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1 Introduction
In this paper, we consider the following equation

|uP~?u

— div(|:r|_ap|Vu|p_2Vu) - A = f#(x)|u|q_2u + g(x)|u\’”_2u,

|z|platL) (1.1)
u e WoP(RY),

WhereN23,1<p<N,0<a<%, 1<q<p<r<p*[a}:%,andp*[a} is the
critical Sobolev-Hardy exponent. The parameter ) satisfies 0 < A < \ = (% —a)?, u =0,
and W2P(RY) will be explained later. The weight functions f,(z) = pfi(z) + f-(z) and
g(x) = g1(x) + go2(x) satisfy the following conditions

(Ay) f € LT (RN)(¢" = ) with fi(z) = max{£f(z),0} # 0 and there exists a
positive constant 7, such that

fo(x) = —cylx|™™  for some c; > 0 and for all z € RY;
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(Ay) g € C(RY) with gy = max g(x) and there exists constants r,,, 74, with 0 < rg, <
min{r; — N,r, — N} such that

1> gi(x) > 1—cyla| " for some ¢,y < 1 and for all z € RY

and

g2(z) = cg,|| 72 for some ¢y, > 0 and for all z € RY.

Such kind of problem arised from various fields of geometry and physics and was widely
used in the applied sciences. We refer to [1-3] for details on the description about the
background.

Elliptic problems on bounded domains involving concave-convex nonlinearity were stud-

ied extensively since Ambrosetti, Brezis and Cerami [4] considered the following equation

— Au = putt 4 uP! in €,
u>0 in €, (1.2)
u € Hy(Q),

where 1 < ¢ < 2 < p < 2%, > 0. They found that there exists o > 0 such that (1.2)
admits at least two positive solutions for pu € (0, ), a positive solution for p = po and
no positive solution exists for pu > po (see also Ambrosetti, Azorero and Peral [5, 6] for
more references therein). In recent years, several authors studied semilinear or quasilinear
problems with the help of Nehari manifold (see [7-9]). In particular, Lin [9] studied the
following critical problem

2*(a,b)—2u
L e 2\ (o),

u o |u
|x|2(a+l) - |x’b2*(a,b

u=0 on 0f),

— div(|z|**Vu) — A

(1.3)

where Q0 C RY(N > 3) is a bounded domain with smooth boundary, 0 < a < %, a<b<
a+1,2*(a,b) = %, 0< A< A= W, @ >0, and 1 < ¢ < 2. He found that
(1.3) admits at least two positive and one sign-changing solutions.

Actually, Fan and Liu [10] established multiple positive solutions of standard p-Laplacian
elliptic equations without Hardy term on a bounded domain Q in R". Some other theorems
for p-Laplacian elliptic equations without Hardy term can be found in [11, 12]. Hsu and Lin

[13] studied the following critical problem via generalized Mountain Pass Theorem [14]

PP JufPT P2y |ul"*u :
_ U in Q
[aplet D (@) T ] (ad) L (14

u=0 on 0%,

— div(|z| " |Vul|P~*Vu) — A

where a < b,d < a+ 1, p*(a,b) = %
found that (1.4) admits at least two positive solutions.

is the critical Sobolev-Hardy exponent. They
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However, little is done on RY for the operator —div(|z|~®|V - [P72V") — )\‘gl"‘:(% in-
volving the concave-convex nonlinearity. Since the embedding is not compact on RV and
the weight functions f and g are sign-changing, we will discuss the concentration behavior
of solutions on the corresponding Nehari manifold to overcome these difficulties. Moreover,
we get some improvement on multiplicity of positive solutions via the theory of Lusternik-
Schnirelmann category (see [15]).

Throughout our paper, we denote by W1?(RY) the completion of C5°(RY) with respect

to the standard norm (/ |z|~%|VulPdz)>. The function u € Wh?(RY) is said to be a

R
solution of problem (1.1) if u satisfies
lu[P~2uv
o)

/ (|z|~*?|Vu|P~>VuVv — A — fulu|f?uv — glu|"Puv)dz = 0 (1.5)
RN

for all v € WLP(RY). It is well known that the nontrivial solution of problem (1.1) is

equivalent to the corresponding nonzero critical point of the energy functional

1 » u .
IM(u)_p/ (=" Fup = A |p(a+1 / £ |u|qu—/ glulrdz.  (1.6)
RN

Then I, (u) is well-defined on WL?(RY) and belongs to C*(W}?(RY),R).
Problem (1.1) is related to well-known Caffarelli-Kohn-Nirenberg inequality in [16]

p*(a,b) P (a)
L —ap P o) N
</RN o @D dx> < C’/RN |z| 7| Vu|Pdz, Yue C(RY). (1.7)
If b=a+ 1, then p*(a,b) = p and the following Hardy inequality holds [17]
N <L [ e vrds, u e oRY) (1.8)
RN |:I,“p(a+1) DY RN ’ 0 ’ .

where \ = (% — a)? is the best Hardy constant. Consequently, for A < A, we endow the
space W1P(RY) with the following norm

|ul?

el = Nl ey = ( / M=Vl = A ), (1.9)

which is equivalent to the usual norm ( / ||~ |VulPdz) .
RN
We get our main result as follows.

