p
r

. (1.11)
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Then
(i) for µ ∈ (0, L2), (1.1) has at least two positive solutions in W1,p

a (RN ) corresponding
to negative least energy;

(ii) there exists µ0 ∈ (0, L2) such that for µ ∈ (0, µ0), (1.1) has at least three positive
solutions in W1,p

a (RN ) including two with positive energy.
The paper is organized as follows: in Sections 2–4, based on some related preliminaries,

we develop the description of Palais-Smale condition and the estimate of corresponding
energy functional Iµ; in Section 5, we discuss the concentration behavior of solutions on
Nehari manifold; in Section 6, we complete the proof of Theorem 1.1.

2 Preliminaries

Since the energy functional Iµ in (1.6) is unbounded below on W1,p
a (RN ), we consider

the functional on Nehari manifold

Nµ = {u ∈ W1,p
a (RN ) \ {0} | 〈I ′µ(u), u〉 = 0}.

Note that Nµ contains all nonzero solutions of (1.1) and u ∈ Nµ if and only if

‖u‖p −
∫

RN

fµ|u|qdx−
∫

RN

g|u|rdx = 0.

Lemma 2.1 The energy functional Iµ is coercive and bounded below on Nµ.
Proof For u ∈ Nµ, by the Hölder inequality and Sobolev embedding theorem, we can

deduce

Iµ(u) =
1
p
‖u‖p − 1

q

∫

RN

fµ|u|qdx− 1
r

∫

RN

g|u|rdx

=
(

1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)∫

RN

fµ|u|qdx

>
(

1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)
µ‖f+‖Lq∗S

− q
p

λ ‖u‖q

> −Cµ
p

p−q ,

where C is a positive constant depending on N, q, Sλ and ‖f+‖Lq∗ . This completes the proof.
Define

Ψ(u) = 〈I ′µ(u), u〉 = ‖u‖p −
∫

RN

fµ|u|qdx−
∫

RN

g|u|rdx.

Then for u ∈ Nµ, we have

〈Ψ′(u), u〉 = p‖u‖p − q

∫

RN

fµ|u|qdx− r

∫

RN

g|u|rdx

= (p− q)‖u‖p − (r − q)
∫

RN

g|u|rdx

= (p− r)‖u‖p − (q − r)
∫

RN

fµ|u|qdx.

(2.1)
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As in [18], we divide Nµ into three parts

N+
µ = {u ∈ Nµ | 〈Ψ′(u), u〉 > 0},

N0
µ = {u ∈ Nµ | 〈Ψ′(u), u〉 = 0},

N−
µ = {u ∈ Nµ | 〈Ψ′(u), u〉 < 0}.

Then we have the following result.

Lemma 2.2 (i) If u ∈ N+
µ , then

∫

RN

fµ(x)|u|qdx > 0.

(ii) If u ∈ N0
µ, then

∫

RN

fµ(x)|u|qdx > 0 and
∫

RN

g(x)|u|rdx > 0.

(iii) If u ∈ N−
µ , then

∫

RN

g(x)|u|rdx > 0.

Proof By (2.1) we can easily derive these results.

Set L1 =
(

r−p
r−q

)(
p−q

g0(r−q)

) p−q
r−p

S
r−q
r−p
λ

‖f+‖Lq∗
and it is easy to see L2 = q

p
L1, where L2 is defined

in (1.10). We define

α = inf
u∈Nµ

Iµ(u), α+ = inf
u∈N+

µ

Iµ(u) and α− = inf
u∈N−

µ

Iµ(u).

Then the following lemma is essential for the main result.
Lemma 2.3 (i) For all µ ∈ (0, L1), we have N0

µ = ∅ and α+ < 0.
(ii) If µ < L2, then we have α− > c0 for some c0 > 0. In particular, inf

u∈Nµ

Iµ(u) = α+

for all µ ∈ (0, L2).
Proof (i) Suppose the contrary. We may assume that there exists µ∗ ∈ (0, L1) such

that N0
µ∗ 6= ∅. Thus, for each u ∈ N0

µ∗ , by the Hölder and Sobolev inequalities, we can obtain

0 = 〈Ψ′(u), u〉 = (p− r)‖u‖p − (q − r)
∫

RN

fµ∗ |u|qdx, (2.2)

that is,

‖u‖p =
r − q

r − p

∫

RN

fµ∗ |u|qdx 6 r − q

r − p
µ∗‖f+‖Lq∗S

− q
p

λ ‖u‖q (2.3)

and so

µ∗ > r − p

r − q
‖u‖p−q S

q
p

λ

‖f+‖Lq∗
. (2.4)

But (2.1) implies that

(p− q)‖u‖p = (r − q)
∫

RN

g|u|rdx 6 g0(r − q)‖u‖rS
− r

p

λ ,

which means

‖u‖p−q >
(

p− q

g0(r − q)
S

r
p

λ

) p−q
r−p

. (2.5)
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Combined (2.4) and (2.5), we have

µ∗ >
(

r − p

r − q

)(
p− q

g0(r − q)

) p−q
r−p S

r
p · p−q

r−p + q
p

λ

‖f+‖Lq∗

=
(

r − p

r − q

)(
p− q

g0(r − q)

) p−q
r−p S

r−q
r−p

λ

‖f+‖Lq∗
= L1.

This contradicts to µ∗ ∈ (0, L1). Therefore, N0
µ = ∅ and Nµ = N+

µ ∪ N−
µ for µ ∈ (0, L1).

Then for u ∈ N+
µ , by Lemma 2.2, we get

Iµ(u) =
(

1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)∫

RN

fµ|u|qdx

<

(
1
p
− 1

q

)
r − q

r

∫

RN

fµ|u|qdx

and so

α+ = inf
u∈N+

µ

Iµ(u) < 0. (2.6)

(ii) Let u ∈ N−
µ . By (2.1) and the Sobolev inequality, we have

(p− q)‖u‖p < (r − q)
∫

RN

g|u|rdx 6 g0(r − q)‖u‖rS
− r

p

λ

or

‖u‖ >

(
p− q

g0(r − q)
S

r
p

λ

) 1
r−p

. (2.7)

Then for µ ∈ (0, L2), we have

Iµ(u) =
(

1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)∫

RN

fµ|u|qdx

=
(

1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)
µ‖f+‖Lq∗S

− q
p

λ ‖u‖q + c0

>

(
1
p
− 1

r

)
‖u‖p −

(
1
q
− 1

r

)
q

p
L1‖f+‖Lq∗S

− q
p

λ ‖u‖q + c0

> c0,

where

c0 =
(

1
q
− 1

r

)
µ‖f+‖Lq∗S

− q
p

λ ‖u‖q −
(

1
q
− 1

r

)∫

RN

fµ|u|qdx > 0.