Theorem 1.1 Suppose that the functions f and g satisfy condition (A;) and (As). Let

a(r—p\( p—a " S’
L, =2 P W 1.10
: P(T—Q><90(T—Q)> TARE (1.10)

where Sy is the best Sobolev constant for the embedding of WL?(RY) into L"(RY) and
defined by

p
Svi= b P
weW5P (RN)\{0} (/ u|"dz)*

RN

(1.11)
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Then

(i) for u € (0,Ly), (1.1) has at least two positive solutions in W?(RY) corresponding
to negative least energy;

(ii) there exists pug € (0, Ly) such that for p € (0, pg), (1.1) has at least three positive
solutions in W!?(R¥Y) including two with positive energy.

The paper is organized as follows: in Sections 2—4, based on some related preliminaries,
we develop the description of Palais-Smale condition and the estimate of corresponding
energy functional I,,; in Section 5, we discuss the concentration behavior of solutions on

Nehari manifold; in Section 6, we complete the proof of Theorem 1.1.

2 Preliminaries

Since the energy functional I, in (1.6) is unbounded below on W?(RY), we consider

the functional on Nehari manifold
p={u € WP(RY)\ {0} | {I},(u), u) = 0}.
Note that IV, contains all nonzero solutions of (1.1) and u € N,, if and only if

Jul? - / folultdz — / gluldz = 0.
RN RN

Lemma 2.1 The energy functional I, is coercive and bounded below on N ,.
Proof For v € N,, by the Holder inequality and Sobolev embedding theorem, we can

) =2l =1 [ e =1 [ glufda
1
= (-t (G-1) [ flutae
p
1 1 1 1 7
> (3= 3 )0t = (5= )l 3
>

—Cpv-,

deduce

where C'is a positive constant depending on N, ¢, Sy and || f1|| .+ This completes the proof.
Define

W) = () = ol = [ fluftda = [ glupd.
Then for u € N, we have
W) <ol =a [ fuluftds—r [ glulds
~G=alul’ = =a) [ olulds (2.1)
==l = @=r) [ fylultda
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As in [18], we divide N, into three parts

Nf = {ue N, | (¥'(u),u) > 0,
Ny ={u€ N, | (¥'(u),u) =0},
N, ={ue N, | (¥'(u),u) <0}.

Then we have the following result.

Lemma 2.2 (i) If u € N, then / fu(x)u|?dz > 0.
RN

no
(ii) If u € N, then / Ju(x)|u|?dz > 0 and / g(z)|ul"dx > 0.
RN RN

(iii) If w € N, then / g(x)|u|"dx > 0.

R
Proof By (2.1) we can easily derive these results.
Set L, = (::5) <ggIZT_—qq)) ”fjH;q* and it is easy to see L, = %Ll, where Ly is defined
in (1.10). We define
a= inf I,(u), o= inf I,(u) and o = inf I,(u).
u€EN, uEN}T uEN,,

Then the following lemma is essential for the main result.

Lemma 2.3 (i) For all pz € (0, L), we have N =) and a* < 0.

(ii) If p < Lo, then we have o~ > ¢ for some ¢y > 0. In particular, uienz\f;u I,(u) = ot
for all 4 € (0, Ly).

Proof (i) Suppose the contrary. We may assume that there exists u, € (0, L) such
that NV 3* # (). Thus, for each u € N, 3*, by the Holder and Sobolev inequalities, we can obtain

0= (W(w),u) = (p— P)lull” — (q— ) / fo Jultdz, (2.2)
RN
that is,

i tdy < —— 2 -3 ull 2.3
Jul r_p/Rme e < T ol 55 (2.3)

and so \
1 ;ﬂ”u”pwi. (2.4)

e TR

But (2.1) implies that

(- @)l = (r — q) / glul"dz < golr — @)llull"S; *
RN

which means
rP—q

e > <HS§) (2.5)

go(r —q)
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Combined (2.4) and (2.5), we have

b—q

P—q 1.7‘71)_'_
(=) () S
r—q 90(7"—61) ||f+HLq*

(=) () i -
r—q 90(7" - (I) Hf+||La*

This contradicts to . € (0,Ly). Therefore, N) = ) and N, = N;F UN, for u € (0, L).
Then for v € N,f, by Lemma 2.2, we get

nw= (5= )= (3 -1) [ suras

SIS

WV

[l

1 1 —
< ( - ) L[ e
p q r RN
and so
at = inf I,(u)<0. (2.6)
uEN;r

(ii) Let w € N . By (2.1) and the Sobolev inequality, we have

(- @l < (r— ) / glul"de < go(r — q)llul"S; *
RN
or

P—q i\
—5y . 2.7
ol > (=257 21)
Then for p € (0, Ly), we have

= (5= =(2-1) [ sduirae

1 1 1 1 _a
= (3= e = (5= 2l 53l +

P r

1 1 1 1\gq -4
> ( - ) [[ul” = < - > =La[| fllpae Sy " lull? + co
p T r)p

q

> Co,

1 1 _a 1 1
co = ( - >u||f+||m*5x "l = ( - ) / fululdz > 0.
q T qa T RN

This implies, for g € (0, Ly), a™ < 0 < ¢y < a~. The proof is completed.

where

Now we introduce the following function m, : R™ — R in the form

my(t) = P79 |u||P — "¢ /N glu|"dz for t > 0.
R
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Clearly, tu € N, if and only if m,(t) = / fu(x)|u|?dz, and
RN

my(t) = (p— " Hul? — (r —g)t" " / g(x)lul"d. (2.8)