This implies, for µ ∈ (0, L2), α+ < 0 < c0 < α−. The proof is completed.
Now we introduce the following function mu : R+ → R in the form

mu(t) = tp−q‖u‖p − tr−q

∫

RN

g|u|rdx for t > 0.
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Clearly, tu ∈ Nµ if and only if mu(t) =
∫

RN

fµ(x)|u|qdx, and

m′
u(t) = (p− q)tp−q−1‖u‖p − (r − q)tr−q−1

∫

RN

g(x)|u|rdx. (2.8)

It is obvious that if tu ∈ Nµ, then tq+1m′
u(t) = 〈Ψ′(tu), tu〉. Hence, tu ∈ N+

µ (or N−
µ ) if and

only if m′
u(t) > 0 (or < 0).

Suppose u ∈ W1,p
a (RN ) \ {0}. Then by (2.8), mu admits a unique critical point at

t = tmax, where

tmax =
(

(p− q)‖u‖p

(r − q)
∫

RN

g|u|rdx

) 1
r−p

> 0,

and mu strictly increases on (0, tmax) and decreases on (tmax,∞) with lim
t→∞

mu(t) = −∞.

Furthermore, since µ ∈ (0, L1), we have

mu(tmax) =
(

(p− q)‖u‖p

(r − q)
∫

RN

g|u|rdx

) p−q
r−p

‖u‖p −
(

(p− q)‖u‖p

(r − q)
∫

RN

g|u|rdx

) r−q
r−p

∫

RN

g|u|rdx

=
(

p− q

r − q

) p−q
r−p ‖u‖ p(r−q)

r−p

(
∫

RN

g|u|rdx)
p−q
r−p

−
(

p− q

r − q

) r−q
r−p ‖u‖ p(r−q)

r−p

(
∫

RN

g|u|rdx)
p−q
r−p

= ‖u‖q

(
r − p

r − q

)(
p− q

r − q

) p−q
r−p

( ‖u‖r

∫

RN

g|u|rdx

) p−q
r−p

> 1
µ
‖f+‖−1

Lq∗S
r−q
r−p

λ

(
p− q

r − q

) p−q
r−p

(
r − p

r − q

)∫

RN

fµ|u|qdx

>

∫

RN

fµ|u|qdx.

Thus, we have the following lemma.
Lemma 2.4 For each u ∈ W1,p

a (RN ) \ {0}, we have

(i) if
∫

RN

fµ|u|qdx 6 0, then there exists a unique t− = t−(u) > tmax such that t−u ∈
N−

µ , and
Iµ(t−u) = sup

t>0
Iµ(tu); (2.9)

(ii) if
∫

RN

fµ|u|qdx > 0, then there exist unique 0 < t+ = t+(u) < tmax < t− such that

t+u ∈ N+
µ , t−u ∈ N−

µ and

Iµ(t+u) = inf
06t6tmax

Iµ(tu), Iµ(t−u) = sup
t>t+

Iµ(tu); (2.10)

(iii) t−(u) : W1,p
a (RN ) \ {0} → R+ is continuous;
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(iv) N−
µ = {u ∈ W1,p

a (RN ) \ {0} | 1
‖u‖ t

−( u
‖u‖) = 1}.

Proof (i) The equation mu(t) =
∫

RN

fµ|u|qdx admits a unique solution t− > tmax and

m′
u(t−) < 0. Thus t−u ∈ N−

µ , and (2.9) holds by Lemma 2.3.

(ii) The equation mu(t) =
∫

RN

fµ|u|qdx admits distinctive solutions t+ < tmax < t−

such that m′
u(t+) > 0 and m′

u(t−) < 0, and then we have t+u ∈ N+
µ and t−u ∈ N−

µ . Thus
(2.10) holds by Lemma 2.3 and Lemma 2.4 (i).

(iii) By the uniqueness and extremal property of t−(u), we have t−(u) is a continuous
function for u ∈ W1,p

a (RN ) \ {0}.
(iv) For u ∈ N−

µ , let v = u
‖u‖ . By (i) and (ii), there is a unique t−(v) > 0 such that

t−(v)v ∈ N−
µ or

t−(
u

‖u‖)
1
‖u‖u ∈ N−

µ .

Since (i) u ∈ N−
µ , we have t−( u

‖u‖)
1
‖u‖ = 1, and this implies

N−
µ ⊂ {u ∈ W1,p

a (RN ) \ {0}| 1
‖u‖ t−(

u

‖u‖) = 1}.

On the other hand, let u ∈ W1,p
a (RN ) \ {0} such that

1
‖u‖ t−(

u

‖u‖) = 1.

If u ∈ N+
µ , then t−(u) > tmax > 1 and this contradicts tmax < 1 on N−

µ . Then

t−(
u

‖u‖)
u

‖u‖ ∈ N−
µ .

Thus, the proof is completed.
Remark 2.5 If µ = 0, by Lemma 2.4 (i), N+

0 = ∅ and so N0 = N−
0 .