RN
It is obvious that if tu € N, then t"'m/,(t) = (¥'(tu),tu). Hence, tu € N,F(or N;) if and
only if m/,(t) > 0 (or < 0).
Suppose u € WLP(RY)\ {0}. Then by (2.8), m, admits a unique critical point at

t = tmax, where
_1
— p T—p
—_— < ®—a)lull ) S0,
(r

_g) / glul dz
]RN

and m, strictly increases on (0, tyax) and decreases on (tpax, 00) with lim m,(t) = —oo.

t—oo

Furthermore, since p € (0, L;), we have

) = (0= (gl N [,
=) [ slulds =) [ sl S

=1 p(r—q) %
_ <p—q) S B (p—q) [l
r—gq (/ p—g r—gq (/
R R

p(r—q)
T—p

glul"da) = glul"da)"=
N N
T el N
r=p\(pP—q\"" uf” o
:HUH(](T_‘J)(T_‘J) ( >
/ glul"dx
RN
L =t (p—a\ (1 —p /
> = LS Jul?d
> gkt (220) (522 [ puras

>/ fulu|tda.
RN

Thus, we have the following lemma.

Lemma 2.4 For each u € WXP(RY)\ {0}, we have
(i) if / fulu|%dxz < 0, then there exists a unique t~ = ¢~ (u) > tmax such that t-u €
RN
N, , and

I,(t"u) =sup I, (tu); (2.9)
20

(ii) if fulul?dz > 0, then there exist unique 0 < t* = t*(u) < tmax <t~ such that
RN
ttfue Nf, t“ue N, and

I(ttu) = inf  I,(tu), I,(t"u) = sup I,(tu); (2.10)

0<t<tmax t>t+

(iii) ¢~ (u) : WLP(RM)\ {0} — R* is continuous;
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(iv) Ny ={ue Wer(RY)\ {0} | ropt™ () = 13-
Proof (i) The equation m,(t) = fulu|?dx admits a unique solution ¢t~ > .« and
RN
my, (t7) < 0. Thus t~u € N, and (2.9) holds by Lemma 2.3.
(ii) The equation m,(t) = / fulu|?dz admits distinctive solutions ¢+ < tpax < 7
RN
such that m/,(t*) > 0 and m/,(t”) < 0, and then we have t*u € N and t"u € N . Thus
(2.10) holds by Lemma 2.3 and Lemma 2.4 (i).
(iii) By the uniqueness and extremal property of ¢t~ (u), we have ¢~ (u) is a continuous
function for u € WLP(RN)\ {0}.
(iv) For w € N, let v = pin. By (i) and (ii), there is a unique ¢~ (v) > 0 such that
t~(v)v € N or X
u
t (—)—Fu €N, .
el ] g

Since (i) u € N7, we have t_(m)ﬁ =1, and this implies

Npc{ue“QWWW\WHﬁmtwa)=1}

On the other hand, let u € WLP(RY)\ {0} such that

it—(i) -1

(2

Ifue N:[, then ¢~ (u) > tyax > 1 and this contradicts tya < 1 on N. Then
u o

t7(—)— EN,.

[l ” ]
Thus, the proof is completed.
Remark 2.5 If = 0, by Lemma 2.4 (i), Nj” = 0 and so Ny = N, .
3 Palais-Smale Condition

Now we consider the limiting problem

|uP~?u

— div(|z| " |Vul|P~2Vu) — A

= |u|r—2u’
|z|plat1) (3.1)

u € WP (RY)

and the corresponding energy functional 1°° in WLP(RY) is defined by
oo 1 1 T
e =l [ Julrd, (32
p T JrN

Proposition 3.1 For 0 < a < %, 0 < A < A, problem (3.1) has radially symmetric

ground states

ue(z) = e _a)ve(f), Ve > 0,
€
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satisfying
|ul”

(e~ V@) P = Ay ) / ue(w)dw = 57,

where v () = v.(]z|) is the unique radial solution of (3.1) up to a dilation. In particular,

RN

we have
—)7, (3.3)

and v, also has the following properties:

lim &M (§) =1 >0, lim &V T(€) = cra(A) > 0

(3.4)
gllm gb()\ (§> =cCy > 07 hm 5 M+ /(g) = CQb()‘) > Oa
+
where ¢; (i = 1,2) are positive constants and a(X), b(\) are the zeros of the function
N —
p(t)=(p—1tF — =" 14X, £>0, 0<A<A
r
with 0 < a(\) < & < b( gy
Furthermore, there exist the positive constants cs, ¢4 such that
a(N)/s b(A) /816 _N
c3 < ve(x)(|x] + |x] Y <y, 6= — (3.5)

Proof As in [19], we can prove that the limiting problem (3.1) has radially symmetric
ground states, by which Sy can be achieved. Let u(§) be a radial solution to (3.1). Then we

get that
pfl

(§N 1— aplu/|p 2u/) +£N 1( +UT_1):O.

gplatl)
Set
0=—, t=Ig y(t) = &u(€), 2(t) = PV PP ().

Then we can obtain the following system

d —p
dfzt/ :5y+ |Z|i_1zv
dz
— 5 _ r—2, )\ p—2 .
I 2=yl Ty = AlylP 7y

The rest of the proof follows exactly the same lines as that of the limiting problem (3.1) in
[19], here we omit it.
By Proposition 3.1, we can easily derive the minimizing problem

inf Io(u) = (& — %)Sﬁ, (3.6)

ue N> p

where

N = {u € WP (RY)\ {0}{(I*)'(u),u) = 0}.
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For our purpose, the functional I, is said to satisfy the (P.S.). condition if any sequence
{tn tnen € WLEP(RY) such that as n — oo,

Iﬂ(un) — G I;L(un) —0 StI‘ODgly in (Wflzm(RN))*

contains a convergent subsequence in W1?(RY). Then the following proposition develops a
precise description for the (P.S.).-sequence of I,,.

Proposition 3.2 (i) If 4 € (0, L), then I, has a (P.S.),-sequence {u, }nen C N,,.

(ii) If p € (0, Lg), then I, has a (P.S.),--sequence {u, }nen C N, .

Proof The proof is similar to the argument of Proposition 3.3 in [20].

Now, we establish the existence of a local minimizer for I, on N,.

Proposition 3.3 For p € (0, Ly ), the functional I, has a minimizer u,; € N, satisfying

() () = ot = o

(ii) u; is a positive solution of (1.1);

(i) [lufl — 0 as p— 0F.

Proof By Proposition 3.2 (i), there exists a minimizing sequence {u,},en C N, such
that

I,(u,) =a+o(1) and IL(un) =o(1) in (WLP(RNM))~1 (3.7)

where o(1) — 0 as n — oo. Since I, is coercive on N, we get that {u,} is bounded in

WLP(RN). If necessary to a subsequence, there exists ut € WLP(RY) such that as n — oo,

Up — uf weakly in WEP(RY),
Up — U a.e. in RY,
Vu, — Vu:[ a.e. in RY,
ot (58)

: N
e - FED a.e. in LP(R"Y),

/ glun| " ?u,vdr — / gluf " ufvde  for all v € WyP(RY).
RN RN
Moreover, by the Egorov Theorem and Holder inequality, we have

/ fulun " 2upvdz _/ fu|u:|q’2u3vdx+o(1).
RN RN

Consequently, passing to the limit in (I}, (u,),v), by (3.7) and (3.8), we have

L
[l

- +1p—2, +
/RN(|:L‘| PIVu; [PV, Vo — A
-2, + +ir—2, + _
— /RN fulwy " " u vdx — /]RN glu, " “uyvdr =0

for all v € WL P(RN). That is, (I}, (u}),v) = 0. Thus, u} is a weak solution of (1.1).
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Furthermore, since u,, € N,, we can deduce that

[ fulunltds = 5= = L), (39

which implies that
. " r-q
i [ fululde = [ fluflde > -2 a0 (3.10)
n—o JrN RN r—q

Thus, u} € N, is a nontrival solution of (1.1).
Next, we will show, up to a subsequence, that u, — u} strongly in WLP(RY) and
I,(u}) = . In fact, by the Fatou’s lemma, it follows that

1 1 1
o < Lu) = G = Dl = (= / Fules

n—oo

1 1
< lim inf((C = =) Jual” — (* - - /fu|un ‘dx)
D

= lim inf I,(u,) = ¢,

n—oo

which implies that I,(u}) = a and lim [lu,|[” = [[u}|P. Standard argument shows that
U, — uf strongly in WiP(RY).
Moreover, we have wf € NF. Otherwise, if u} € N, then by Lemma 2.2 and Lemma

+
1 u —a+ —
Hu+\|t Hug\l) such that t"u,; € N and so

2.4, there is a unique £~

0>at =a=1I,(u))=L(t"u)) =supl,(tu) > a”,
20
which is a contradiction. Since I,,(u;}) = I,(Ju}]) and |uf| € N;f, we may assume that u}
is a nontrivial nonnegative solution of (1.1). By Harnack mequahty, it follows that u} > 0
in RV,

Finally, by (2.1) and the Holder inequality, we can obtain
+|p— r—4q ~%
[y [P < " _p”f+||Lq*SA ,

which implies that [u}|| — 0 as g — 0%. This completes the proof.

Let u; = ug(z+le), for | € R and e € SV, where ug(z) is a radially symmetric positive
solution of (3.1) such that I°(ug) = (5 — 1)y 7 and S¥~' = {z € RV||z| = 1}. Then we
have the following result.

Lemma 3.4 (i) %in&”ul”p = Sy 7 uniformly in e € SV 1;

(ii) }in&/ lw|"dx = S/\%’” uniformly in e € SV~

(iii) }ir%f"o(ul) =(; - %)S;f” uniformly in e € SV

We refer to the argument of Lemma 4.2 in He and Yang (see [21]).
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4 The Estimates of Energy

The following statement is paramount to prove our main result.