3 Palais-Smale Condition

Now we consider the limiting problem



− div(|x|−ap|∇u|p−2∇u)− λ

|u|p−2u

|x|p(a+1)
= |u|r−2u,

u ∈ W1,p
a (RN )

(3.1)

and the corresponding energy functional I∞ in W1,p
a (RN ) is defined by

I∞(u) =
1
p
‖u‖p − 1

r

∫

RN

|u|rdx. (3.2)

Proposition 3.1 For 0 6 a < N−p
p

, 0 6 λ < λ, problem (3.1) has radially symmetric
ground states

uε(x) = ε−( N−p
p −a)vε(

x

ε
), ∀ε > 0,
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satisfying ∫

RN

(|x|−ap|∇uε(x)|p − λ
|u|p

|x|p(a+1)
)dx =

∫

RN

|uε(x)|rdx = S
r

r−p

λ ,

where vε(x) = vε(|x|) is the unique radial solution of (3.1) up to a dilation. In particular,
we have

vε(1) = (
r(λ− λ)

p
)

1
r−p, (3.3)

and vε also has the following properties:

lim
ξ→0

ξa(λ)vε(ξ) = c1 > 0, lim
ξ→0

ξa(λ)+1v′ε(ξ) = c1a(λ) > 0,

lim
ξ→+∞

ξb(λ)vε(ξ) = c2 > 0, lim
ξ→+∞

ξb(λ)+1v′ε(ξ) = c2b(λ) > 0,
(3.4)

where ci (i = 1, 2) are positive constants and a(λ), b(λ) are the zeros of the function

φ(t) = (p− 1)tp − N

r
tp−1 + λ, t > 0, 0 6 λ < λ

with 0 6 a(λ) < N
r

< b(λ) < Np
(p−1)r

.
Furthermore, there exist the positive constants c3, c4 such that

c3 6 vε(x)(|x|a(λ)/δ + |x|b(λ)/δ)δ 6 c4, δ =
N

r
. (3.5)

Proof As in [19], we can prove that the limiting problem (3.1) has radially symmetric
ground states, by which Sλ can be achieved. Let u(ξ) be a radial solution to (3.1). Then we
get that

(ξN−1−ap|u′|p−2u′)′ + ξN−1(λ
up−1

ξp(a+1)
+ ur−1) = 0.

Set
δ =

N

r
, t = ln ξ, y(t) = ξδu(ξ), z(t) = ξ(1+δ)(p−1)|u′(ξ)|p−2u′(ξ).

Then we can obtain the following system




dy

dt
=δy + |z| 2−p

p−1 z,

dz

dt
=− δz − |y|r−2y − λ|y|p−2y.

The rest of the proof follows exactly the same lines as that of the limiting problem (3.1) in
[19], here we omit it.

By Proposition 3.1, we can easily derive the minimizing problem

inf
u∈N∞

I∞(u) = (
1
p
− 1

r
)S

r
r−p

λ , (3.6)

where
N∞ = {u ∈ W1,p

a (RN ) \ {0}|〈(I∞)′(u), u〉 = 0}.
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For our purpose, the functional Iµ is said to satisfy the (P.S.)c condition if any sequence
{un}n∈N ⊂ W1,p

a (RN ) such that as n →∞,

Iµ(un) → c, I ′µ(un) → 0 strongly in (W1,p
a (RN ))∗

contains a convergent subsequence in W1,p
a (RN ). Then the following proposition develops a

precise description for the (P.S.)c-sequence of Iµ.
Proposition 3.2 (i) If µ ∈ (0, L1), then Iµ has a (P.S.)α-sequence {un}n∈N ⊂ Nµ.
(ii) If µ ∈ (0, L2), then Iµ has a (P.S.)α−-sequence {un}n∈N ⊂ N−

µ .
Proof The proof is similar to the argument of Proposition 3.3 in [20].
Now, we establish the existence of a local minimizer for Iµ on Nµ.
Proposition 3.3 For µ ∈ (0, L1), the functional Iµ has a minimizer u+

µ ∈ N+
µ satisfying

(i) Iµ(u+
µ ) = α+ = α;

(ii) u+
µ is a positive solution of (1.1);

(iii) ‖u+
µ ‖ → 0 as µ → 0+.

Proof By Proposition 3.2 (i), there exists a minimizing sequence {un}n∈N ⊂ Nµ such
that

Iµ(un) = α + o(1) and I ′µ(un) = o(1) in (W1,p
a (RN ))−1, (3.7)

where o(1) → 0 as n → ∞. Since Iµ is coercive on Nµ, we get that {un} is bounded in
W1,p

a (RN ). If necessary to a subsequence, there exists u+
µ ∈ W1,p

a (RN ) such that as n →∞,





un ⇀ u+
µ weakly in W1,p

a (RN ),

un → u+
µ a.e. in RN ,

∇un → ∇u+
µ a.e. in RN ,

un

|x|a+1
⇀

u+
µ

|x|a+1
a.e. in Lp(RN ),

∫

RN

g|un|r−2unvdx →
∫

RN

g|u+
µ |r−2u+

µ vdx for all v ∈ W1,p
a (RN ).

(3.8)

Moreover, by the Egorov Theorem and Hölder inequality, we have
∫

RN

fµ|un|q−2unvdx =
∫

RN

fµ|u+
µ |q−2u+

µ vdx + o(1).

Consequently, passing to the limit in 〈I ′µ(un), v〉, by (3.7) and (3.8), we have

∫

RN

(|x|−ap|∇u+
µ |p−2∇u+

µ∇v − λ
|u+

µ |p−2u+
µ v

|x|p(a+1)
)dx

−
∫

RN

fµ|u+
µ |q−2u+

µ vdx−
∫

RN

g|u+
µ |r−2u+

µ vdx = 0

for all v ∈ W1,p
a (RN ). That is, 〈I ′µ(u+

µ ), v〉 = 0. Thus, u+
µ is a weak solution of (1.1).
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Furthermore, since un ∈ Nµ, we can deduce that
∫

RN

fµ|un|qdx =
q(r − p)
p(r − q)

‖un‖p − r · q
r − q

Iµ(un), (3.9)

which implies that

lim
n→∞

∫

RN

fµ|un|qdx =
∫

RN

fµ|u+
µ |qdx > − r · q

r − q
α > 0. (3.10)

Thus, u+
µ ∈ Nµ is a nontrival solution of (1.1).

Next, we will show, up to a subsequence, that un → u+
µ strongly in W1,p

a (RN ) and
Iµ(u+

µ ) = α. In fact, by the Fatou’s lemma, it follows that

α 6 Iµ(u+
µ ) = (

1
p
− 1

r
)‖u+

µ ‖p − (
1
q
− 1

r
)
∫

RN

fµ|u+
µ |qdx

6 lim
n→∞

inf((
1
p
− 1

r
)‖un‖p − (

1
q
− 1

r
)
∫

Ω

fµ|un|qdx)

= lim
n→∞

inf Iµ(un) = α,

which implies that Iµ(u+
µ ) = α and lim

n→∞
‖un‖p = ‖u+

µ ‖p. Standard argument shows that

un → u+
µ strongly in W1,p

a (RN ).
Moreover, we have u+

µ ∈ N+
µ . Otherwise, if u+

µ ∈ N−
µ , then by Lemma 2.2 and Lemma

2.4, there is a unique t− = 1
‖u+

µ ‖ t
−( u+

µ

‖u+
µ ‖) such that t−u+

µ ∈ N−
µ and so

0 > α+ = α = Iµ(u+
µ ) = Iµ(t−u+

µ ) = sup
t>0

Iµ(tu) > α−,

which is a contradiction. Since Iµ(u+
µ ) = Iµ(|u+

µ |) and |u+
µ | ∈ N+

µ , we may assume that u+
µ

is a nontrivial nonnegative solution of (1.1). By Harnack inequality, it follows that u+
µ > 0

in RN .
Finally, by (2.1) and the Hölder inequality, we can obtain

‖u+
µ ‖p−q < µ

r − q

r − p
‖f+‖Lq∗S

− q
p

λ ,

which implies that ‖u+
µ ‖ → 0 as µ → 0+. This completes the proof.

Let ul = u0(x+ le), for l ∈ R and e ∈ SN−1, where u0(x) is a radially symmetric positive
solution of (3.1) such that I∞(u0) = ( 1

p
− 1

r
)S

r
r−p

λ and SN−1 = {x ∈ RN ||x| = 1}. Then we
have the following result.

Lemma 3.4 (i) lim
l→0
‖ul‖p = S

r
r−p

λ uniformly in e ∈ SN−1;

(ii) lim
l→0

∫

RN

|ul|rdx = S
r

r−p

λ uniformly in e ∈ SN−1;

(iii) lim
l→0

I∞(ul) = ( 1
p
− 1

r
)S

r
r−p

λ uniformly in e ∈ SN−1.

We refer to the argument of Lemma 4.2 in He and Yang (see [21]).
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4 The Estimates of Energy

The following statement is paramount to prove our main result.
Proposition 4.1 For µ ∈ (0, L2), we have α− < α+ + ( 1

p
− 1

r
)S

r
r−p

λ .
Proof Let u+

µ ∈ N+
µ be a positive solution of (1.1) in Proposition 3.3. Then we obtain

Iµ(u+
µ + tul) =

1
p
‖u+

µ + tul‖p − 1
q

∫

RN

fµ|u+
µ + tul|qdx− 1

r

∫

RN

g|u+
µ + tul|rdx

= Iµ(u+
µ ) + I∞(tul) +

1
p
(‖u+

µ + tul‖p − ‖u+
µ ‖p − ‖tul‖p)

− 1
q

∫

RN

fµ(|u+
µ + tul|q − |u+

µ |q)dx

− 1
r

∫

RN

g(|u+
µ + tul|r − |u+

µ |r)dx +
1
r

∫

RN

tr|ul|rdx

6 Iµ(u+
µ ) + I∞(tul) +

1
p
(‖u+

µ + tul‖p − ‖u+
µ ‖p − ‖tul‖p)

−
∫

RN

fµ

{∫ tul

0

[(u+
µ + η)q−1 − (u+

µ )q−1]dη

}
dx

+
1
r

∫

RN

(1− g)tr|ul|rdx− 1
r

∫

RN

g(|u+
µ + tul|r − |u+

µ |r − tr|ul|r)dx

6 α+ + (
1
p
− 1

r
)S

r
r−p

λ +
1
p
(‖u+

µ + tul‖p − ‖u+
µ ‖p − ‖tul‖p)

+
tq

q

∫

RN

|f−||ul|qdx +
tr

r

∫

RN

(1− g1)|ul|rdx− tr

r

∫

RN

g2|ul|rdx.

(4.1)

Since
Iµ(u+

µ + tul) → Iµ(u+
µ ) = α+ < 0 as t → 0

and
Iµ(u+

µ + tul) → −∞ as t → +∞.

There exist 0 < t1 < t2 such that

Iµ(u+
µ + tul) < α+ + (

1
p
− 1

r
)S

r
r−p

λ for all t ∈ [0, t1) ∪ (t2,+∞). (4.2)

Thus we only need to show that there exists l0 > 0 such that for l > l0, we have

sup
t16t6t2

Iµ(u+
µ + tul) < α+ + (

1
p
− 1

r
)S

r
r−p

λ . (4.3)

Since u+
µ + tul → u+

µ as l → ∞, by Brézis-Lieb lemma, we can find l0 > 0 such that for
l > l0,

‖u+
µ + tul‖p − ‖u+

µ ‖p − ‖tul‖p < εl for εl > 0 small enough. (4.4)

For u, v > 0, we can remark that (u + v)r − ur − vr > 0, and so
∫

RN

g(|u+
µ + tul|r − |u+

µ |r − tr|ul|r)dx > 0. (4.5)



No. 5 Multiplicity of positive solutions for quasi-linear elliptic equations involving · · · · · · 645

From condition (A1), (A2) and (3.5), we can obtain

tq

q

∫

RN

|f−||ul|qdx 6 cf · c4
tq

q

∫

RN

|x + le|−rf (|x + le|a(λ)/δ + |x + le|b(λ)/δ)−δpdx

6 Cf

∫

|x|<l

|x + le|−rf−p·a(λ)dx + Cf

∫

|x|>l

|x + le|−rf−p·a(λ)dx

6 Cf lN
∫

|x|<1

|x + le|−rf−p·a(λ)dx + Cf

∫

|x|>l

|x + le|−rf−p·a(λ)dx

6 Cf (l + 1)N−rf−p·a(λ) for all l > 1, (4.6)
tr

r

∫

RN

(1− g1)|ul|rdx 6 cg1 · c4

∫

RN

|x + le|−rg1 (|x + le|a(λ)/δ + |x + le|b(λ)/δ)−δrdx

6 Cg1

∫

|x|<l

|x + le|−rg1−p·a(λ)dx + Cg1

∫

|x|>l

|x + le|−rg1−p·a(λ)dx

6 Cg1 l
N

∫

|x|<1

|x + le|−rg1−p·a(λ)dx + Cg1

∫

|x|>l

|x + le|−rg1−p·a(λ)dx

6 Cg1(l + 1)N−rg1−p·a(λ) for all l > 1 (4.7)

and

tr

r

∫

RN

g2|ul|rdx =
tr

r

∫

RN

g2(x− le)|uo|rdx > ( min
x∈BN (1)

ur
0(x))

∫

BN (1)

g2(x− le)dx

>
(

min
x∈BN (1)

ur
0(x)

)
cg2

∫

BN (1)

l−rg2 dx

>
(

min
x∈BN (1)

ur
0(x)

)
cg2 l

−rg2 .