Proposition 4.1 For p € (0, Ls), we have o~ < o™ + (% - %)S/\%‘J

Proof Let uf € N, be a positive solution of (1.1) in Proposition 3.3. Then we obtain
+ 1 + p 1 + q 1 + r
L(uy +tw) = —|luy + tw || — = fulw, +tw|'de — — glu; + tu|"dx
p q JrN T JrN
o 1
= L,(uy) + I (tw) + ];(Huj +tw|” = [lu I = [[tw]?)
1
_ / Fullt + tugl? — |uf|9)da
q JrnN
[ glluf vl Juf e [l
- = u w|” — |u x+ — w|"dx
7 Jan glju, l " , 1

RN

o 1
< L(uh) + I%°(tug) + E(IIUI + tug|[P = [l [P — [t ||P) (4.1)
tug
[oad [ e = i tanas
RN 0
1 r r 1 —+ r +|r r r
+= | A=t wlde -~ [ g(lu; +tw|" — |u;|" —t"|w|")dx
r JrN T JpN
+ [ =R P +|p P
S« +(5 - ;)SA +§(I|uu +tw]? — Jluy ([P — [[tw|]?)

t4 tr tr
+/ |f||uz|qu+/ <1—gl>|uz|’“da:—/ golu]"da.
q JrnN T JrN T JrN

Iu(uy +tw) — L(uf) =a" <0ast—0

Since

and
I,(uf + tuy) — —o0 as t — 4o00.

There exist 0 < t; < to such that
1 1, =
Iu(uf +tu) < at + (]; - ;)Sf”’ for all t € [0,¢1) U (t2, +00). (4.2)
Thus we only need to show that there exists Iy > 0 such that for [ > [y, we have

1 1
sup I, (ul +tw) <at + (- -~
t<t<ts w(t ) (p r

)ST7. (4.3)

Since u:[ + tu; — u:[ as | — oo, by Brézis-Lieb lemma, we can find [; > 0 such that for

> lo,
Jur + tw||P = [luf]|P — |ltw||” < € for ¢ > 0 small enough. (4.4)

For u,v > 0, we can remark that (v + v)" — 4" —v” > 0, and so

/ g(Jub +tw|" — Juf[" = t"|w|")dz > 0. (4.5)
RN
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From condition (A;), (As) and (3.5), we can obtain

1 1
/ |f-]|w|%de < cf-c4/ |z + le| ™" (Jz 4 1e|*P/° 4 |z 4 1e|PPN/0) =P gy
q Jrn q Jrn

< Cf / |£U + le|—Tf—p-a(>\)dx + Cf / |JJ + le|—rf—p.a()\)dx
|z|<l || >1
< C'le/ |z + le| " 7PN dg 4 O / |2 + le| 7"+ PN gy
|TE|<1 |I‘>l
< Cpl+ )N forall 1 > 1, (4.6)
t’l"
T L A glulde < e, / [+ L7 (|2 + 1e]* N/ 4 [z + 1e"N/%) =" da
< Cgl / |$ + le|*T91 —p-a(N) 1 + Cg1 / |x 4 le|*Tg1 —p-a(X) 1
|z| <l || >1
< CHIZN/ |:17 + le’frm 7p-a(/\)dx —+ Cgl / |IIJ + Ze‘*rm *p-a(/\)dx
|Z|<1 |I‘2l
< Oy (l+ 1)V e forall > 1 (4.7)
and
- w|"de = — T —1€)|Uo| Gx = ( MmN Uy(T x — le)dx
 Jon g2\ r Jon 92 veBN(1) 0 By () 92

> min uj(z) |cgy, [TTo2dx 4.8
(L ) | (18)

> min uj(z) |cg,l7 2.
(Lamin, ) )
Since 0 < 7r,, < min{ry — N,r;, — N} and t; < t < to, by (4.1)—(4.8), we can find Iy > 0

such that L1
sup I, (uf +tu) < o + (= —=)Sy " for all I > max{ly, 1}.
20 p T

In order to complete the proof of Proposition 4.1, it remains to show that there exists a

positive number ¢, such that uf{ + t.u; € NH’. Let
1 N 1 /[ u
U1 =< uUc Wa’p(R ) \{O} Wt W >1,U {O},
u U

U, = {u € WLIP(RN)\ {O}‘Hint‘ (HZH> < 1}.

Then the manifold N, divides WLP(RY) into two connected components U; and Us, and
WP(RY)\ N, = Uy UU,. For each u € N, we have 1 < tyay(u) < t~(u). Since
t~(u) = it~ (%), we can obtain N;f C Uy and so u) € Uj.

 ull [l
Next we claim that there exists t; > 0 such that uf{ + tou; € U,. In fact, we find a
uf{—i—tul

constant ¢ > 0 such that 0 < t_(|\u++tul|\

) < c for each t > 0. If not, then we may assume
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.
that there exists a sequence {t, }nen such that ¢, — oo and t‘(%) — 00 as n — 00.
n n
n
Let v, = % Since t~ (v,)v, € N, and by the Lebesgue dominated convergence
i n Ul

theorem, we can deduce
/ "d ! / (wl +tow)"d
vrdr = ———— u ) dx
RNg " ||uﬁ —|—tnul||T RNg K :

u
=+/ g(-* +w)de — FE—— asn — oco.

Then we have

O R O L el BT
— —00 as n — 00,

which contradicts the fact that I, is bounded below on N,,. Let

(/ |ul|ral:1:)g +1 1
to = ( RY |cP — ||u;r||p|> + 1. (4.9)

P
By (4.4) and Lemma 3.4, we have, as [ — oo,
oy + towl” = w7 + €5l ||” + o(1) > [lui " + 1e” = [luy [P + o(1)

ul + toy
>cP +0o(1) > (7 (————))P + o(1).
1) > (i) + o0
Thus there exists [y > 0 such that for [ > Iy, we get

1 _ouf o

[ +towl ™ luf + tow|

or ut +tow; € Up. Define a path y(s) = uf + stou, for s € [0,1], and so
Y(0) = ut € Uy, ~(1) =u; +tou € Us.

By Lemma 2.4, we have ”—i”t_(ﬁ) is a continuous function for u € WLP(RY)\ {0} and
7([0,1]) is connected. Then there exists sy € (0,1) such that u/ + sotou; € N, . Take
t. = sotp and this proof is completed.

Then we have the following result.

Theorem 4.2 For p € (0,Ly), (1.1) has a positive solution u; € N, such that
I(u,)=a".

Proof By Ekeland’s variational principle [22], there exists a minimizing sequence
{tn}nen C N, such that

L(u,) =a” +o(l) and I (u,) =o0(1) in (WyP(RY))™"
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Since o~ < at + (% —1)S{77, by Lemma 2.3 and Proposition 3.2, there exists a subsequence

{tn }nen and a non-zero solution u,; € N~ of (1.1) such that as n — oo, it holds
U, — u, in WyP(RY).

Since I,,(u,) = I.(Ju,|) and |u,| € N, u, is a positive solution of (1.1). We finish the

proof.

5 Concentration Behavior

In this section, we discuss the concentration behavior of solutions to (1.1) so that we
can get the proof of Theorem 1.1 (ii).
Lemma 5.1 We have

inf To(u) = inf I°°(u) = (= — ~)S{". (5.1)

u€Ng ue N> p T

Furthermore, (1.1) does not admit any solution wy € WLP(RY) such that Ip(wg) = injg Ip(u).
u€No

Proof By Lemma 2.4, there exists the unique ¢~ (u;) > 0 such that ¢~ (u;)u; € Ny for
all [ > 0, that is,

It~ (w)w||P = /RN F It~ (w)w|*dz + /RN gt~ (w)w|"dx. (5.2)

Since
|l ||P = / lw|"dz = Sy for all 1 >0 (5.3)
RN

and

/ f-|w]?dx — 0 and / (1—-9g)|w|"de —0 asl— oo. (5.4)
RN RN

By (5.2)—(5.4), we have t~(u;) — 1 as | — oo. Thus

. _ ooy 11 =
fim ot (uyun) = Jim (¢ () = (5 = )53 6:5)
Then we can obtain L
i <(=—=)S[7 = inf I(u). .
Jof To(u) < (p )X nf 1% (u) (5.6)
For w € Ny, by Lemma 2.4 (i),
U U
In(u) = Ip(t™ (—) ) = sup I (tu). (5.7)
Jull“llull ™ =0

Moreover, there exists a unique t>*° > 0 such that t*u € N°°. Thus,

To(u) = Ip(t=u) > I°(t%u) > (= — —)S] 7 (5.8)

D=
S|
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and so inf Io(u) = (5 — %)SA%’D Then we have
u€No

inf To(u) = inf I°°(u) = (= — 2)ST7. (5.9)

u€No uEN>® p r

In order to show that (1.1) does not admit any solution wg such that Io(wg) = in]\ff Iy(w),
u€No

we argue by the contrary. By Lemma 2.4 (i), we have Iy(wgy) = sup Iy(twg). Moreover, there
>0
exists a unique t,,, > 0 such that ¢,,,wy € N°°. Thus we obtain

(

1
S T = inf Io(u) = Io(wo) = I (tuywo) — / F-|twywo|da, (5.10)

u€Ng

=

and this implies / f—|wo|%dz = 0, that is, wo = 0 in {x € RY|f_(x) # 0} from (A;). Then
RN
we can obtain L1 ‘
(== =)Sy 7 = inf I°®(u) = I°°(tu,wo).

T ue N>

By the Lagrange multiplier and the maximum principle, we may assume that ¢, ,w, is a
positive solution of (1.1). This contradiction completes the proof.

Lemma 5.2 Assume that {u,} is a minimizing sequence in Ny for Iy. Then

i) / folupl?dx = o(1);
RN

(ii) /sz(l — g)|un|"dz = o(1).

Furthermore, {u,} is a (P.S.) -sequence in WLP(RY) for 1°°.

( 1_ 1 )S T—p P
Proof For each n, there exists a unique t,, > 0 such that t,u, € N°°, that is,

2 unl? = / | d.
RN

By Lemma 2.4 (i), we have

td tr
In(uy) = Ip(tau,) = I (thu,) — = / f-lun|%dx + "/ (1= g)|unp|"dzx
q Jrn T Jry
1 1. 4 tr
2—5"p—”/ f_unqu+”/ 1 — g)|un|"dz.
(p T) X ¢ Jon || " RN( )un|

Since Iy(u,) = (1% - %)S/\T%” + o(1) from Lemma 5.1, we have, as n — oo,

e
B[ f unfodz = o(1)
q Jr~N

128 .
/ (1 = g)|un|"dz = o(1).
T Jen

Next, we will show that there exists M > 0, ¢y > 0 such that ¢, > ¢y for n > M. Suppose

the contrary. Then we may assume t,, — 0 as n — co. As in the proof of Lemma 2.3, we

and
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know that ||u,]|| is uniformly bounded and so ||, u,|| — 0 or I*°(t,u,) — 0. This contradicts
the fact I°(t,u,) = (% —1)S7” > 0 from Lemma 5.1. Then we have