(4.8)

Since 0 < rg2 < min{rf − N, rg1 − N} and t1 6 t 6 t2, by (4.1)–(4.8), we can find l0 > 0
such that

sup
t>0

Iµ(u+
µ + tul) < α+ + (

1
p
− 1

r
)S

r
r−p

λ for all l > max{l0, 1}.

In order to complete the proof of Proposition 4.1, it remains to show that there exists a
positive number t∗ such that u+

µ + t∗ul ∈ N−
µ . Let

U1 =
{

u ∈ W1,p
a (RN ) \ {0}

∣∣∣∣
1
‖u‖ t−

(
u

‖u‖

)
> 1

}
∪ {0},

U2 =
{

u ∈ W1,p
a (RN ) \ {0}

∣∣∣∣
1
‖u‖ t−

(
u

‖u‖

)
< 1

}
.

Then the manifold N−
µ divides W1,p

a (RN ) into two connected components U1 and U2, and
W1,p

a (RN ) \ N−
µ = U1 ∪ U2. For each u ∈ N+

µ , we have 1 < tmax(u) < t−(u). Since
t−(u) = 1

‖u‖ t
−( u

‖u‖), we can obtain N+
µ ⊂ U1 and so u+

µ ∈ U1.
Next we claim that there exists t0 > 0 such that u+

µ + t0ul ∈ U2. In fact, we find a

constant c > 0 such that 0 < t−( u+
µ +tul

‖u+
µ +tul‖) < c for each t > 0. If not, then we may assume
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that there exists a sequence {tn}n∈N such that tn →∞ and t−( u+
µ +tnul

‖u+
µ +tnul‖) →∞ as n →∞.

Let vn = u+
µ +tnul

‖u+
µ +tnul‖ . Since t−(vn)vn ∈ N−

µ and by the Lebesgue dominated convergence
theorem, we can deduce

∫

RN

gvr
ndx =

1
‖u+

µ + tnul‖r

∫

RN

g(u+
µ + tnul)rdx

=
1

‖u+
µ

tn
+ ul‖r

∫

RN

g(
u+

µ

tn

+ ul)rdx →

∫

RN

gur
l dx

‖ul‖r
as n →∞.

Then we have

Iµ(t−(vn)vn) =
1
p
(t−(vn))p − (t−(vn))q

q

∫

RN

fµvq
ndx− (t−(vn))r

r

∫

RN

gvr
ndx

→ −∞ as n →∞,

which contradicts the fact that Iµ is bounded below on Nµ. Let

t0 =
((

∫

RN

|ul|rdx)
p
r + 1

‖ul‖p
|cp − ‖u+

µ ‖p|
) 1

p

+ 1. (4.9)

By (4.4) and Lemma 3.4, we have, as l →∞,

‖u+
µ + t0ul‖p = ‖u+

µ ‖p + tp
0‖ul‖p + o(1) > ‖u+

µ ‖p + |cp − ‖u+
µ ‖p|+ o(1)

> cp + o(1) > (t−(
u+

µ + t0ul

‖u+
µ + t0ul‖))p + o(1).

Thus there exists l0 > 0 such that for l > l0, we get

1
‖u+

µ + t0ul‖ t−(
u+

µ + t0ul

‖u+
µ + t0ul‖) < 1

or u+
µ + t0ul ∈ U2. Define a path γ(s) = u+

µ + st0ul for s ∈ [0, 1], and so

γ(0) = u+
µ ∈ U1, γ(1) = u+

µ + t0ul ∈ U2.

By Lemma 2.4, we have 1
‖u‖ t

−( u
‖u‖) is a continuous function for u ∈ W1,p

a (RN ) \ {0} and
γ([0, 1]) is connected. Then there exists s0 ∈ (0, 1) such that u+

µ + s0t0ul ∈ N−
µ . Take

t∗ = s0t0 and this proof is completed.
Then we have the following result.
Theorem 4.2 For µ ∈ (0, L2), (1.1) has a positive solution u−µ ∈ N−

µ such that
Iµ(u−µ ) = α−.

Proof By Ekeland’s variational principle [22], there exists a minimizing sequence
{un}n∈N ⊂ N−

µ such that

Iµ(un) = α− + o(1) and I ′µ(un) = o(1) in (W1,p
a (RN ))−1.
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Since α− < α+ +( 1
p
− 1

r
)S

r
r−p

λ , by Lemma 2.3 and Proposition 3.2, there exists a subsequence
{un}n∈N and a non-zero solution u−µ ∈ N−

µ of (1.1) such that as n →∞, it holds

un → u−µ in W1,p
a (RN ).

Since Iµ(u−µ ) = Iµ(|u−µ |) and |u−µ | ∈ N−
µ , u−µ is a positive solution of (1.1). We finish the

proof.

5 Concentration Behavior

In this section, we discuss the concentration behavior of solutions to (1.1) so that we
can get the proof of Theorem 1.1 (ii).

Lemma 5.1 We have

inf
u∈N0

I0(u) = inf
u∈N∞

I∞(u) = (
1
p
− 1

r
)S

r
r−p

λ . (5.1)

Furthermore, (1.1) does not admit any solution w0 ∈ W1,p
a (RN ) such that I0(w0) = inf

u∈N0

I0(u).