/ f-unltdz = o1)
RN
and
[ 0= lurds=o.
RN
This implies

fun P = / " da + o(1)
RN

and so 1 1
I(u,) = (= — =)ST7 +o(1),
(1) = (= 1)ST7 +ol1)
that is, {u,} is a (P.S.)(1 |55 -Sequence in WLP(RY) for I°°. This completes the proof.
p /P
Let

1 1

p T

N7 (d) = {ue N7 |L(u) < ( )ST7 +d} for d <0,

14

be the filtration of the Nehari manifold N,. Then we have the following lemmas.
Lemma 5.3 There exists dy < 0 such that for u € Ny(dy), we have

x a A
/]R 7(|l‘| p|Vu|p - Wup)dx 7é 0.

N |I|1—ap
Proof Suppose the contrary. We may assume that there exists a sequence {u, }n,en C
Ny such that Iy(u,) = (% —1)S77" +0o(1) and / i (||~ |V, |P — dx =
RN

- P
i oD
o(1). By Proposition 3.2 and the concentration-compactness principle (see [23, Theorem

4.1]), there exists a sequence {z, }neny C RY such that
[tn () — uo(x — 2,)]] = 0 as n — oco. (5.11)

Now we will show that |z,| — oo as n — oo by contradiction. We may assume that {x,} is
bounded and z,, — x, for some x, € RY. Then by (5.11),

/R -l = / I @)l — )1 + of1)
= /]RN fo(x 4 x)|ug(x)]|%dx + o(1),

this contradicts the result of Lemma 5.2 (i). Hence we may assume ‘i"‘ — e asn — oo,

where e € S¥~!. By the Lebesgue dominated convergence theorem, we have

T A
1) = 1-0p| |7y, [P — AIP)d
O( ) /RN |x|1_ap<|l‘ || U | |x|—ap‘u | ) X
T+ z, —ap A
= - - ?P\VyuolP — — P\d
/]RN |$C+.’L’n|1_ap(|x+xn| | U0| |$+xn|p(a+1)|UO| ) €z

:/ e|Vug|Pdx + o(1).
RN
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This contradiction completes the proof.

By (2.1) and Lemma 2.4 (i), for each u € N, there exists the unique ¢, (u) > 0 such

that t (u)u € Ny and to (u) > tmax(u) > 0. Then we have the following result.
Lemma 5.4 Let
T =

T—q(1+r—p)'
p—q  r—gq

For each p1 € (0, Ly) and u € N (a™), we have ¢, (u) < T+,

Proof For u € N, (a™), we distinguish from the following distinctive cases.

Case (i) t, (u) < 1. Since T' > 1, we have ¢, (u) < 1 < =
Case (ii) ¢, (u) > 1. Since

(15 ()" / glulrde = (15 () ul” ~ (15 ()" / ffuds
< (t5 () (Jul + /

R

|- lul?dz)
N
and by Lemma 2.2 (iii), we have

ful + / Follulde
RN .

/‘MMWx
]RN

Moreover, from the argument in the proof of Lemma 2.2, we have

T — q r
Jull < / glul"d,
T —p RN

r—q
lull / 1f-||u]*dz.
r *p RN

(g (u)"" =

1
. u p—l—/ _ulfdz
il + [ 1l

B N A
< (14 2BY ) < (1+ )
[l [P p—q  T—q

This completes the proof.

(5.12)

(5.13)

(5.14)

Lemma 5.5 There exists po € (0, L) such that for each p € (0, yo) and u € N, (a*),

p
/) T a v — A yan 20,
R

N |x|1fap |x|p(a+1)
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Proof For u € N, (a™), by Lemma 2.4 (i), there exists ¢, (u) > 0 such that ¢, (u)u €
Ngy. Moreover, by Lemma 5.4 and the Holder inequality and Sobolev embedding theorem,

we have
_ > — o — /‘L(t() qd
I, (u) = sup I.(tu) = I,(ty (w)u) = Io(ty (u)u) f+|u| T
or so
_ ty (u))?
no(tg ) < (o) + “8 [ p fugras
RN
1 1, = ol g
+ - T—Pp . P q
<o+ G ST e
Since I,(u) < at + (5 - f)S’“ P < (5 - %)S/\T%P, by Lemma 2.1, for p € (0,L,) and

u € N, (a'), there exists ¢, independent of y such that |jul| < c.. Thus,

_ 1, =  ul%
Io(ty (u)u) < o +( — )5 R . 1+ llza S

%\r—*

Then by Lemma 5.3, we have

A
| e el IV 0P = s () £ 0

=

and this implies
T (e |Vl — — 2 Ju)dz £ 0 for u € N~(a*)
v [217 D w7
The proof is completed.

6 Proof of Theorem 1.1

In this section, we will follow an idea in [24] to prove our main result. For ¢ € RT, we

denote
Ly < = {ue Nyju>0, L(u) < ch
Then we try to show that for a sufficiently small o > 0, we have
1 1 r
cat([I, <at + (== =)S " —0a]) =2 (6.1)
p

Here ‘cat’ means the Lusternik-Schnirelmann category [15]. First, let us recall its definition.
Definition 6.1 A non-empty, closed subset Y is contractible in a topological space X
if there exists h € C(]0,1] x Y, X) such that for some zy € X,

h(0,z) =z, h(l,z)=xo.

Definition 6.2 Let Y7,Y5,--- .Y, be closed subsets of a topological space X. The
category of X is the least integer k such that Y is contractible in X for all j and U;‘f:le =X,
denoted by cat(X).
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When there do not exist finitely many closed subsets Y7,Ys, -, Y, C X such that Y;

k
is contractible in X for all j and |J Y; = X, we denote cat(X) = co. We need the following
=1
lemmas (see Theorem 2.3 in [25] and Lemma 2.5 in [24]).

Lemma 6.3 Let X be a Hilbert manifold and F' € C'(X,R). Assume that there are
co € R and k € N such that

(i) F satisfies the Palais-Smale condition for energy level ¢ < ¢o;

(i) cat({zx € X|F(z) < ¢o}) = k.

Then F has at least k critical points in {z € X|F(z) < ¢o}.

Lemma 6.4 Let X be a topological space. Assume that there are ¢ € C(SV~1,X)
and 1 € C(X,SV~1) such that 1 o ¢ is homotopic to the identity map of SV~  that is,
there exists h € C([0,1] x S¥=1,S¥1) such that h(0,z2) = (¢ o ¢)(x), h(1l,z) = x. Then
cat(X) > 2.

For | > ly, we define a map ¢, : S¥~1 — WLP(RY) by

ou(e)(x) =uf +t.ay foree SV

where u/f + t,uy; is as in the proof of Proposition 4.1. Then we have the following result.

Lemma 6.5 There exists a sequence {0y} C RT with o, — 0 as [ — oo such that

PuSY ) C <ot + (= ST —ail

Proof By Proposition 4.1, for I > Iy, we have uf +t,u; € N and

1 1, =
sup I, (uf + tw;) < o + (]; — ;)S)’\‘*p uniformly in e € SV 1.

20
Since ¢, (S¥71) is compact and I, (u} +t.u) < ot + (% - %)S/\%p — oy, the concl}lsion holds.
From Lemma 5.5, we define a barycenter map, ¢, : [I, < a® + (5 — )S{ 7] — SV
by
x _ |u|?
v ap|\TqlP — N
/RN |x‘1_ap(|x\ |Vul )\|x|p(a+l))d:1;

Yy (u)

Y T U LR
|/1RN |3§|1_up<|3s HVU| /\\x|P(a+1))dI|
Then we have the following result.
Lemma 6.6 Let ug be as in Lemma 5.5. Then for p € (0, ug), there exists I, > Iy such
that the map
Yo, SN SV for 1> 1,

is homotopic to the identity operator.

Proof Denote

|uf”

supp 1, = {u € WP @\ [ E(Valr = A e £0)

| [P
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and define @; : supp ¢, — SV~ by
p
/ %(|Vu\p - )\Iu:p)d:z:

: NG
/ HVal = A E)ds

as an extension of v,. Since u; € supp ¥, for all e € S¥=1 and large enough I, we may

assume 7 : [s1, s2] — SV is a regular geodesic between 1, (u;) and @;(gou(e)) such that

V(s1) = Yu(w),  v(s2) = Dulpule))-

By an argument similar to Lemma 5.3, there exists [, > [y such that

l
2(1_9)6) € supp ¥,
foralle € SN=1, I >, and @ € [%,1). We define
2

hi(6,e):[0,1] x SV~ — sV-1

by
1
v(20(s1 — s2) + $2) for 6 € [0, 5),
—~ l 1
hi(0,e) = -
1(0,e) w#(uo(x—l—z(l_H)e)) for 6 € [2,1),
e for  =1.

Then h;(0,¢e) = {ﬁ\;(g)#(e)) and h;(1,e) = e. By the standard regularity, we have h;(0,e) €
C(RY).
Next, we will show that hm hi(0,e) = e and lim h(8,e) = ¥, (w).
—1-

Oﬂ%

(i) lim hy(0,e) = e, since

0—1—

l P_ A ub(x ¥e x
/RN |:c\(|v o(@ 2(1—0)e)| ]:E—l—z(l%eep o +2(1—9) ))d

T+ %ge h
— [ (V@) - b)) ds
Ry T+ 2(179)e| |z + 2(170)e|

:e/ |Vuo|Pdx + o(1)
RN

as 0 — 17.
(il) lim hy(0,e) = ;ﬁ:(ul) Since wNH € C(supp v¥,,SV~!), then we have

61~

hy(0,e) € C([0,1] x SV, sN-1)
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and
hl(07 6) = ¢u(¥7u(e))a hl(17 6) =6,

for all e € S¥~! and [ > [,. This completes the proof.

Lemma 6.7 For pu € (0,p10) and [ > ., the energy functional I, admits at least two
critical points in [, <ot + (5 — %)SA%”]

Proof It is easy to deduce from Lemmas 6.3, 6.4, 6.6 and Proposition 3.2.

Proof of Theorem 1.1 Now we can complete the proof of Theorem 1.1

(i) by Proposition 3.3 and Theorem 4.2;

(ii) from Proposition 3.3 and Lemma 6.7, (1.1) has at least three positive solutions

TR + + - - -
wy,uy,uy, where wi € N and u; € N, for i =1,2.
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