Proof By Lemma 2.4, there exists the unique t−(ul) > 0 such that t−(ul)ul ∈ N0 for
all l > 0, that is,

‖t−(ul)ul‖p =
∫

RN

f−|t−(ul)ul|qdx +
∫

RN

g|t−(ul)ul|rdx. (5.2)

Since

‖ul‖p =
∫

RN

|ul|rdx = S
r

r−p

λ for all l > 0 (5.3)

and ∫

RN

f−|ul|qdx → 0 and
∫

RN

(1− g)|ul|rdx → 0 as l →∞. (5.4)

By (5.2)–(5.4), we have t−(ul) → 1 as l →∞. Thus

lim
l→∞

I0(t−(ul)ul) = lim
l→∞

I∞(t−(ul)ul) = (
1
p
− 1

r
)S

r
r−p

λ . (5.5)

Then we can obtain

inf
u∈N0

I0(u) 6 (
1
p
− 1

r
)S

r
r−p

λ = inf
u∈N∞

I∞(u). (5.6)

For u ∈ N0, by Lemma 2.4 (i),

I0(u) = I0(t−(
u

‖u‖)
u

‖u‖) = sup
t>0

I(tu). (5.7)

Moreover, there exists a unique t∞ > 0 such that t∞u ∈ N∞. Thus,

I0(u) = I0(t∞u) > I∞(t∞u) > (
1
p
− 1

r
)S

r
r−p

λ (5.8)
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and so inf
u∈N0

I0(u) > ( 1
p
− 1

r
)S

r
r−p

λ . Then we have

inf
u∈N0

I0(u) = inf
u∈N∞

I∞(u) = (
1
p
− 1

r
)S

r
r−p

λ . (5.9)

In order to show that (1.1) does not admit any solution w0 such that I0(w0) = inf
u∈N0

I0(u),

we argue by the contrary. By Lemma 2.4 (i), we have I0(w0) = sup
t>0

I0(tw0). Moreover, there

exists a unique tw0 > 0 such that tw0w0 ∈ N∞. Thus we obtain

(
1
p
− 1

r
)S

r
r−p

λ = inf
u∈N0

I0(u) = I0(w0) = I∞(tw0w0)− 1
q

∫

RN

f−|tw0w0|qdx, (5.10)

and this implies
∫

RN

f−|w0|qdx = 0, that is, w0 ≡ 0 in {x ∈ RN|f−(x) 6= 0} from (A1). Then

we can obtain
(
1
p
− 1

r
)S

r
r−p

λ = inf
u∈N∞

I∞(u) = I∞(tw0w0).

By the Lagrange multiplier and the maximum principle, we may assume that tw0w0 is a
positive solution of (1.1). This contradiction completes the proof.

Lemma 5.2 Assume that {un} is a minimizing sequence in N0 for I0. Then

(i)
∫

RN

f−|un|qdx = o(1);

(ii)
∫

RN

(1− g)|un|rdx = o(1).

Furthermore, {un} is a (P.S.)
( 1

p− 1
r )S

r
r−p
λ

-sequence in W1,p
a (RN ) for I∞.

Proof For each n, there exists a unique tn > 0 such that tnun ∈ N∞, that is,

tp
n‖un‖p = tr

n

∫

RN

|un|rdx.

By Lemma 2.4 (i), we have

I0(un) > I0(tnun) = I∞(tnun)− tq
n

q

∫

RN

f−|un|qdx +
tr
n

r

∫

RN

(1− g)|un|rdx

> (
1
p
− 1

r
)S

r
r−p

λ − tq
n

q

∫

RN

f−|un|qdx +
tr
n

r

∫

RN

(1− g)|un|rdx.

Since I0(un) = ( 1
p
− 1

r
)S

r
r−p

λ + o(1) from Lemma 5.1, we have, as n →∞,

tq
n

q

∫

RN

f−|un|qdx = o(1)

and
tr
n

r

∫

RN

(1− g)|un|rdx = o(1).

Next, we will show that there exists M > 0, c0 > 0 such that tn > c0 for n > M . Suppose
the contrary. Then we may assume tn → 0 as n → ∞. As in the proof of Lemma 2.3, we
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know that ‖un‖ is uniformly bounded and so ‖tnun‖ → 0 or I∞(tnun) → 0. This contradicts
the fact I∞(tnun) > ( 1

p
− 1

r
)S

r
r−p

λ > 0 from Lemma 5.1. Then we have
∫

RN

f−|un|qdx = o(1)

and ∫

RN

(1− g)|un|rdx = o(1).

This implies

‖un‖p =
∫

RN

|un|rdx + o(1)

and so
I∞(un) = (

1
p
− 1

r
)S

r
r−p

λ + o(1),

that is, {un} is a (P.S.)
( 1

p− 1
r )S

r
r−p
λ

-sequence in W1,p
a (RN ) for I∞. This completes the proof.

Let
N−

µ (d) = {u ∈ N−
µ |Iµ(u) 6 (

1
p
− 1

r
)S

r
r−p

λ + d} for d < 0,

be the filtration of the Nehari manifold Nµ. Then we have the following lemmas.
Lemma 5.3 There exists d0 < 0 such that for u ∈ N0(d0), we have

∫

RN

x

|x|1−ap
(|x|−ap|∇u|p − λ

|x|p(a+1)
up)dx 6= 0.

Proof Suppose the contrary. We may assume that there exists a sequence {un}n∈N ⊂
N0 such that I0(un) = ( 1

p
− 1

r
)S

r
r−p

λ + o(1) and
∫

RN

x

|x|1−ap
(|x|1−ap|∇un|p− λ

|x|p(a+1)
up

n)dx =

o(1). By Proposition 3.2 and the concentration-compactness principle (see [23, Theorem
4.1]), there exists a sequence {xn}n∈N ⊂ RN such that

‖un(x)− u0(x− xn)‖ → 0 as n →∞. (5.11)

Now we will show that |xn| → ∞ as n →∞ by contradiction. We may assume that {xn} is
bounded and xn → x∗ for some x∗ ∈ RN . Then by (5.11),

∫

RN

f−|un|qdx =
∫

RN

f−(x)|u0(x− xn)|qdx + o(1)

=
∫

RN

f−(x + x∗)|u0(x)|qdx + o(1),

this contradicts the result of Lemma 5.2 (i). Hence we may assume xn

|xn| → e as n → ∞,
where e ∈ SN−1. By the Lebesgue dominated convergence theorem, we have

o(1) =
∫

RN

x

|x|1−ap
(|x1−ap||∇un|p − λ

|x|−ap
|un|p)dx

=
∫

RN

x + xn

|x + xn|1−ap
(|x + xn|−ap|∇u0|p − λ

|x + xn|p(a+1)
|u0|p)dx

=
∫

RN

e|∇u0|pdx + o(1).
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This contradiction completes the proof.
By (2.1) and Lemma 2.4 (i), for each u ∈ N−

µ , there exists the unique t−0 (u) > 0 such
that t−0 (u)u ∈ N0 and t−0 (u) > tmax(u) > 0. Then we have the following result.

Lemma 5.4 Let

T =
r − q

p− q
(1 +

r − p

r − q
).

For each µ ∈ (0, L2) and u ∈ N−
µ (α+), we have t−0 (u) < T

1
r−p .

Proof For u ∈ N−
µ (α+), we distinguish from the following distinctive cases.

Case (i) t−0 (u) < 1. Since T > 1, we have t−0 (u) < 1 < T
1

r−p .
Case (ii) t−0 (u) > 1. Since

(t−0 (u))r

∫

RN

g|u|rdx = (t−0 (u))p‖u‖p − (t−0 (u))q

∫

RN

f−|u|qdx

6 (t−0 (u))p(‖u‖p +
∫

RN

|f−||u|qdx)

and by Lemma 2.2 (iii), we have

(t−0 (u))r−p >
‖u‖p +

∫

RN

|f−||u|qdx
∫

RN

g|u|rdx

. (5.12)

Moreover, from the argument in the proof of Lemma 2.2, we have

‖u‖ 6 r − q

r − p

∫

RN

g|u|rdx, (5.13)

‖u‖ > r − q

r − p

∫

RN

|f−||u|qdx. (5.14)

Thus, by (5.12)–(5.14), we have

(t0(u))r−p 6 ‖u‖p

∫

RN

g|u|rdx

· 1
‖u‖p

(‖u‖p +
∫

RN

|f−||u|qdx)

6 r − q

p− q
(1 +

∫

RN

|f−||u|qdx

‖u‖p
) 6 r − q

p− q
(1 +

r − p

r − q
).

This completes the proof.
Lemma 5.5 There exists µ0 ∈ (0, L2) such that for each µ ∈ (0, µ0) and u ∈ N−

µ (α+),

∫

RN

x

|x|1−ap
(|x|−ap|∇u|p − λ

|u|p
|x|p(a+1)

)dx 6= 0.
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Proof For u ∈ N−
µ (α+), by Lemma 2.4 (i), there exists t−0 (u) > 0 such that t−0 (u)u ∈

N0. Moreover, by Lemma 5.4 and the Hölder inequality and Sobolev embedding theorem,
we have

Iµ(u) = sup
t>0

Iµ(tu) > Iµ(t−0 (u)u) = I0(t−0 (u)u)− µ(t−0 (u))q

q

∫

RN

f+|u|qdx

or so

I0(t−0 (u)u) 6 Iµ(u) +
µ(t−0 (u))q

q

∫

RN

f+|u|qdx

< α+ + (
1
p
− 1

r
)S

r
r−p

λ +
µT

q
r−p

q
‖f+‖Lq∗S

− q
p

λ ‖u‖q.

Since Iµ(u) < α+ + ( 1
p
− 1

r
)S

r
r−p

λ < ( 1
p
− 1

r
)S

r
r−p

λ , by Lemma 2.1, for µ ∈ (0, L2) and
u ∈ N−

µ (α+), there exists c∗ independent of µ such that ‖u‖ 6 c∗. Thus,

I0(t−0 (u)u) < α+ + (
1
p
− 1

r
)S

r
r−p

λ +
µT

q
r−p

q
‖f+‖Lq∗S

− q
p

λ cq
∗.

Then by Lemma 5.3, we have
∫

RN

x

|x|1−ap
(|x|−ap|∇(t−0 (u)u)|p − λ

|x|p(a+1)
|t−0 (u)u|p)dx 6= 0

and this implies
∫

RN

x

|x|1−ap
(|x|−ap|∇u|p − λ

|x|p(a+1)
|u|p)dx 6= 0 for u ∈ N−

µ (α+).

The proof is completed.

6 Proof of Theorem 1.1

In this section, we will follow an idea in [24] to prove our main result. For c ∈ R+, we
denote

[Iµ 6 c] = {u ∈ N−
µ |u > 0, Iµ(u) 6 c}.

Then we try to show that for a sufficiently small σ > 0, we have

cat([Iµ 6 α+ + (
1
p
− 1

r
)S

r
r−p

λ − σ]) > 2 (6.1)

Here‘cat’means the Lusternik-Schnirelmann category [15]. First, let us recall its definition.
Definition 6.1 A non-empty, closed subset Y is contractible in a topological space X

if there exists h ∈ C([0, 1]× Y, X) such that for some x0 ∈ X,

h(0, x) = x, h(1, x) = x0.

Definition 6.2 Let Y1, Y2, · · · , Yk be closed subsets of a topological space X. The
category of X is the least integer k such that Yj is contractible in X for all j and ∪k

j=1Yj = X,
denoted by cat(X).
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When there do not exist finitely many closed subsets Y1, Y2, · · · , Yk ⊂ X such that Yj

is contractible in X for all j and
k⋃

j=1

Yj = X, we denote cat(X) = ∞. We need the following

lemmas (see Theorem 2.3 in [25] and Lemma 2.5 in [24]).
Lemma 6.3 Let X be a Hilbert manifold and F ∈ C1(X,R). Assume that there are

c0 ∈ R and k ∈ N such that
(i) F satisfies the Palais-Smale condition for energy level c 6 c0;
(ii) cat({x ∈ X|F (x) 6 c0}) > k.

Then F has at least k critical points in {x ∈ X|F (x) 6 c0}.
Lemma 6.4 Let X be a topological space. Assume that there are ϕ ∈ C(SN−1,X)

and ψ ∈ C(X,SN−1) such that ψ ◦ ϕ is homotopic to the identity map of SN−1, that is,
there exists h ∈ C([0, 1] × SN−1,SN−1) such that h(0, x) = (ψ ◦ ϕ)(x), h(1, x) = x. Then
cat(X) > 2.

For l > l0, we define a map ϕµ : SN−1 → W1,p
a (RN ) by

ϕµ(e)(x) = u+
µ + t∗ul for e ∈ SN−1,

where u+
µ + t∗ul is as in the proof of Proposition 4.1. Then we have the following result.

Lemma 6.5 There exists a sequence {σl} ⊂ R+ with σl → 0 as l →∞ such that

ϕµ(SN−1) ⊂ [Iµ 6 α+ + (
1
p
− 1

r
)S

r
r−p

λ − σl].

Proof By Proposition 4.1, for l > l0, we have u+
µ + t∗ul ∈ N−

µ and

sup
t>0

Iµ(u+
µ + tul) < α+ + (

1
p
− 1

r
)S

r
r−p

λ uniformly in e ∈ SN−1.

Since ϕµ(SN−1) is compact and Iµ(u+
µ + t∗ul) 6 α+ +( 1

p
− 1

r
)S

r
r−p

λ −σl, the conclusion holds.

From Lemma 5.5, we define a barycenter map, ψµ : [Iµ < α+ + ( 1
p
− 1

r
)S

r
r−p

λ ] → SN−1

by

ψµ(u) =

∫

RN

x

|x|1−ap
(|x|−ap|∇u|p − λ

|u|p
|x|p(a+1)

)dx

|
∫

RN

x

|x|1−ap
(|x−ap||∇u|p − λ

|u|p
|x|p(a+1)

)dx|
.

Then we have the following result.
Lemma 6.6 Let µ0 be as in Lemma 5.5. Then for µ ∈ (0, µ0), there exists l∗ > l0 such

that the map
ψµ ◦ ϕµ : SN−1 → SN−1 for l > l∗

is homotopic to the identity operator.
Proof Denote

supp ψµ = {u ∈ W1,p
a (RN )\{0}|

∫

RN

x

|x|(|∇u|p − λ
|u|p
|x|p )dx 6= 0}



No. 5 Multiplicity of positive solutions for quasi-linear elliptic equations involving · · · · · · 653

and define ψ̃µ : supp ψµ → SN−1 by

ψ̃µ(u) =

∫

RN

x

|x|(|∇u|p − λ
|u|p
|x|p )dx

|
∫

RN

x

|x|(|∇u|p − λ
|u|p
|x|p )dx|

as an extension of ψµ. Since ul ∈ supp ψµ for all e ∈ SN−1 and large enough l, we may
assume γ : [s1, s2] → SN−1 is a regular geodesic between ψµ(ul) and ψ̃µ(ϕµ(e)) such that

γ(s1) = ψµ(ul), γ(s2) = ψ̃µ(ϕµ(e)).

By an argument similar to Lemma 5.3, there exists l∗ > l0 such that

u0(x +
l

2(1− θ)
e) ∈ supp ψµ

for all e ∈ SN−1, l > l∗ and θ ∈ [ 1
2
, 1). We define

hl(θ, e) : [0, 1]× SN−1 → SN−1

by

hl(θ, e) =





γ(2θ(s1 − s2) + s2) for θ ∈ [0,
1
2
),

ψ̃µ(u0(x +
l

2(1− θ)
e)) for θ ∈ [

1
2
, 1),

e for θ = 1.

Then hl(0, e) = ψ̃µ(ϕµ(e)) and hl(1, e) = e. By the standard regularity, we have hl(θ, e) ∈
C(RN ).

Next, we will show that lim
θ→1−

hl(θ, e) = e and lim
θ→ 1

2
−

hl(θ, e) = ψ̃µ(ul).

(i) lim
θ→1−

hl(θ, e) = e, since

∫

RN

x

|x|(|∇u0(x +
l

2(1− θ)
e)|p − λ

|x + l
2(1−θ)

e|p up
0(x +

l

2(1− θ)
e))dx

=
∫

RN

x + l
2(1−θ)

e

|x + l
2(1−θ)

e|(|∇u0(x)|p − λ

|x + l
2(1−θ)

e|p up
0(x))dx

= e

∫

RN

|∇u0|pdx + o(1)

as θ → 1−.
(ii) lim

θ→ 1
2
−

hl(θ, e) = ψ̃µ(ul). Since ψ̃µ ∈ C(supp ψµ,SN−1), then we have

hl(θ, e) ∈ C([0, 1]× SN−1,SN−1)
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and
hl(0, e) = ψµ(ϕµ(e)), hl(1, e) = e,

for all e ∈ SN−1 and l > l∗. This completes the proof.
Lemma 6.7 For µ ∈ (0, µ0) and l > l∗, the energy functional Iµ admits at least two

critical points in [Iµ < α+ + ( 1
p
− 1

r
)S

r
r−p

λ ].
Proof It is easy to deduce from Lemmas 6.3, 6.4, 6.6 and Proposition 3.2.
Proof of Theorem 1.1 Now we can complete the proof of Theorem 1.1
(i) by Proposition 3.3 and Theorem 4.2;
(ii) from Proposition 3.3 and Lemma 6.7, (1.1) has at least three positive solutions

u+
µ , u−1 , u−2 , where u+

µ ∈ N+
µ and u−i ∈ N−

µ for i = 1, 2.
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一类具有凸凹非线性项与Sobolev-Hardy次临界指标的椭圆方程

杜 明, 刘晓春

(武汉大学数学与统计学院, 湖北武汉 430072)

摘要: 本文研究了一类具有凸凹非线性项与Sobolev-Hardy次临界指标的椭圆方程. 利用Lusternik-

Schnirelmann畴数理论以及Nehari流形结构与纤维丛映射的关系，改善了方程在Sobolev空间W1,p
a (RN )中

正解的存在性与多重性.
关键词: 次临界Sobolev-Hardy指标; Nehari流形; 变号位势; 凸凹非线性项
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